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• The development of an accurate dynamic model is crucial for the purpose of 
optimization, control, fault detection, diagnosis and prognosis. There are three
main modelling approaches: white-box modelling (physics-based or 
mathematical approach), black-box modelling (pure data-driven approach), and 
grey-box modelling (hybrid or physics-informed data-driven approach) 

Introduction: Modelling
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Introduction: Modelling
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• Neural networks (NNs) such as multilayer perceptron (MLP) and recurrent neural 
networks have been used for diverse engineering applications; their success can be 
linked to advancements in sensors, computational platforms, and network 
architectures. Nevertheless, NNs have a few challenges, which include model 
variance with new datasets, large and quality data required, and its structure lacks 
physical meaning. 

• These challenges can be handled by a physics-informed neural network (PINN). The 
basic concept of PINN is the use of physical laws described by ordinary or partial 
differential equations while training a neural network to solve supervised learning 
problems. Furthermore, PINN gives the flexibility of estimating the unknown states 
or variables of a system like its frictional behaviour, and  it can also be used in 
identifying the parameters of a mathematical model.

Data-Driven Modelling: NN and PINN
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Fig. 2: Data-driven 
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of NN and PINN
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• We acquired experimental input and output data from a sourced geared 12V DC 
Motor (SG555123000-10K). The input to the physical system is a time-varying PWM 
signal, while the system output is the motor speed which was measured through an 
encoder.

Case Study 1: Geared DC Motor

Fig. 3: The experimental setup for data acquisition from a 
Geared DC Motor Fig. 4: The experimental setup for data acquisition from a Geared DC Motor

Experiment and data acquisition



8Vibsys Conference, Poznań September 26-28 2022, Poland

• The physics or governing equation of a DC motor can be derived from the operational 
concept of its mechanical and electrical components using Newton’s 2nd law and 
Kirchhoff’s law.

Geared DC Motor: Physics-based model 
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Fig. 5: Schematic of a DC Motor
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• PINN Algorithm Pseudocode

Geared DC Motor: Data-driven model algorithm

Table 1:  PINN algorithm  

Import numpy, pandas, matplotlib and TensorFlow 

Initialize the known system parameter, 
grK   

Load the training and test dataset: Experimental data 

Create three neural networks ( 1 2 3,  and NN NN NN ) 

 Define: Input dimension, Number of hidden layers and neurons, and Output dimension 

 Add , , ,   rs os rs os mJ J B B and K  as constrained weights or trainable parameters to  1NN   

 Add ,  and bL R K  as constrained weights or trainable parameters to  3NN  

Initialize the weights and biases of 1 2 3,  and NN NN NN  

For  g=1 to the number of Epochs (20000) 

 Get the prediction of the training dataset 

 
1

ˆ ( , )rs NN t v   , 
1

ˆ ( , )os NN t v  , 
2

ˆ ( , )I NN t v   

 Compute the derivative of the three networks: 
ˆ ˆ ˆ

,    and   rs osd d dI

dt dt dt

 
  

Compute the residuals of the system (physics losses) including the losses due to prediction 
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Compute the gradient of the losses 2TL  and 2TL  with respect to all the network weights 
 and biases 

 Update the weights and biases of 1 2 3,  and NN NN NN  

 Sum the losses of the two networks, 1 2T T TL L L    

 Print epoch g and the total loss of the system at epoch g  including the value of parameters 

Plot the prediction of  1 2 3,  and NN NN NN  with the test dataset 

Print the value of all the identified parameters ( , , , , , ,  and rs os rs os m bJ J B B K L R K ) after the training 

Save  the weights and biases of the 1 2 3,  and NN NN NN  

End of the Algorithm 
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Geared DC Motor: PINN model results

𝑱𝒓𝒔 𝑱𝒐𝒔 𝑩𝒓𝒔 𝑩𝒐𝒔 𝑲𝒎 𝐋 𝐑 𝑲𝒃

0.001 0.0379 1.2539 0.3532 0.6585 0.001 1.3798 0.3938

Fig. 6:   The angular 
speed and armature 
current predictions 

of the geared DC 
motor PINN model 

after step-like 
increment of 

reference value

Table 1: Geared DC Motor Physical Parameters
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• The laboratory test stand is a double torsion 
pendulum, and our aim is to investigate the 
planar frictional contact between the column 
and disk pendulums. A well labelled 
isometric view of the test stand is shown in 
Fig. 7. The electronic components that are 
part of the test stand include NXP 
microcontroller (FRDM-KL25Z), 2 phase DC 
stepper motor, DC motor driver SMC64r2, 
and two HMC15IZ sensors to measure the 
pendulum's angle of rotation column and 
disk, power supply (25 V), and a CPU. 

Case Study 2: Double Torsion Pendulum

Fig. 7: Isometric view of the double torsion pendulum, 

where (1) upper free disk (2) friction surface (3) support 

frame (4) bearing springs  (5) column pendulum (6) 

drive mechanism (7) base  (8) microcontroller



12Vibsys Conference, Poznań September 26-28 2022, Poland

• Time-series data

Double Torsion Pendulum: Time-series data and 
physics-based model

2 2 fJ   

Where   𝜏 = 𝐽1𝜑1
𝐽1𝜑1= 𝐽2𝜑2+ 𝜏𝑓

𝜏 is the torque of the column 
pendulum, 𝐽1 and 𝐽2 are the moment 

of inertia of the column and disk 
pendulum, respectively.

Fig. 8: Time-series response of the column pendulum

Fig. 9: Time-series response of the disk pendulum

• Physics-based model
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• PINN Algorithm flowchart

Double Torsion Pendulum: Data-driven model algorithm

Fig. 10: The time series of the predicted disk pendulum angular position by 

the PINN model

Fig. 11: The time series of the predicted friction torque by the PINN model

• PINN model results
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• We have presented the identification of two electromechanical 
systems: a geared DC motor and a double torsion pendulum system. 

• The overall results demonstrate the input-output relation, and the 
frictional behaviour of an electromechanical system can be 
estimated using experimental time-series data from the system and a 
flexible neural network such as PINN. 

Conclusion
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