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Abstract 
In this work the plane system of coupled identical triple pendulums is investigated numerically. The 
first link of each pendulum is excited by a common harmonic signal. The coupling between 
subsystems is realised by viscous and elastic connections between the first links of neighbouring sets 
of triple pendulums. In this preliminary research we have identified and presented examples of rich 
dynamics exhibited by the investigated system, including many different kinds of synchrony and 
opening the route to more deep and general view of synchronization phenomenon. 

INTRODUCTION 
Although investigations of pendulum possess a very long history in mechanics, it is still 
subject of interest of scientists from all the world [1, 4]. But a single degree-of-freedom 
models are only the first step to understand a real behaviour of either natural or engineering 
systems, since many physical objects are modelled by a few degrees of freedom. In 
mechanics, but even in physics, an attempt to investigate coupled pendulums is recently 
observed [2, 3]. On the other hand, the synchronization phenomenon is one of the most 
known, spectacular and important phenomena of nonlinear dynamics [7]. In the last years, the 
interest in synchronization problems is especially observable [5, 6, 8], because of its 
importance in complex physical, biological or even social systems. The present work joins all 
the above mentioned research directions and the preliminary investigations of the complex 
system of coupled pendulums are presented. 

MATHEMATICAL MODEL 
In the paper the plane system of A'̂  coupled and identical triple pendulums is analysed. The 
i-th pendulum is presented in Fig. l , where (i = \,2,...N, j = 1,2,3) denote angles 
defining position of the system. It is assumed that the mass centres of the links lie on the lines 
including the joints. The first link of each pendulum is excited by common signal <p(t), 
realised by relative rotation of additional body connected to the first link. The pendulums are 
coupled by viscous and elastic connections between the first links of neighbouring sets of 
triple pendulums. Assuming, that q)(t) = at, the system is governed by the following set of 
non-dimensional differential equations 
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Figure 1: The i-th triple pendulum. 
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and where i = xf/^^, xf/^^ = xj/^^, x^/^^^^ = x/Zj^^ and , = >. The parameter Crs stands for 
relative damping of coupling, while ^^is the overall coupling coefficient. 

NUMERICAL SIMULATIONS 
The following parameters are fixed during numerical simulations presented in this section: 
A = 0 . 5 5 1 7 , = 0 . 1 3 7 9 , Mo =0.25, ju^=0J5, =0 .6207 , V13 =0 .2068 , V23 =0 .2068 , 
Cj = C 2 = C3 = 0.01438 and c^^ = 1. Fig. 2 exhibits bifiircational diagram for one (A'^=l) or for 
uncoupled triple pendulums (k^=0), with the excitation angular fi-equency a> as a 
bifurcational parameter. Then, for a = 0.72 (chaotic behaviour of uncoupled systems), we 
present bifurcational diagrams (Fig. 3) of dynamical behaviour of three coupled pendulums 
(A'̂ =3), with coupling coefficient as a control parameter. 

- 1 . 5 

0 . 6 8 0 70 0.72 0 . 7 4 0.76 0.78 
CO 

I 

CO 

Figure 2: Bifurcational diagram for one (A'̂ =l) triple pendulum. 
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Figure 3: Bifurcational diagrams for three (A'̂ =3) coupled triple pendulums. 
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The first Poincare section (for = 0 ) of each bifiircational diagram is performed by the use 
of the following set of initial conditions 

^ , / 0 ) = 0 , ^ , , ( 0 ) = 10-^/ where i=\,2,..^, y= l ,2 ,3 , (3) 
so the pendulums start from very close, but different states. During the jump to the next 
Poincare section (the change of control parameter) (Fig. 3a), the system state preserves 
continuity or is restarted to the initial conditions (3) (Fig. 3b). Fig. 3 exhibits rich spectrum of 
synchronization phenomena exhibited by the investigated system. In particular, we have 
observed the intervals of chaotic and periodic behaviour of the system, or even regions of 
coexistence of chaotic and periodic attractors. We have also found the intervals of exact 
synchronization between chaotic behaviour of all three pendulums and the zones of exact 
synchronization between irregular motion of the first pendulum and the third one, while the 
second pendulum moves non-synchronically on chaotic attractor. We can also observe other 
kinds of synchronization, usually between periodic motions of the pendulums. 

CONCLUDING REMARKS 
In the work the preliminary research results of the system of coupled triple pendulums are 
presented. We have identified and shown examples of rich dynamics exhibited by the 
investigated system, including many different kinds of synchrony and opening the route to 
more deep and general view of synchronization phenomenon. Since there is a direct 
mechanical interpretation of the proposed model, the experimental verification is potentially 
possible. There are many possibilities of fiirther research of the system, e.g. investigations of 
larger number of coupled subsystems of pendulums consisting of larger or smaller number of 
links. 
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