

30th Conference Vibrations in Physical Systems – VIBSYS 2022

IDENTIFICATION OF SELECTED ELECTROMECHANICAL SYSTEMS USING ACQUIRED TIME-SERIES DATA

Samuel AYANKOSO, Paweł OLEJNIK, Jan AWREJCEWICZ

Department of Automation, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Lodz University of Technology

Outline

- Introduction: Methods of Modelling Electromechanical Systems
- Data-driven modelling: Neural Network (NN) and Physics-Informed Neural Network (PINN)
- Case study 1: Geared DC Motor
- Case study 2: Double Torsion Pendulum
- Conclusion

Introduction: Modelling

 The development of an accurate dynamic model is crucial for the purpose of optimization, control, fault detection, diagnosis and prognosis. There are three main modelling approaches: white-box modelling (physics-based or mathematical approach), black-box modelling (pure data-driven approach), and grey-box modelling (hybrid or physics-informed data-driven approach)

3

Introduction: Modelling

Data-Driven Modelling: NN and PINN

- Neural networks (NNs) such as multilayer perceptron (MLP) and recurrent neural networks have been used for diverse engineering applications; their success can be linked to advancements in sensors, computational platforms, and network architectures. Nevertheless, NNs have a few challenges, which include model variance with new datasets, large and quality data required, and its structure lacks physical meaning.
- These challenges can be handled by a physics-informed neural network (PINN). The basic concept of PINN is the use of physical laws described by ordinary or partial differential equations while training a neural network to solve supervised learning problems. Furthermore, PINN gives the flexibility of estimating the unknown states or variables of a system like its frictional behaviour, and it can also be used in identifying the parameters of a mathematical model.

Case Study 1: Geared DC Motor

Experiment and data acquisition

 We acquired experimental input and output data from a sourced geared 12V DC Motor (SG555123000-10K). The input to the physical system is a time-varying PWM signal, while the system output is the motor speed which was measured through an encoder.

Fig. 3: The experimental setup for data acquisition from a Geared DC Motor

Fig. 4: The experimental setup for data acquisition from a Geared DC Motor

7

Geared DC Motor: Physics-based model

 The physics or governing equation of a DC motor can be derived from the operational concept of its mechanical and electrical components using Newton's 2nd law and Kirchhoff's law.

Geared DC Motor: Data-driven model algorithm

PINN Algorithm Pseudocode

Table 1: PINN algorithm

Import numpy, pandas, matplotlib and TensorFlow

Initialize the known system parameter, K_{gr}

Load the training and test dataset: Experimental data

Create three neural networks $(NN_1, NN_2 \text{ and } NN_3)$

Define: Input dimension, Number of hidden layers and neurons, and Output dimension

Add $J_{rs}, J_{os}, B_{rs}, B_{os}$ and K_m as constrained weights or trainable parameters to NN_1

Add L, R and K_b as constrained weights or trainable parameters to NN_3

Initialize the weights and biases of NN_1 , NN_2 and NN_3

For g=1 to the number of Epochs (20000)

Get the prediction of the training dataset

$$\hat{\Psi}_{rs} = NN_{\perp}(t,v) , \hat{\Psi}_{os} = NN_{\perp}(t,v) , \hat{I} = NN_{2}(t,v)$$

Compute the derivative of the three networks: $\frac{d\hat{\Psi}_{rs}}{dt}, \frac{d\hat{\Psi}_{os}}{dt}$ and $\frac{d\hat{I}}{dt}$

Compute the residuals of the system (physics losses) including the losses due to prediction

$$L_{1} = \sum_{i}^{N} \left(J_{rs} \frac{d\hat{\Psi}_{rs}(i)}{dt} + B_{rs} \hat{\Psi}_{rs}(i) + \frac{1}{K_{gr}} \left[J_{os} \frac{d\hat{\Psi}_{os}(i)}{dt} + B_{os} \hat{\Psi}_{os}(i) \right] - K_{m} \hat{I}(i) \right)^{2},$$

$$L_{2} = \sum_{i}^{N} \left(L \frac{d\hat{I}(i)}{dt} + R\hat{I}(i) - v_{i} + k \hat{\Psi}_{rs}(i) \right)^{2}; \quad L_{3} = \sum_{i}^{N} \left(\hat{\Psi}_{os}(i) - \psi(i) \right)^{2},$$

 $L_{T1}=L_1+L_3$, $L_{T2}=L_2$

Compute the gradient of the losses L_{T_2} and L_{T_2} with respect to all the network weights and biases

Update the weights and biases of NN_1 , NN_2 and NN_3

Sum the losses of the two networks, $L_T = L_{T1} + L_{T2}$

Print epoch g and the total loss of the system at epoch g including the value of parameters

Plot the prediction of NN_1 , NN_2 and NN_3 with the test dataset

Print the value of all the identified parameters $(J_{rs}, J_{os}, B_{rs}, B_{os}, K_m, L, R \text{ and } K_b)$ after the training **Save** the weights and biases of the NN_1, NN_2 and NN_3

End of the Algorithm

Geared DC Motor: PINN model results

Table 1: Geared DC Motor Physical Parameters

J _{rs}	J_{os}	B_{rs}	Bos	K_m	L	R	K _b
0.001	0.0379	1.2539	0.3532	0.6585	0.001	1.3798	0.3938

Fig. 6: The angular speed and armature current predictions of the geared DC motor PINN model after step-like increment of reference value

Vibsys Conference, Poznań September 26-28 2022, Poland

Case Study 2: Double Torsion Pendulum

• The laboratory test stand is a double torsion pendulum, and our aim is to investigate the planar frictional contact between the column and disk pendulums. A well labelled isometric view of the test stand is shown in Fig. 7. The electronic components that are part of the test stand include NXP microcontroller (FRDM-KL25Z), 2 phase DC stepper motor, DC motor driver SMC64r2, and two HMC15IZ sensors to measure the pendulum's angle of rotation column and disk, power supply (25 V), and a CPU.

Fig. 7: Isometric view of the double torsion pendulum,where (1) upper free disk (2) friction surface (3) supportframe (4) bearing springs (5) column pendulum (6)drive mechanism (7) base (8) microcontroller

Double Torsion Pendulum: Time-series data and physics-based model

Time-series data

10-

0.0

- 0.5 1.0 1.5 2.0 Time [s]
- Fig. 9: Time-series response of the disk pendulum

• Physics-based model

$$\tau = J_2 \varphi_2 + \tau_f$$

Where $\tau = J_1 \varphi_1$ $J_1 \varphi_1 = J_2 \varphi_2 + \tau_f$

au is the torque of the column pendulum, J_1 and J_2 are the moment of inertia of the column and disk pendulum, respectively.

Double Torsion Pendulum: Data-driven model algorithm

• PINN Algorithm flowchart

• PINN model results

Fig. 10: The time series of the predicted disk pendulum angular position by the PINN model

Conclusion

- We have presented the identification of two electromechanical systems: a geared DC motor and a double torsion pendulum system.
- The overall results demonstrate the input-output relation, and the frictional behaviour of an electromechanical system can be estimated using experimental time-series data from the system and a flexible neural network such as PINN.

Acknowledgement

 This research was funded by Narodowe Centrum Nauki grant number 2019/35/B/ST8/00980 (NCN Poland)

THANK