
Chaos, Solitons and Fractals 160 (2022) 112211

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena

j ourna l homepage: www.e lsev ie r .com/ locate /chaos
Hamilton energy, complex dynamical analysis and information patterns
of a new memristive FitzHugh-Nagumo neural network
Zeric Tabekoueng Njitacke a,b,c,⁎, Clovis Ntahkie Takembo a, Jan Awrejcewicz c,
Henri Paul Ekobena Foudad, Jacques Kengne b,e

a Department of Electrical and Electronic Engineering, College of Technology (COT), University of Buea, P.O.Box 63, Buea, Cameroon
b Research Unit of Automation and Applied Computer (URAIA), Electrical Engineering Department of IUT-FV, University of Dschang, P.O. Box 134, Bandjoun, Cameroon
c Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, Lodz, Poland
d Laboratory of Mecanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
e Center for Nonlinear Systems, Chennai Institute of Technology, Chennai, Tamil Nadu, India
⁎ Corresponding author at: Department of Electrical and
of Technology (COT), University of Buea, P.O. Box 63, Buea

E-mail address: zerictabekoueng@yahoo.fr (Z.T. Njitac

https://doi.org/10.1016/j.chaos.2022.112211
0960-0779/© 2022 Elsevier Ltd. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 14 February 2022
Received in revised form 11 April 2022
Accepted 9 May 2022
Available online xxxx
This paper presents and studies the dynamics of a single neuron, followed by the network of an improved
FitzHugh-Nagumo model with memristive autapse. The investigation on the single neuron revealed that, for
the set of the system parameters used for our study, the improved model experiences hidden dynamics. The
Hamilton energy of the proposed model is established by exploiting the Helmholtz theorem. It is found that
the external current has no effect on that energy and only the memristive autapse strength is able to affect the
energy released by the considered neuron. The study of the dynamics of the proposed model revealed neuronal
behaviors such as quiescent, bursting, spiking, and hysteretic dynamics characterized by the coexistence of firing
patterns for the same set of parameters. The electronic circuit of theproposedmodel is constructed and simulated
in the Pspice environment, and the obtained results match well with those obtained from the direct investiga-
tions of the mathematical model of the introduced neuron. Furthermore, a chain network of 500 identical neu-
rons with memristive autapses is built and information pattern stability is investigated numerically via
modulational instability under memristive autapse strength. It is found that with initial conditions taken as
slightlymodulated planewaves, the newnetwork supports localized information patternswith traits of synchro-
nization as a means of information coding. Also, by fixing the stimulation current, higher autaptic couplings re-
sulted in new localized pattern formation, confirming the new information coding pattern and possible mode
transition. This could provide a possible application in the building of artificial neurons.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

The nervous system ismade up of an interconnection of a large num-
ber of neurons. A neuron is an essential unit in the brain structure since
it plays some important functions such as the processing, transport, and
storage of information. This is why, to study the complex dynamical be-
havior of the brain a large number of artificial neurons have been devel-
oped and investigated in the literature. Among these artificial neurons,
are the Hopfield neural networkmodel [1–4], the Hodgkin-Huxley neu-
ron [5], the Chay model [6], the Izhikevich neuron [7], the FitzHugh-
Nagumo (FN) model [8], the Morris-Lecar neuron [9], the 2-D
Hindmarsh-Rose (HR), the 3-D-HR model [10,11], and the Rulkov
model [12]. For example, in ref. [13], the authors investigated the
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dynamics of a single non-autonomous Hopfield neuron with a
memristive self-synaptic connection. They showed that the introduced
model was able to exhibit homogeneous extrememultistability. Of par-
ticular interest, they proposed a non-invasive control method that en-
ables them to select any attractor among the coexisting ones. The
phenomenon of broken symmetry in the solitary solutions of the
Hodgkin-Huxley neuron model has been investigated in ref. [14]. In
their work, the authors also showed the necessary and sufficient condi-
tions for having bright and dark solitary solutions in that model. The
phenomenon of the noise-delayed decay at the network level by consid-
ering scale-free neuronal networks and under the realistic assumption
of noise being due to the stochastic nature of voltage-gated ion channels
that are embedded in the neuronalmembranes has been investigated in
ref. [48]. In ref. [49], the spiking regularity of a single stochastic
Hodgkin-Huxley neuron under the effects of ion channel blocking and
autaptic connection has been investigated. The study of the authors re-
vealed that the neuron was able to exhibit multiple coherence
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resonance behaviors induced by autaptic time delay at an appropriate
level of ion channel blocking and autaptic coupling strength. Equally,
the investigation of the cooperative effects of autapse and ion channel
block on the collective firing regularity of Newman-Watts small-world
networks of stochastic Hodgkin-Huxley neurons has been addressed
in ref. [50].

The global dynamics of a Chay neuron has been investigated in ref.
[15]. Using some common nonlinear analysis tools, the authors showed
the occurrence of some neuronal behaviors such as bursting and spik-
ing. More importantly, an FPGA implementation of their considered
neuronmodel has been carried out to validate their theoretical analyses.
In ref. [16], the authors investigated a model of the Fitzhugh-Nagumo
neuron with memristive autapse. Their study revealed that the pro-
posed model was able to exhibit extreme multistability. Their results
have been finally validated with the circuit implementation of the con-
sidered model. The multistable dynamics of an autonomous Morris-
Lecar neuron has been addressed in ref. [17]. During their study, diverse
neuronal behaviors such as chaotic bursting, chaotic tonic-spiking, and
periodic bursting behaviors were found. Also, the results were further
validated based on a microcontroller development board. A model of a
4D memristive Hindmarsh-Rose has been investigated in ref. [18].
Using the Helmholtz theorem, the Hamilton energy of the proposed
model was derived and used to characterize the variety of bifurcations
and firing activities found in that model. Based on some of the quoted
neuron models, the collective behavior of the neurons has been widely
studied based on the interconnection of quoted artificial neurons
through various types of artificial synapse. Chemical synapse [19], elec-
trical synapse [20,21], hybrid synapse [22,23], Josephson junction syn-
apse [24], and memristive synapse [25,26] are some of them. Among
works devoted to the study of small-world networks of neurons, Zhou
et al. [21] investigated the collective behavior of Hindmarsh-Rose neu-
rons based on the Erdos-Rényi random network. Based on either excit-
atory chemical synapses or electrical synapses, slow-wave activity was
generated.

In ref. [27], the authors considered a discretized version of the
Izhikevich neuron model and found that electromagnetic flux can act
as an order parameter in the sense that it can tune different firing pat-
terns under the variation of electromagnetic flux. Hussain et al. [28] in-
vestigated the dynamics of a network of multi-weighted Fitzhugh-
Nagumo neurons, taking into account the effect of electrical, chemical,
and ephaptic couplings. The effects of those coupling types on the chi-
mera states and complete synchronization exhibited by the networks
were analyzed. When the temperature coefficient was varied, chimera
states were able to occur in a network of thermosensitive Fitzhugh-
Nagumo (FHN) neurons [29]. In ref. [30], authors investigated a
Hindmarsh-Rose neuronal network. They found that the interconnected
neurons were able to exhibit chimera states. Furthermore, they investi-
gated the effect of noise and found that when the control parameter of
the noise is increased, the chimera states are progressively suppressed.
In ref. [31], various types of chimera states were found in a network of
Hindmarsh-Rose neurons in the presence or absence of an electric
field. In ref. [32], the authors investigated a network of 3D Hindmarsh-
Rose neurons under the effect of an electrical autapse. Many scientists
and engineers have employed diverse FHN neural networks in order
to investigate cooperative behaviors such as wave propagation, syn-
chronization, pattern formation, stochastic and coherent resonance, in
excitablemedia undermanyphysical factors such asnoise, thermalfluc-
tuation, electric field, time delays, electromagnetic induction and radia-
tion. Zhang et al. [33] investigatedmemory effects via pattern formation
and synchronization in chain FHN neurons with memristive synapse
and found that when the synapse withmemory is activated, the electri-
cal activities of neurons are modulated to induce mode transition. Wu
et al. [34] investigated complex electrical activities in cardiac tissue cre-
ated by magnetic flux and found that spiral waves encounter breakup
and turbulent electrical activities. The authors in ref. [35]constructed a
discrete network of FHN neurons with autaptic synapse under
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electromagnetic radiation and found that under high intensity and fre-
quency electromagnetic radiation, the propagating impulse waves en-
countered turbulent electrical activity, with patterns breakdown into a
homogeneous state. Indeed, information coding patternwithin the ner-
vous system is closely linked to pattern formation and wave propaga-
tion within neural networks [36,37]. Recall that the memristor used as
a synapse in some neuronal circuits is the fourth basic electronic com-
ponent, besides the resistor, capacitor, and inductor. It has been used
by Bao et al. [52] to investigate the effect of the threshold electromag-
netic induction on the dynamics of a 2D Hindmarsh-Rose neuron
model. In ref. [53], the coexistence of the firing activities has been inves-
tigated in two Morris-Lecar neurons coupled via a memristive synapse.
Not only for biological models of neurons, memristive devices are also
used to build Tabu learning neurons [54], which belong to the classes
of neurons with adapting synapses. In this paper, we will construct a
chain memristive FHN network and monitor information patterns sta-
bility viamodulational instability as driven by autaptic coupling. The re-
maining part of this work is structured as follows: In Section 2, the
mathematicalmodel of the FHNneuronwithmemristive autapse is pro-
posed. The Helmholtz theorem is used to calculate the Hamilton energy
required for the occurrence of the firing pattern. In Section 3, numerical
simulations are used to investigate the nonlinear phenomena exhibited
by the introduced neuron model. Section 4 is devoted to the electronic
circuit implementation of the newly introduced neuron model. In
Section 5, the process of the information patterns inmemristive autaptic
FHNneural networks is explored. Lastly, in Section 6, we summarize the
paper and present some perspectives for further research work.

2. Model description

2.1. Design of the FHN neuron with memristive autapse

Based on the definition of the memristor [38], a voltage-controlled
generic model is designed as it can be observed on its state-dependent
Ohm's law followed by its state equation given by:

i ¼ G wð Þv ¼ α sin wð Þv
dw
dt

¼ g w, vð Þ ¼ cos wð Þ þ v

8<
: ð1Þ

Based onmemristor equations above, themodel of FHNneuronwith
memristive autapse is given as:

x
:¼ x−bx3−yþ i−α sin wð Þx
y
:¼ 1

ε
xþ a−cyð Þ

w
: ¼ cos wð Þ þ x

8>>><
>>>:

ð2Þ

In Eq. (2), x is the potential of themembrane of the FHN neuron also
called fast variable, y is the retrieval or recovery variable related to the
fast current of either Na+ or K+. w stands for the inner variable of the
memristive autapse. cos(w) + x represents the superposition of the
magnetic flux leakage and the membrane potential enabling variation
on magnet flux. α sin (w) stands for memductance and α sin (w)x the
memristive autapse current. It shows the modulation of time varying
field on the gap junction of themembrane. i represents an external forc-
ing current while α represents the memristive autapse strength. In
many upgraded memristor-based excitable systems, many researchers
have examined wave propagation via pattern generation [35,40].
Takembo et al. [35] stated that by utilizing a controlled pitch of electro-
magnetic radiation, they were able to achieve flawless intercellular
communication in a memristor-based neural network. Qian et al. [40]
investigated the effects of network topology and other system charac-
teristics on spatiotemporal dynamics in excitable homogeneous ran-
dom networks in a systematic way. Further investigation of the
pattern formation has to be done in this work using an improved



Fig. 1. Evolution of Hamilton energy of the introduced FHN neuron when two parameters
are both varied in (a) with the corresponding derivative in (b). With initial conditions
are (0.1,0,0). As it can be seen in these figures, theHamilton energy of themodel increases
when the external current and the memristive autapse strength are simultaneously
varied.
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FHN neural network using the following positive parameters: a = 0.7,
b = 1/3, c = 0.8, ε = 13, α and i are tuneable.

2.2. Energy released

The energy consumption of a neuron or coupled neurons is com-
monly associated with a Hamiltonian function in the field of neuro-
engineering. That function is generally based on the Helmholtz
theorem-based mathematical model of the considered neuron. To
achieve this goal, for a given neuronal system x

:¼ f xð Þ, the vector field
f(x) is expressed as a sum of a conservative vector fields fc(x) and a
dissipative vectors fields fd(x) as provided in Eq. (3):

f xð Þ ¼ f c xð Þ þ f d xð Þ ð3Þ

As a result, given the conservative component, theneuronal system's
Hamilton energy should follow the following rule:

∇HT f c ¼ 0 ð4Þ

The dissipation of the energy due to fd(x) should satisfy the equation

∇HT f d ¼H
:

ð5Þ

The conservative and dissipative vector fields of the FHN neuron
with memristive autapse under consideration are given as follows
using the above-mentioned formula:

f c ¼
−yþ i−αw
1
ε

aþ xð Þ
x

2
664

3
775 ð6Þ

f d ¼
x−bx3−α sin wð Þxþ αw

−c
ε

y

cos wð Þ

2
664

3
775 ð7Þ

As a result of Eq. (4), the Hamilton function must satisfy the condi-
tion.

−yþ i−αwð Þ ∂H
∂x

þ 1
ε

aþ xð Þ
� �

∂H
∂y

þ x
∂H
∂w

¼ 0 ð8Þ

The consistent energy function that fulfills both Eqs. (4) and (5) is
given by

H ¼ −yþ i−αwð Þ2 þ 1
ε

aþ xð Þ2 þ αx2 ð9Þ

In addition the derivative of that energy function is provided in
Eq. (10)

H
:

¼x
: 2

ε
aþ xð Þ þ 2αx

� �
þ y

:
−2 −yþ i−αwð Þð Þþ

w
:

−2α −yþ i−αwð Þð Þ
ð10Þ

The average energy is obtained by defining the time average of the
Hamilton energy function as,

h ¼ 1
T

Z t0þT

t0
H x, y,wð Þdt ð11Þ

And its derivative as

h
:

¼ 1
T

Z t0þT

t0
H
:

x, y,wð Þdt ð12Þ
3

3. Dynamical behavior of the single FHN neuron

This section is devoted to the investigation of the dynamical behav-
ior of the FHN with a memristive autapse. Two-parameter diagram
based on energy, maximum Lyapunov exponent, and bifurcation
diagram, are used to characterize the global behavior of the model. In
addition, numerical simulations are performed using parameters
and variables in extended precision mode with fixed step time of
5 × 10−3. Fig. 1 shows the evolution of energy as well as its derivatives
in the considered neurons.

Fig. 1 shows the evolution of energy as well as its derivatives in the
considered neurons. For example, Fig. 1(a) is obtained when the exter-
nal current and the memristive autapse strength are simultaneously
varied. According to the diagram, the increase in external current has
no effect on the neuron's energy. In contrast, when the memristive
autapse strength increases, the energy exchanges of the considered
model also increase. As such, that parameter will be very crucial in
studying information pattern stability in a network of such neurons. Fi-
nally, Fig. 1(b) also highlights that the derivative of the energy of the
neuron increases with the value of the memristive autapse strength.

When the previous two parameters of the considered model are
again varied simultaneously and the maximum Lyapunov exponent is
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recorded at each iteration, the diagram in Fig. 2(a) with its enlargement
in Fig. 2(b) is obtained. From the zoom of that two-parameter Lyapunov
exponent diagram, three main behaviors are recorded. Stable behavior
with rest patterns characterized by λmax < 0, periodic behaviors with
regular patterns are supported by λmax = 0 while patterns with
chaotic behaviors are supported λmax > 0. As it can be seen in those
two-parameter diagrams, there are several windows of switching be-
tween periodic and chaotic behaviors. For a discrete value of the exter-
nal current i = 0, the bifurcation diagram of the Fig. 3(a) with its
corresponding graph of the maximum Lyapunov exponent in Fig. 3
(b) have been computed by varying the memristive autapse strength α.

From these diagrams, two sets of data are found when increasing
(black) and decreasing (magenta) the control parameter α. The model
under consideration exhibit the period doubling bifurcation phenome-
non as well as hysteretic dynamics characterized by the coexistence of
bifurcations. The phase portrait of Fig. 4(a) and the corresponding
time series of Fig. 4(b) show that chaotic busting is one of the behaviors
experienced by the model.

For a discrete value α = 0.95, the bifurcations diagrams of Fig. 5
(a) and (b) are obtainedwith the corresponding graph of themaximum
Lyapunov exponent presented in Fig. 5(c). The hysteretic dynamics pre-
viously mentioned is equally found. That hysteretic dynamics is
Fig. 2. Two-parameter Lyapunov exponent showing the global dynamics of the
memristive neuron in (a) with the corresponding zoom in (b). With initial conditions
are (0.1,0,0). From these figures, rest states are characterized by λmax < 0, periodic states
are characterized by λmax = 0 while chaotic states are characterized by λmax > 0.

Fig. 3. Bifurcation diagram with the corresponding graph of the Largest Lyapunov expo-
nent obtained by varying the memristive strength. They are obtained for i=0with initial
conditions are (0.1,0,0). Using the graph of the maximum Lyapunov exponent as argu-
ment, periodic states are characterized by λmax = 0 while chaotic states are
characterized by λmax > 0.

4

supported by the coexistence of three firing activities. One chaotic spik-
ing behavior and two periodic spiking behaviors were observed, as evi-
dent by the superimposed phase portraits of Fig. 6(a) and their
corresponding time series of Fig. 6(b). The effect of the initial conditions
on the energy released by the proposed neuronmodel during the coex-
istence of patterns. As it can be seen in Fig. 6(c) and (d), the average
value of the Hamilton energy of the chaotic patterns is h ≤ 135 and the
one with periodic patterns is h > 135. Therefore it is trivial the basin
of attraction of the coexisting chaotic patterns is greater than the one
of the coexisting periodic patterns. The equilibrium point of the consid-
ered model are obtained by solving the set of equations x

:¼y
:¼w

: ¼ 0.
After computing the equilibrium points using the software Maple 18,
for some discrete values that give Figs. 4 and 6, we discover that there
exist no real solutions to the equilibrium points of Eq. (2). So the FHN
neuron with memristive autapse under consideration has no equilib-
rium points for those set of parameter. Therefore, it exhibits hidden
electrical activities.

4. Circuit implementation

In this section, our main objective is to further support the obtained
results from the previous investigations by using a circuit designed for
the proposed FHN neuron with memristive autapse. The circuit has
been realized as it can be seen on Fig. 7 in the Pspice simulation



Fig. 4. (a) Phase portrait with the corresponding time series supporting chaotic bursting
exhibited by the considered model with initial conditions (0.1,0,0). From the time series,
the membrane potential x of the neuron appears as the fast variable while the retrieval
variable y appears as the slow variable.

Fig. 5. (a) Bifurcation diagramwith the corresponding zoom (b) showing the evolution of
the behavior of the considered neuron. (c) is the largest Lyapunov exponent associated to
(a). these diagrams are obtained for α = 0.95 with initial condition (0.1,0,0). Using the
graph of themaximumLyapunov exponent as argument, periodic states are characterized
by λmax = 0 while chaotic states are characterized by λmax > 0.
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environment using operational amplifiers TL084, resistors, capacitors,
DC and AC voltage source, DC power supply ±15V symmetric, analog
multipliers realizable with AD633JN, trigonometric function blocks real-
izable with AD639AD. For more details, the trigonometric function con-
verter AD639AD can be used to implement the sine or cosine circuit
module in physical terms, which was reported in ref. [51]. In contrast,
the PSpice model of trigonometric function is just an ideal component
that doesn't require any power supply. On Fig. 7, the main FHN circuit
is made of two integrators, one inverter and two multipliers, while the
main circuit of thememristive autapse ismade of one integrator, one in-
verter two trigonometric blocks and one multiplier. Since the maximal
amplitude of the phase error is greater than the supply voltage of the
circuit, it is good to resize that state variable (inner variable of the
memristive autapse) within the voltage range supportable by opera-
tional amplifiers. to avoid saturation. So considering w' = w/1000, the
mathematical model of the coupled neurons from Kirchhoff's electrical
circuit law is given as in Eq. (13).

C1
dX
dt

¼ 1
R3

X−
1
Rb1

X3−
1
R1

Y þ 1
R4

V5−

1
Rα

sin 1000W 0� �
X

C2
dY
dt

¼ 1
Re

X−
1
Rc1

Y þ 1
Ra1

V2

C3
dW 0

dt
¼ 1

R21
cos 1000W 0� �þ 1

R20
X

8>>>>>>>>>>><
>>>>>>>>>>>:

ð13Þ
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Considering t ¼ τRC,V0 ¼ 1V , x ¼ X
V0

, y ¼ Y
V0

,w0 ¼ W 0
V0

and comparing
Eq. (13) with Eq. (2) the value of the parameters of the circuit are given as:

Rb1 ¼ R
b1

¼ 30kΩ;V2 ¼ a2Ra1
εR ¼ 0:0538V ; Rc1 ¼ εR

c1
¼ 162:5kΩ;Re ¼ εR ¼-

130kΩ;R20 ¼ 1000R;R21 ¼ 1000R;V5 ¼ R4
R i¼tuneable;Rα ¼ R

α ¼ tuneable:
For C = 10nF and all other resistor Ri = R = 10kΩ the investigation
of the circuit of the memristive FHN circuit is investigated in Pspice en-
vironment.

Fig. 8 shows the time series of the chaotic bursting exhibited by
the model in (a), the 2D projection of the attractors is provided in
(b) as well as the corresponding frequency spectra in (c). The good ac-
cord is observed between them and those obtain from the numerical in-
vestigations. In the same line, Fig. 9 shows the coexistence different
stable states from circuit of the memristive FHN neuron. Those
coexisting attractors match well with their numerical equivalent of
Fig. 6(a). Therefore, the accordance between these approaches further
supports the fact that the results obtained in this work were not related
to an artifact.
5. Information patterns of a newmemristive FHN neural networks

The network version of the introduced model in this work used to
study information patterns is given as



Fig. 6. (a) Phase portraitswith the corresponding time series showing coexistence of three electrical activities for i=1.336with initial condition (1,0,0) for black, (2.5,0,0) formagenta and
(2,0,0) for green. The related energy to each coexisting attractor is provided in (c) and (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 7. The Circuit implementation of the introduced neuronmodelwithmemristive autapse. The circuit ismadeupof up to three intagrators, three inverters, and some special blocksmade
of multipliers, trigonometric functions, voltage sources, as well as a power supply ±15v symmetric.
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Fig. 8. Pspice simulation showing bursting oscillation of the considered neuron obtained for Rα = 25kΩ, V5 = 0V with initial conditions (0.01V,0.1V,0V).

Fig. 9. Pspice simulation showing some coexisting attractors exhibited by the considered neuron, obtained for Rα = 10.526kΩ, V5 = 1.336V with initial conditions (1V,0V,0V) for the
chaotic attractor and (2V,0V,0V) for the periodic attractor.
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dxn
dt

¼ xn−bx3n−yn þ i−α sin wnð Þxnþ
K xnþ1−2xn þ xn−1ð Þ
ε
dyn
dt

¼ xn þ a−cyn

dwn

dt
¼ cos wnð Þ þ xn

8>>>>>>>><
>>>>>>>>:

ð14Þ

where xn is the transmembrane potential of neuron at the lattice site n,
coupled to two nearest neighbors at the site n− 1 and n+1, eachwith
the coupling strength K. Indeed, we have considered a chain network of
500 identical neurons in our numerical simulations, in order to study
the hidden spatiotemporal pattern of information in the form of wave
propagation in the network under the memristor coupling (α). From
early observations, the Hamiltonian energy of a neuron is increased as
the memristor coupling is increased. This coupling parameter will
undoubtedly affects instability/stability of information patterns within
the network and thus constitute our motivation. In the process, we
make use of modulational instability (MI) as a mechanism of wave
pattern formation in nonlinear media. As a recall, MI is a well docu-
mented mechanism to predict modulated wave formation in physical
systems [39,41,42]. MI is known to be a nonlinear-induced phenome-
non, reported inmany physical media, where small noise-driven ampli-
tude and phase grow exponentially, due to the concomitant effects of
dispersion and nonlinearity. The direct consequence is the breakup of
any waveform (usually plane waves) into trains of modulated patterns.
Here, we applyMI numerically in order to portray and discuss the effect
of the new memristor coupling on pattern formation and hopefully
believe these considerations open new routes in theoretical
Fig. 10. 3D spatiotemporal pattern of membrane action potential, xn calculated for the memrist

Fig. 11. 3D spatiotemporal pattern of membrane action potential, xn calculated for the memrist
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neurodynamics. In the numerical simulation, the set of Eq. (14) is inte-
grated with the use of the fourth-order Runge-Kutta computational
scheme having periodic boundary conditions. The network under con-
sideration has 500 active nodes. Each of the initial conditions are slightly
modulated plane waves with respective amplitudes of (1,0,0). Firstly,
we maintain the simulation current (i) at zero and by selecting suitable
values of memristor coupling (α), we present the 3D spatiotemporal
pattern of membrane potential in Figs. 10, 11, 12.

From Fig. 10, we observe that for amemristor couplingα=0.30, the
network of 500 identical neurons supports a breathing localized wave
pattern in space and time. In other to evaluate the impact of α on the re-
sulting patterns, we select higher values and results presented in
Figs. 11 and 12. By selecting α = 0.40 and α = 0.80 in Figs. 11, 12 re-
spectively, the network presents different dynamical motifs as the
values of α are changed. This confirms our analytical predictions
whereby the memristive autaptic coupling parameter has confirmed
its ability in influencing the pattern of information within the network
lattice. Extensive numerical simulations show that the intensity of the
stimulation current (i) when varied has no influence on the information
pattern within the network, which further confirms early prediction via
the Hamiltonian energy of the system. This indicates the ability of our
network to discriminate against environmental intensity current stimu-
lation. It equally confirms the possible application of the presented net-
work in building artificial neurons with such behaviors. Indeed, the
various panels of localizedwave patterns in Figs. 10, 11, 12 corresponds
to spatially broadened pulses, or front waves, that are ubiquitous in ex-
citable media like neurons and cell membranes [36,37,43,44]. In heart,
for example, they have the responsibility to trigger harmonized contrac-
tions, whose failure can lead to important physiological disturbances
or coupling, α=0.30 and in the absent of the simulation current (i=0), where K= 0.05.

or coupling, α=0.40 and in the absent of the simulation current (i=0), where K= 0.05.



Fig. 12. 3D spatiotemporal pattern of membrane action potential, xn calculated for the memristor coupling, α=0.80 and in the absent of the simulation current (i=0), where K= 0.05.
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[45–47]. From the physical theory of modulational instability, the
memristive coupling increases the nonlinearity of the system under
studies and consequently promotes the formation of modulated
waves, whose formation are based on the concomitant effect of disper-
sion and nonlinearity in the media. From neuroscience perspective, our
memristive network confirms its ability to support information process-
ing and transmission in the form of modulated wave without an excita-
tion current. Thisworks provides a possiblewayof using thememristive
autaptic current to influence information coding patternwithin the ner-
vous system. This could be a key factor in developing a stable artificial
neural network. Finally fromneurocomputational point of view,we ear-
lier noticed an increase in the memristive autaptical coupling increases
the total energy of the system. This increased in the energy of the sys-
tem is closely linked to the stability of information pattern within the
network. Through MI, we have confirmed this prediction by presenting
the influence of the autaptic coupling on information coding pattern in
the network. From the presentation, we sufficiently observe the infor-
mation pattern and stability are closely linked to the autapses coupling.

6. Conclusion

In this contribution, a novel FitzHugh-Nagumo (FHN) neuronmodel
with memristive autapse has been introduced; both the single and net-
work of that neuron have been investigated. The study of the single neu-
ron has revealed its hidden dynamics since it is equilibrium-free. Using
the well-known Helmholtz formula, the Hamilton energy of the pro-
posed neuron has been established. Among the control parameters
that were the external current and the memristive autapse strength,
only the second one was able to affect the energy released by the pro-
posed neuron model. Using the two-parameter Lyapunov exponent
and time series as an argument, the studies of the model revealed be-
haviors such as quiescent, bursting, spiking, and multistability. Of par-
ticular interest, an electronic circuit of the proposed neuron has been
built and investigated to support the result of the theoretical investiga-
tion. Finally, the network of the proposed neuron has been built and in-
formation pattern stability has been investigated numerically via
modulational instability under autaptic coupling parameter. It has
been found that, the new network was able to support localized infor-
mation patterns with traits of synchronization as a means of informa-
tion coding.
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