J. AWREJCEWICZ and P. OLEJNIK

Technical University of Łódź, Department of Automatics and Biomechanics (K-16), 1/15 Stefanowskiego St., 90-924 Łódź, Poland

E-mail: awrejcew@ck-sg.p.lodz.pl

DYNAMIKA REGULARNA I CHAOTYCZNA W UKŁADZIE O DWÓCH STOPNIACH SWOBODY

REGULAR AND CHAOTIC DYNAMICS OF THE TWO-DEGREE-OF-FREEDOM SYSTEM

In this paper our attention is focused on stick-slip regular and chaotic dynamics of a two-degree-of-freedom system.

The analysed mechanical system with two-degree-of-freedom and the Duffing type stiffness is shown in Figure 1. The masses m_1 and m_2 are oscillating on a driving belt.

The driving belt is moving with the constant velocity v_{dr} . The moving bodies with masses m_i (i=1,2) are linked by linear (k_0 , k_1) and non-linear (k_2) stiffness and damping (c_0 , c_1 , c_2). The masses are influenced by dry frictions F_i (i=1,2) acting on each of masses, correspondingly. The displacements of m_1 and m_2 are denoted by x_1 and x_2 , respectively.

Two-degree-of-freedom stick-slip oscillator is governed by the following second order differential system of equations:

Figure 1. The considered system

$$m_{1}\ddot{x}_{1} + (c_{0} + c_{1})\dot{x}_{1} - c_{0}\dot{x}_{2} + (k_{0} - k_{1})x_{1} + k_{2}x_{1}^{3} - k_{0}x_{2} = F_{1},$$

$$m_{2}\ddot{x}_{2} + (c_{0} + c_{2})\dot{x}_{2} - c_{0}\dot{x}_{1} + (k_{0} - k_{1})x_{2} + k_{2}x_{2}^{3} - k_{0}x_{1} = F_{2}.$$
(1)

Friction forces to the right-hand sides of equations (1) read:

$$\begin{aligned} |F| &\leq \mu_0 F_N = F_s & \text{for } \upsilon_{rel} = 0, \\ F &= -\mu F_N \operatorname{sgn} \upsilon_{rel} = -(\mu \mu_0^{-1}) F_s \operatorname{sgn} \upsilon_{rel} & \text{for } \upsilon_{rel} \neq 0, \end{aligned}$$

where: F is the friction force, μ_0 is the constant static friction coefficient, F_N is the normal force, F_s is the maximum static friction force, v_{rel} is the relative velocity, and the dynamic friction coefficient is given by $\mu = \mu_0 (1 + \delta |v_{rel}|)$.

The non-dimensional form of equation (1) can be written as follows:

$$\xi_{1}\ddot{y}_{1} + \alpha_{0}(\dot{y}_{1} - \dot{y}_{2}) + \alpha_{1}\dot{y}_{1} + (1 - \beta_{1})y_{1} + \beta_{2}y_{1}^{3} - y_{2} = \hat{F}_{1,},$$

$$\xi_{2}\ddot{y}_{2} + \alpha_{0}(\dot{y}_{2} - \dot{y}_{1}) + \alpha_{2}\dot{y}_{2} + (1 - \beta_{1})y_{2} + \beta_{2}y_{2}^{3} - y_{1} = \hat{F}_{2},$$
(3)

where: prime denotes differentiation with respect to non-dimensional time $\tau = \omega_1 t$, t is time, $\omega_1 = k_1^{0.5} m_1^{-0.5}$, $y_i = k_0 x_i F_{S_1}^{-1}$. Other non-dimensional coefficients are defined as follows: $\xi_1 = m_1 \omega_1^2 k_0^{-1}$, $\xi_2 = m_2 \omega_1^2 k_0^{-1}$, $\alpha_0 = c_0 \omega_1 k_0^{-1}$, $\alpha_1 = c_1 \omega_1 k_0^{-1}$, $\alpha_2 = c_2 \omega_1 k_0^{-1}$, $\beta_1 = k_1 k_0^{-1}$, $\beta_2 = k_2 F_{S_1}^2 k_0^{-3}$, $\beta = F_{S_2} F_{S_1}^{-1}$, and the forces are given by:

$$\begin{aligned} \left| \hat{F}_{1} \right| &\leq 1 & \text{for } \hat{\upsilon}_{rel,1} = 0, \\ \hat{F}_{1} &= \operatorname{sgn} \hat{\upsilon}_{rel,1} \left(1 + \gamma \left| \hat{\upsilon}_{rel,1} \right| \right) & \text{for } \hat{\upsilon}_{rel,1} \neq 0, \\ \left| \hat{F}_{2} \right| &\leq \beta & \text{for } \hat{\upsilon}_{rel,2} = 0, \\ \hat{F}_{2} &= -\beta \operatorname{sgn} \hat{\upsilon}_{rel,2} \left(1 + \gamma \left| \hat{\upsilon}_{rel,2} \right| \right) & \text{for } \hat{\upsilon}_{rel,2} \neq 0, \end{aligned}$$

$$(4)$$

$$\left| \hat{F}_{1} \right| \leq \beta & \text{for } \hat{\upsilon}_{rel,2} = 0,$$

$$\left| \hat{F}_{2} \right| \leq \beta & \text{for } \hat{\upsilon}_{rel,2} = 0,$$

$$\left| \hat{F}_{2} \right| \leq \beta & \text{for } \hat{\upsilon}_{rel,2} \neq 0,$$

respectively, where: $\hat{\upsilon}_{rel,i} = \dot{y}_i - \hat{\upsilon}_{dr}$ (i=1,2), $\hat{\upsilon}_{dr} = (k_1 m_1)^{0.5} \upsilon_{dr} F_{S_1}^{-1}$, $\gamma = F_{S_1} \delta(km)^{-0.5}$. Examples of the investigated system are shown in *Figure 2*.

Figure 2. Phase plot (a), Poincaré sections (b, c) for the parameters: $\xi_1 = 0.5$, $\xi_2 = 0.1$, $\alpha_0 = 0$, $\alpha_1 = 0.02$, $\alpha_2 = 0.1$, $\beta_1 = 0.1$, $\beta_2 = 0.6$, $\beta = 1$, $\gamma = 3$, $\hat{v}_{dr} = 0.07$ (a, b), and $\xi_1 = 0.1$, $\xi_2 = 0.77$, $\alpha_0 = 0$, $\alpha_1 = 0.02$, $\alpha_2 = 0.09$, $\beta_1 = 0.22$, $\beta_2 = 0.12$, $\beta = 0.54$, $\gamma = 2$, $\hat{v}_{dr} = 0.32$ (c).

References

1) J. Awrejcewicz, "Deterministic oscillations of discrete systems", WNT, Warsaw 1996, in Polish.