External and internal resonances in a mass-spring-damper system with 3-dof
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Abstract. The investigation is focused on dynamical response of the nonlinear mechanical system of 3 degrees of freedom.
The obtained approximate analytical solution of the governing equations allows to carry out the qualitative/quantitative
analysis of the system dynamics. The applied multiple scale method gives possibility, among others, to recognize and test all
possible resonances.

Introduction

The pendulum-like systems may serve as a reliable model for many machine and measurement devices,
manipulators and the human body parts. Moreover, they can be used to develop, test and validate the new
approaches employed to study dynamics of multi-body systems. The pendulums could exhibit very
complicated behavior mainly due to strong nonlinearity of a geometrical pature and couplings between their
components. The couplings result in the case of the autoparametric excitation are related to the energy
exchange between vibration modes [1].

Many pendulum-like systems are analytically studied in reference [2]. The analytical approach is often more
useful from theoretical but also practical point of view than direct numerical simulations. The asymptotic
approach aimed on analysis of the kinematically excited spring pendulum near parametric resonances is
presented in [3-4]. In this work we are focused on a study of the external and internal resonances of the
spring physical pendulum by means of the method of multiple scales (MSM) in time domain and we
demonstrate feasibility of MSM and we detect almost all system resonances as well as predict novel
nonlinear phenomena.

“Description of the problem

The studied physical pendulum consists of a rigid body of mass m suspended by a massless elastic-damping
link. The scheme of the system is presented in Fig. 1. The distance between the point 4 and the body mass
centre C is denoted by S and called further the eccentricity. The spring is assumed to be nonlinear of a cubic
type, where & and %; are constant coefficients. Both dampers are assumed to be viscous. In the plane motion,
the pendulum has three degrees of freedom. The angles ® and ¥ and the total spring deformation X, which
includes also the static elongation X;, are chosen as the general coordinates. Two torques

M (#) = My, cos(Q, 1) and M, (1) = M, cos(Q, 1) as well as the harmonic force F (f) = Fycos(Q, t} play a
role of the system excitation. There is also assumed a torque of viscous nature attenuated the swing vibration
related to the angle W, and Cs stands for a viscous coefficient.

Figure 1: Spring physical pendulum with 3-dof.

Mathematical model

The equations of motion have been derived using the Lagrange formalism. All external loadings and
damping effects are considered as the generalized forces. The dimensionless form of the governing equation
is as follows
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where 7=t is the dimensionless time, and w? = k;/ m.
The dimensionless quantities are defined as follows: s=S/L, £=X/L, L=1L, +X,. The functiong
§(z), p(7), ¥(r) correspond to the generalized coordinates X (£), ®(z), ¥(z), respectively. The dimensionlegg

counterpart of X, is denoted by &, = X, /L and satisfies the equilibrium equation
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Equations (1)~(3) are supplemented by the initial conditions
5(0]= Ugys f({})'_" Hg5 (9(0)= Hyss ‘F.’(O): Hog» 7(0)= o5, ?}(0): Hog (3

where dimensionless quantities u,,, ....u,, are known.

The analytical study of the mathematical model (1) - (5) allows one to identify the following types of
resonances: external resonances, when pi=1, p» =ws, p; = ws, and internal or combined resonances, when
wa = 1/2, wa = w3, w3 = 1/2, pr=ws, wi=1, wr=3ws, 3=3wWa, wrtws=1, wo—wi=1, wrtwi=2, wa—wy=2.

~

Case study

The example of time courses of the generalized coordinates are presented in Fig. 2 (fixed parameters:
a=025, +=0.05, 5=0.01, fi=1, e1=0.1, ¢:=0.01, ¢5=0.001, w:=0.32, w3=0.24, p\-3.13, p»=1.58, p=1.78,
820.03, axu:0.04, 02020.04, a30=0.004, !}/10:0., l,sz():O., t;f30=0).
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Figure 2: Time histories of vibration; blue line — analytical solution, red line — numerical solution.

The reported time histories are obtained by direct numerical integration of the equations (1) — (5) and based
on the MSM analytical solution.

Conclusions

The mathematical model of the nonlinear lumped mass system (3-dof) has been derived, and  the asymptotic
solution of the equations of motion has been obtained up to the third order of approximation. This approach
allows to detect all possible kind of resonances which could appear in the system, and enables to determine
various amplitude-frequency relations. High accuracy of the approximate analytical solutions has been verified
by numerical calculations. The carried out analysis based on dimensionless variables allows to generalize the
obtained results to other physical systems.
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