SYNTHESIS AND OPTIMISATION OF PLATE AND SHELL SURFACES WITH REQUIRED DYNAMICAL CHARACTERISTICS

Jan Awrejcewicz[†] and Vadim A. Krysko[‡]

Technical University of Łódź, Division of Control and Biomechanics (I-10) 1/15 Stefanowskiego St., 90-924 Łódź, POLAND. Phone: (4842) 312225; Fax: (4842) 361383; E-mail: awrejcew@ck-sg.p.lodz.pl

Departament of Mathematics, Saratov State University B. Sadovaya 96/77, 410054 Saratov, Russia

In this work we consider a problem of the shell volume synthesis using an assumption that the thickness h(x,y) as well as the surface Ω of a shell are treated as the control functions [1].

A problem of the free shell oscillations is reduced to the following eigenvalue problem.

$$L[h]u - \omega^2 \mu[h]u = 0; \quad u = u(x, y), \quad (x, y) \in \Omega,$$
 (1)

where the differential operators L[h] and $\mu[h]$ are related to the potential energy of deformations and the mass distribution, and have the form depending on the applied kinematic model of a shell (Kirchhoff - Love, Timoshenko, etc.)

We are going to construct a shell with a given series of N eigenfrequencies $\left\{\alpha_k\right\}_{k=1}^N$ by a suitable choice of $h(x,y)=h^*(x,y)$ and $\Omega=\Omega^*$. Because the problem is oriented on synthesis, therefore it is not known if a shell with the given manifolds $h(x,y)\in U_{\partial 1}$ and $\Omega\in U_{\partial 2}$ and the requirements $\omega_k^2=\theta_k=\alpha_k$ $(k=1,2,\ldots,N)$ exists. Therefore, by a solution to the mentioned problem we mean a construction very closely related to the required one.

A close neighbourhood related to the spectral characteristics is defined by the following (close to zero) function.

$$R(N, \vec{\varepsilon}) = \sum_{k=1}^{N} \frac{1}{\varepsilon_k} \left| \theta_k - \alpha_k \right|^2.$$
 (2)

Thus, a problem of synthesis (optimisation) can be formulated in the following manner: define $h^*(x,y) \in U_{\partial 1}$ and $\Omega^* \in U_{\partial 2}$ which minimise the functional

$$J(h,\Omega) = \sum_{k=1}^{N} \frac{1}{\varepsilon_k} \left| \theta_k - \alpha_k \right|^2 + I(h,\Omega) , \qquad (3)$$

where $\left\{\alpha_k\right\}_{k=1}^N$ is the required frequency spectrum, $\left\{\theta_k\right\}_{k=1}^N$ is the spectrum defined by the governing equations of shells with the thickness h and the surface Ω , ε_k is the penalty for the constraint $\theta_k = \alpha_k$ violation, $I(h,\Omega)$ is the positive functional for all $h \in U_{\partial 1}$, $\Omega \in U_{\partial 2}$ which include the additional construction shell constraints. However, the described problem is incorrect. In order to realise the synthesis (3) we are going to parametrize the function h and the space Ω . It means that we change the earlier problem of synthesis in the following way.

For the given vector $\left\{\alpha_{k}\right\}_{k=1}^{N}$ and the constructional constraints $\Phi_{0}(\vec{\beta}) = \mathbb{1}(h_{\beta}, \Omega_{\beta}) \geq 0, \ \forall \vec{\beta} \in U_{\beta}$ (4)

we are going to find $\bar{\beta}^* \in U_{\partial} \subset R^{m+p}$ realising the minimum of the m+p variables function

$$\Phi(\vec{\beta}) = \sum_{k=1}^{N} \frac{1}{\varepsilon_k} \left| \theta_{k\beta} - \alpha_k \right|^2 + \Phi_0(\vec{\beta}), \qquad (5)$$

where $\theta_{k\beta}$ denotes the second power of the shell free vibration frequency, and h_{β} and Ω_{β} are defined by (1).

Now the problem of synthesis is correct. It is expressed by the following theorem (which is proved).

Theorem: If $F(x,y,\vec{\beta})$ guarantees a continuous regular deformation of the initial space and the function $\Phi_0(\vec{\beta})$ is continuous on $U_{\vec{\sigma}}$ (which is bounded manifold in R^{m+p}), then $\forall \{\alpha_k\}_{k=1}^N \subset K(K \text{ is the closed bounded manifold } R^N)$. Function (5) achieves its exact low boundary on the pair of elements $\theta^* = \{\theta_k \beta^*\}_{k=1}^N$, $\vec{\beta}^*$, where $\vec{\beta}^* \in U_{\vec{\sigma}}$ is the stable solution to the synthesis problem, whereas $\vec{\theta}^*$ is the vector with components being the N first eigenvalues of (1) for $h = h_{\beta^*}$, $\Omega = \Omega_{\beta^*}$.

A suitable algorithm on the basis of the finite element method is proposed. A wide class of problems is considered.

References

[1] Awrejcewicz J., Krysko V.A., *Techniques and Methods of the Shells and Plates Vibration Analysis*. Technical University of Łódz, Series of Monographs, Łódz, 1996 (in Polish).