POLISH SOCIETY OF THEORETICAL AND APPLIED MECHANICS

INSTITUTE OF APPLIED MECHANICS POZNAN UNIVERSITY OF TECHNOLOGY

VIBSYS 2022 Poznań

XXX Conference "VIBRATIONS IN PHYSICAL SYSTEMS"

> Poznań – Poland September 26–28, 2022

Redaction

Roman Starosta, Małgorzata Jankowska

Computer processing of the text and cover design Mikołaj Bilski

Honorary patronage

Marshal of the Wielkopolska Region, Mr. Marek Woźniak

Rector of Poznan University of Technology, prof. dr hab. inż. Teofil Jesionowski

Dean of Faculty of Mechanical Engineering of the Poznan University of Technology, dr hab. inż. Olaf Ciszak, prof. PP

Section of Dynamics of The Committee of Mechanics of the Polish Academy of Science

Section of Vibroacoustics of The Committee on Acoustics of the Polish Academy of Science

> **Cooperation** National Museum in Poznan, Poland

Supporting institutions Polish Ministry of Education and Science

Faculty of Mechanical Engineering of the Poznan University of Technology

EC TEST Systems Sp. z o. o.

Mechanical models Sp. z. o. o.

Poznań 2022, 80 copies

Print & Publisher: Agencja Reklamowa COMPRINT ul. Nikodema Pajzderskiego 22, 60-469 Poznań, Poland

ISBN 978-83-89333-80-3

Honorary Scientific Committee:

Jan AWREJCEWICZ, Stefan JONIAK, Jan KOŁODZIEJ, Włodzimierz KURNIK, Tomasz ŁODYGOWSKI, Stanisław MATYSIAK, Krzysztof MAGNUCKI, Wolfgang MUSCHIK, Andrzej RADOWICZ, Andrzej TYLIKOWSKI, Jerzy WARMIŃSKI

Scientific Committee:

Wojciech BATKO, Romuald BEDZIŃSKI, Jacek BUŚKIEWICZ, Tadeusz BURCZYŃSKI, Enzo CIANCIO, Evgen CZAPLA, Zbigniew DĄBROWSKI, Marian DOBRY, Antoni GAJEWSKI, Joseph GRIMA, Jan HOLNICKI-SZULC, Paweł JASION, Jarosław JĘDRYSIAK, David JOU, Jerzy KALETA, Henryk KAMIŃSKI, Przemysław LITEWKA, Krzysztof MARCHELEK, Stanisław RADKOWSKI, Liliana RESTUCCIA, Roman STAROSTA,

Tomasz STRĘK, Wojciech SUMELKA, Grażyna SYPNIEWSKA-KAMIŃSKA, Tomasz SZOLC, Grzegorz SZYMAŃSKI, Maciej TABASZEWKI, Franciszek TOMASZEWSKI, Tadeusz UHL, Józef WOJNAROWSKI.

Organizing Committee:

Małgorzata JANKOWSKA – chairman,

Roman STAROSTA – vice-chairman, Magdalena MIERZWICZAK – secretary, Roman BARCZEWSKI, Mikołaj BILSKI, Beata CZERKAS, Paulina FOPP, Jakub GRABSKI, Maciej TABASZEWSKI, Tomasz WALCZAK.

All published papers received a positive opinion of the members of the Scientific Committees.

Prospective insight

The jubilee of the conference, similarly as the jubilee of every important event in our lives, invites us to reflect on the past and the future.

It was April 1960 when prof. Edmund Karaśkiewicz as a chairman of the Poznan Department of the Polish Society of Theoretical and Applied Mechanics (PTMTS) organized and headed the first two-day symposium on linear and nonlinear vibrations. It took place in Poznan. The symposium became an event organized every two years. The chairmen of the conference changed, but all of them set themselves the goal of caring for high scientific level of the symposium. It resulted in obtaining by the conference a high reputation in the Polish scientific world.

More than 60 years have passed. At that time, we observed the rapid development of technology, which fundamentally affected the world, the life of societies and every single person. The development of new technologies was possible thanks to science. On the other hand, we see how much we can support the development of science through the use of modern technical solutions. Faced with the task of organizing the 30th edition of the VIBSYS conference, we asked ourselves a number of questions. First of all, which research topics are currently the most relevant and important from the scientific and application point of view. The second issue was to define an attractive way to exchange knowledge, popularize science and encourage young scientists to conduct research.

We decided to answer the first of these questions together with the conference participants who represent various modern trends in the broadly understood subject of vibrations in physical systems. The current and subsequent editions of VIBSYS will allow us to decide which of the topics are particularly worth considering during the conference. In terms of organization, we plan to maintain new ideas that turned out to be right during the conference in 2020. These include a hybrid form of participation both stationary face-to-face on the spot and remote via an online platform, a competition for young scientists on the best presentation of the research results, popularization of history and art through trips to interesting places in the Greater Poland region and the emission of short films encouraging to see, e.g., the exhibition of the National Museum in Poznan during breaks in the sessions.

The special moment during the 30 edition of VIBSYS will be a session dedicated to the memory of prof. Czesław Cempel. Prof. Cempel worked in the Institute of Applied Mechanics and organized the VIBSYS conference many times. He was a chairman and honorary member of the scientific committee. Employees of our Institute, co-authors and friends will present the profile of the professor and his scientific achievements.

At the end of this introduction, we wish the participants fruitful discussions and many pleasant moments during the VIBSYS conference at the Poznan University of Technology.

Chairs of the Conference

Table of Contents

Mohamed ABOHAMER , Jan AWREJCEWICZ, Tarek AMER
Krzysztof AUGUSTYNEK, Andrzej URBAŚ, Jacek STADNICKI
Samuel AYANKOSO, Pawel OLEJNIK, Jan AWREJCEWICZ
Marek BARSKI, Adam STAWIARSKI, Małgorzata CHWAŁ, Marcin AUGUSTYN16 NUMERICAL SIMULATION OF FUNDAMENTAL ELASTIC WAVE MODES COUPLING IN COMPOSITE PLATES
Wojciech BATKO
IDENTIFICATION OF ACOUSTIC PHENOMENA IN A NON-EUCLIDES METRIC SPACE
Hugo BÉCU, Claude-Henri LAMARQUE, Alireza TURE SAVADKOOHI
Piotr CZUBAK, Weronika ŻMUDA22
STUDY OF TRANSPORT POSSIBILITIES IN THE RESONANCE ZONE
OF THE NEW VIBRATORY CONVEYOR EQUIPPED WITH THE SINGLE ELECTROVIBRATOR
Slawomir DUDA, Grzegorz GEMBALCZYK, Zygmunt KOWALIK, Paweł LIPSKI,
Oskar KOZERA
Jan FREUNDLICH, Radosław NOWAK
VIBRATIONS OF A 3D-PRINTED FRACTIONAL CANTILEVER BEAM WITH A DOUBLE-OUICK-MOUNTS PIEZOELECTRIC TRANSDUCER
2
Pawel FRITZKOWSKI 27 ANALYSIS OF VIBRO-IMPACT DYNAMICS BASED ON THE METHOD OF MULTIPLE SCALES 27
Michał HAĆ
INFLUENCE OF MACHINING AND DESIGN PARAMETERS OF SHAFTS ON COOPERATION OF TOOTHED GEAR
Grzegorz ILEWICZ
DYNAMICS OF RCM MECHANISM OF SURGICAL ROBOT FOR PERIODIC MOVEMENTS WITH
CONSIDERATION OF BLDC ACTUATORS, FUZZY PID CONTROL AND GMS FRICTION MODEL
Grzegorz ILEWICZ
DETERMINATION OF OPTIMAL SOLUTIONS FOR BALANCED RCM MECHANISM
OF SURGICAL ROBOT DURING NATURAL VIBRATION, LINEAR BUCKLING AND SPHERICAL MOVEMENT TAKING INTO ACCOUNT INPUTS FROM IN VITRO EXPERIMENTS
ON CARDIOVASCULAR TISSUE

Mateusz JAKUBOWSKI, Maciej MAJCHRZAK, Roman STAROSTA,	
Paweł FRITZKOWSKI	32
FSI SIMULATION OF FLOATING WIND TURBINE BASED ON SPH METHOD	
Anna JASKOT, Bogdan POSIADAŁA	34
MODEL OF THE DYNAMICS OF MOTION OF A FOUR-WHEELED MOBILE PLATFORM WITH THE	
DYNAMIC INTERACTIONS OF DRIVE WHEEL SYSTEMS	
Jarosław JĘDRYSIAK	35
VIBRATIONS OF AXIALLY FUNCTIONALLY GRADED BEAMS WITH AXIAL FORCE	
Iryna KACHURA-ZHECHYTSKA, Błażej GABRYSZEWSKI, Martyna SOPA,	
Tomasz WALCZAK	37
BIOMECHANICAL ANALYSIS OF THE JUMP SHOT IN BASKETBALL	
Magda KAŹMIERCZAK-SOBIŃSKA	38
THE LOWER FREE VIBRATIONS FREQUENCIES OF THIN PLATES	
WITH FUNCTIONALLY GRADED STRUCTURE	
Lukasz KLODA, Stefano LENCI, Jerzy WARMINSKI, Zofia SZMIT	40
NONLINEAR MODE COUPLING AND INTERNAL RESONANCES	
IN A PLANAR BEAM-SPRING SYSTEM	
Krzysztof KOSAŁA	42
COMPARATIVE ANALYSIS OF THE ACOUSTIC PROPERTIES OF GRANULAR MATERIALS	
Tomasz KRAKOWSKI, Bartosz ZIEGLER, Witold STANKIEWICZ	43
ANALYSIS OF DYNAMIC CHARACTERISTICS OF THE TURBINE SHAFT VIBRATION	
IN OXIDIZER TURBO-PUMP DEMONSTRATOR	
Pavlo KROT, Hamid SHIRI, Radoslaw ZIMROZ	45
USING THE NATURAL MODES OF TRANSIENT VIBRATIONS IN PREDICTIVE MAINTENANCE	
OF INDUSTRIAL MACHINES	
Ewelina KUBACKA, Kamil WAWRZYNIAK	47
OPTIMIZATION ANALYSIS OF BAR STRUCTURE INCLUDING NATURAL FREQUENCY	
Wojciech ŁAPKA	48
ACOUSTICALY IMPROVED POLISH PHARMACY ROBOT FABLOX	
Magdalena ŁASECKA-PLURA, Jan BIAŁASIK, Mieczysław KUCZMA,	
Alireza TABRIZIKAHOU	49
APPLICATION OF ISOGEOMETRIC APPROACH TO DYNAMICS OF CURVED BEAMS	
Waldemar ŁATAS, Zygmunt DZIECHCIOWSKI	50
LABORATORY STAND OF CHAIN CONVEYOR	
Waldemar ŁATAS, Jerzy STOJEK	51
OPTIMAL VIBROISOLATION OF MECHANICAL PRESS SUBJECTED	
TO POLYHARMONIC EXCITATION	
Krzysztof MAGNUCKI, Joanna KUSTOSZ, Damian GOLIWĄS	52
FREE ELEXINAL VIREATIONS OF AN EXPANDED-TAPERED SANDWICH REAM	

Krzysztof MAGNUCKI, Iwona WSTAWSKA, Piotr KĘDZIA54 <i>FREE FLEXURAL VIBRATIONS OF A SANDWICH BEAM ON AN ELASTIC FOUNDATION</i> <i>WITH VARIABLE PROPERTIES</i>	
Leszek MAJKUT, Krzysztof KOSAŁA	
Mykhailo MARCHUK, Vira PAKOSH	
Jakub MARCZAK	
Jakub MICHALSKI, Tomasz STREK	
Pawel OLEJNIK, Krzysztof PEPA, Godiya YAKUBU, Jan AWREJCEWICZ61 THE EXPERIMENTAL STAND FOR OBSERVATION AND CONTROL OF DYNAMICS OF AN EXTENDED ATWOOD'S MACHINE	
Agnieszka OZGA, Marek SULEWSKI	
Agnieszka OZGA, Marek SULEWSKI	
Paulina PIETRUŚ, Piotr GIERLAK, Andrzej BURGHARDT	
Pavel POLACH, Luboš SMOLÍK, Jan RENDL, Štěpán DYK, Miroslav BYRTUS, Michal HAJŽMAN	
Volodymyr PUZYROV, Nataliya LOSEVA, Nina SAVCHENKO67 ON MITIGATION OF OSCILLATIONS OF A MECHANICAL SYSTEM WITH TWO DEGREES OF FREEDOM IN THE VICINITY OF EXTERNAL RESONANCES	
Godwin SANI, Jan AWREJCEWICZ	
Filip SARBINOWSKI, Roman STAROSTA 70 COMPREHENSIVE STUDY OF GALLOPING ENERGY HARVESTERS	
Martyna SOPA, Grażyna SYPNIEWSKA-KAMIŃSKA, Tomasz WALCZAK71 <i>TWO DIMENSIONAL MECHANICAL MODEL OF HUMAN STABILITY</i> <i>IN EXTERNAL FORCE-CAUSED FALL</i>	
Witold STANKIEWICZ	

REGISTRATION, MODAL DECOMPOSITION AND ANALYSIS OF HUMAN LEFT VENTRICLES

Stanislaw STRZELECKI74
DYNAMIC CHARATCERISTICS OF MULTILOBE JOURNAL BEARINGS WITH THE LOBES OF DIFFERENT GEOMETRY
Anna SYGULSKA
Ryszard SYGULSKI
Janusz SZMIDLA, Anna JURCZYŃSKA
Janusz SZMIDLA, Anna JURCZYŃSKA
Zofia SZMIT, Lukasz KLODA, Marcin KOWALCZUK, Jerzy WARMINSKI79 <i>EXPERIMENTAL DYNAMICS ANALYSIS OF THE THREE-BLADED ROTOR</i>
Tomasz SZOLC 81 STRUCTURAL HYBRID MODELLING APPLIED TO INVESTIGATE CURRENT PROBLEMS 0F ROTOR DYNAMICS
María Teresa TEJEDOR SASTRE, Christian VANHILLE
Andrzej URBAŚ, Krzysztof AUGUSTYNEK, Jacek STADNICKI
Tomasz WALCZAK, Martyna SOPA, Martyna BIAŁECKA, Agata MROZEK, Jakub K. GRABSKI, Aleksander BŁAŻKIEWICZ
Tomasz WALCZAK, Martyna SOPA, Adam M. POGORZAŁA, Artur ROHDE
Ryszard WALENTYŃSKI, Agnieszka PADEWSKA-JURCZAK, Maciej WIŚNIOWSKI, Dawid CORNIK
Hanna WEBER, Anna JABŁONKA, Radosław IWANKIEWICZ
Godiya YAKUBU, Pawel OLEJNIK, Jan AWREJCEWICZ

ENERGY HARVESTING USING A PIEZOELECTRIC TRANSDUCER ON EXTERNALLY FORCED BUT DAMPED OSCILLATOR

Mohamed ABOHAMER^{1,2}, Jan AWREJCEWICZ³, Tarek AMER⁴

¹Lodz University of Technology, Department of Automation, Biomechanics and Mechatronics, Lodz, Poland.
²Tanta University, Faculty of Engineering, Department of Physics and Engineering Mathematics, Tanta, Egypt.
e-mail: mohamed.abohamer@dokt.p.lodz.pl
³Lodz University of Technology, Department of Automation, Biomechanics and Mechatronics, Lodz, Poland.
e-mail: jan.awrejcewicz@p.lodz.pl
⁴Tanta University, Faculty of Science, Mathematics Department, Tanta, Egypt.
e-mail: tarek.saleh@science.tanta.edu.eg

ABSTRACT

We are focused on the investigation of the motion of a novel 3-DOF system composed of two parts. The first part contains a linear damped oscillator moving horizontally without any friction. The oscillator is connected to a piezoelectric device for the purpose of energy harvesting. The second part consists of a nonlinear damped pendulum system which is hung up at the center of the system. The dynamical model is excited by harmonic external forces. The Lagrange equations are employed to construct the governing equations, and the multiple scales technique is utilized to evaluate the analytical solutions. The analysis of the resonance scenarios and the solvability constraints yields the modulation equations. The time series of generalized coordinates of the system are analyzed. The dynamical model serves as the source of vibrations for operating the piezoelectric device in order to convert these vibrations to electrical energy. Graphical representations are used to show the effects of excitation amplitude, coupling coefficient, capacitance, load resistance, natural frequency, and damping coefficient versus the output voltage and power. The resonance shapes constructed to explore the steady-state solutions and stability analyses is carried out.

1. INTRODUCTION

Non-renewable fossil fuels are the main energy-producing resources, but they are quickly depleting and will run out within the next several decades. Energy harvesting, which captures unused ambient energy and converts it into a more useful form of energy, is the most promising renewable energy source and a perfect alternative source for energy instead of traditional sources. A piezoelectric device [1, 2] is one of the energy-harvesting devices used to transform mechanical vibrations into electrical power. In this paper, we have developed a novel physical model for energy harvesting.

2. RESULTS AND DISCUSSION

The vibrational analysis covers the system composed of the piezoelectric transducer and vibrational 3DOF mechanical system. The equations of motion are solved analytically [3], and compared with the numerical ones for more consistency and reliability (see Fig. 1). The influence of the coupling between the mechanical model and the piezoelectric device on the electrical production is represented graphically in (Fig. 2). The following non-dimensional governing equations of the model are obtained using Lagrange equations

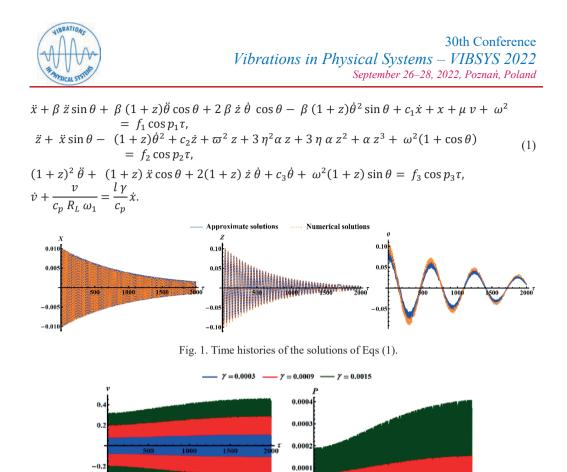


Fig. 2. The effect of different values of the coupling coefficient γ on the output voltage and power of the piezoelectric transducer.

3. CONCLUSION

-0,4

A novel physical dynamical system connected with a piezoelectric harvesting transducer is investigated. Energy-harvesting technologies have a wide range of uses in daily life such as environmental monitoring, and remote medical diagnosis. The equations of motion are derived and the multiple scale technique is used to obtain the analytical solution. A comparison between the numerical and approximate solutions is represented graphically. The external resonance case is illustrated and then we get the modulation equations. The influence of the effective different parameters of the model on the output voltage and power is examined. Furthermore, resonance response curves are constructed, and then their stability has been investigated.

Acknowledgments

This work has been supported by the Polish National Science Centre, Poland under the grant OPUS 18 No. 2019/35/B/ST8/00980.

REFERENCES

- S. Sharma, R. Kiran, P. Azad, R. Vaish, A review of piezoelectric energy harvesting tiles: Available designs and future perspective, Energy Convers. Manag. 254, 115272 (2022)
- [2] H. Elahi, M. Eugeni, P. Gaudenzi, A review on mechanisms for piezoelectric-based energy harvesters, Energies, 11, 1850 (2018)
- [3] M.K. Abohamer, J. Awrejcewicz, R. Starosta, T.S. Amer, M.A. Bek, Influence of the motion of a spring pendulum on energy-harvesting devices, Appl. Sci. 11 (18), 8658 (2021)