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In this work the chaotic dynamics of flexible curvilinear Euler–Bernoulli micro-
beams embedded into a stationary temperature field is investigated. The temper-
ature field ismodelled based on a theDuhamel–Neumann theory and is free from
the restrictions on the temperature field distribution along beam thickness. The
von Kármán geometric strain–stress relations are employed. The governing non-
linear PDEs are yielded by the Hamilton principle with an account of the mod-
ified couple stress theory. The finite dimension problem is truncated to a finite
system of nonlinear ODEs using the finite difference method (FDM) and then
the Cauchy problem is solved with a help of the Runge–Kutta method. Action of
the 2D thermal field is defined by solution to the heat transfer PDE which is also
solved by FDM of the second order of accuracy. The so-called charts of vibration
regimes (amplitude-frequency planes) are constructed. In particular, novel fea-
tures of nonlinear (chaotic) dynamics versus the change of the magnitude of the
size (length) dependent parameter are reported.
The carried out numerical analysis is supported by the monitoring of frequency
power spectra based on the fast Fourier transform (FFT), phase space projections,
Poincaré maps and LLEs (largest Lyapunov exponents). We have also analyzed
system chaotic dynamics of the classical and size-dependent beammodels versus
series of values of the two control parameters, i.e. beam curvature and its size-
dependent length.Moreover,wehave detected and illustrated the novel scenarios
of transition form regular to chaotic vibrations of the studied beams, governed
by non-linear PDEs.
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1 INTRODUCTION

Micro-electro-mechanical systems (MEMS) including MEMS-sensors, MEMS-accelerometers and MEMS-gyroscopes
with the sizes of nanometers/micrometers to 1 mm play an important role in various branches of industry including
air-bag sensors, mobile phone applications, scanning probe microscopy, mass and force sensing, electromechanical fil-
ters, sensing of pressure, temperature and electromagnetic phenomena, and others. Though the electronic part of the
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mentioned systems is satisfactorily resolved, the mechanical modeling of complex vibrational behavior still requires more
effort to achieve reliable and validated results.
The reduction of the size of MEMS mechanical systems increases the frequencies of various combined and parametric

resonances, which is required to increase their sensitivity as resonators and sensors. On the other hand the construction
of MEMS relies on coupling of very small structural members like beams, plates and shells. In many cases the often-used
strong reduction to 1-DoF/2-DoF lumped parameter mechanical systems does not allow for reliable fitting of occurred and
experimentally validated nonlinear effects including relatively large structural deformations, displacements-dependent
excitation, the nonlinear capacitance between parallel electrodes and beam oscillations, nonlinear effects of electrostatic
force, etc. In otherwords, the sensing phenomena exhibit numerous nonlinear effects including bifurcations, chaos, jumps
between stable oscillatory states, and so on.
In spite of the mentioned important issue regarding strong order reduction, i.e. transitions from nonlinear PDEs to

simple systems of second order ODEs, there is also a challenging theoretical aspect of the modeling of the vibrating
micro/nanostructural members with an account of nonclassical higher order approximations to the beams and plates
models [1,2]. Assuming that both difficulties have been removed, there are still open problems regarding the size-effects
of the MEMS elements [3,4].
Siewe and Hegazy [5] studied chaotic dynamics of a micromechanical resonator under electrostatic forces with a help

of the Melnikov function, reduction of the electrostatically induced homoclinic/heteroclinic chaos was illustrated. In
addition, different active controllers were applied to suppress the resonator vibrations.
Braghin et al. [6] achieved increasing of the sensibility of the MEMS gyroscope by shifting the resonance peak of the

MEMS translating gyroscope toward the highest frequencies. They developed a simple nonlinear lumped parametermodel
to schematize the gyroscope. Moreover, the semi-analytical integration method was employed for determination of sta-
ble/unstable branches of system’s response.
Haghighi and Mrkazi [7] employed the Melnikov method and obtained an analytical criterion for homoclinic chaos

of a micromechanical resonator. Furthermore, the robust adaptive fuzzy control algorithm was applied to control
chaotic vibrations.
Jia et al. [8] analyzed functionally gradedmaterial with temperature-dependent thermo-elastic properties of nanobeams

with regard to their buckling effects. The minimum total potential energy principle yielded the governing equations with
an account of von Kármán geometric nonlinearity and modified couple stress theory. The thermal–mechanical–electrical
buckling was analyzed versus the volume fraction profile parameter, dimensionless length scale parameter, ground elec-
trode shape parameter, the applied voltage, and other parameters.
De Martini et al. [9] studied linear/nonlinear tuning of parametrically excited MEMS oscillators. The developed linear

tuning scheme was used for rotation of the parametric instability region. Moreover, the developed methodology allowed
to achieve a desired MEMS behavior, by using softening, hardening and mixed nonlinearity effects. Furthermore, two
oscillators were fabricated and tested in order to validate tuning concept experimentally.
Feng et al. [10] developed very high frequency silicon nanowire electromechanical resonators based on single-crystal

silicon nanowires. It was demonstrated that they offered potential for application in resonant sensing, quantum elec-
tromechanical systems, and high frequency signal processing.
Husain et al. [11] reported the fabrication andmeasurement of a platinum nanowire resonator being suitable to achieve

required resonant motion.
Sazonova et al. [12] studied the electrical actuation and detection of the guitar-string-like oscillation modes of doubly

clamped nanotube oscillators. The fabricated oscillator allowed to transduce very small forces and to widely tuned the
resonance frequency.
Scheible et al. [13] detected and analyzed the Ruelle–Takens route to chaos of a nanomechanical resonator. A transition

from regular to chaotic resonator vibrations with n frequencies present was traced experimentally.
Zhang et al. [14] demonstrated experimentally how by varying the voltage amplitude of applied electrical signal implied

a dramatical change of the first order parametric resonance in a micromechanical oscillator. The observed phenomenon
of variation to the tuning of effective cubic stiffness of the oscillator was validated by the first-order perturbation analysis
of the derived nonlinear Mathieu equation.
Wang et al. [15] carried out the theoretical and experimental analyses of a bistable MEMS oscillator exhibiting a

strange chaotic attractor. Moreover, the authors developed the secure communication schemes based on the synchronized
chaos phenomena.
De Martini et al. [16] studied chaotic oscillators of a MEM oscillator governed by the nonlinear Mathieu equation. The

numerical simulation results were confirmed by the experimental results.
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F IGURE 1 Scheme of the studied beam

Aghababa [17] investigated chaotic behavior exhibited by a fractional-order MEM resonator and its suppression. He
employed the latest version of the fractional Lyapunov theory, the finite time stability and robustness of the proposed
algorithms to study chaotic dynamics of the resonator.
Awrejcewicz et al. [18] formulated mathematical models for deterministic chaos in 1D mechanical continuous sys-

tems including various approximations of beam’s behaviors. Numerous examples were considered numerically with a
help of the so-called charts of the vibrations kind of the investigating mechanical objects with an emphasis put on their
chaotic behavior.
Thai et al. [19] carried out a comprehensive reviewof the state-of-the art of higher-order continuummodels for capturing

the size effect in small-scale structures. The review included size-dependent analysis of beam, plate and shellmodels based
on the nonlocal elasticity theory, modified couple stress theory and strain gradient theory. Moreover, the research devoted
to finite element solutions for size-dependent beam and plate phenomena was presented.
Krysko et al. [20,21] employed the Sheremetev–Pelekh–Reddy–Levinson hypotheses to study the size-dependent static

and dynamic behavior of both Bernoulli–Euler and Timoshenko taking into account both geometric and physical nonlin-
earity. In particular, the influence of the size-dependent coefficient on the load-deflection and stress–strain states of the
various beam models were illustrated and analyzed.
Krysko et al. [22] proposedmathematical model and carried out analysis of spatio-temporal chaotic dynamics of flexible

simple and curved Euler–Bernoulli beams, taking into account the von Kármán geometric nonlinearity. Time histories,
phase and modal portraits, autocorrelation functions, the Poincaré maps, as well as signs of the first four Lyapunov expo-
nents were analyzed. A novel scenario of transition from regular to chaotic dynamics, and from chaos to hyper-chaos were
detected and studied.
Based on the so far presented review of the state-of-the art of the research devoted to nonlinear dynamics of the size-

dependent structures composed of beams, one may observe that in general chaotic dynamics of size-dependent structural
members is less investigated, and in particular with regard to an account of thermal field action. In this work, we are
aimed on giving application oriented recipes to predict and control system behavior based on the appropriate choice of
the system parameters. In addition, we report various scenario of system transition from regular to chaotic dynamics with
regard to both size-depended parameter and beam curvature.
This paper is organized in the followingway. Section 2 presents the used assumptions andhypotheses, and the governing

equations. Description of the employed algorithms for the numerical studies are given in Section 3, whereas the numerical
case studies are reported in Section 4. The last Section 5 is devoted to conclusions.

2 HYPOTHESIS AND GOVERNING EQUATIONS

Figure 1 presents the investigated curvilinear beam of length 𝐿, height ℎ, its rectangular cross-section of width 𝑏 and
surface 𝐴, and its middle line curvature 𝑘𝑥 = 1∕𝑅𝑥. The beam width is defined from the ratio 𝑏∕ℎ = 1. The mean of
boundary occupies the areaΩ= {0 ≤ 𝑥 ≤ 𝐿; −ℎ∕2 ≤ 𝑧 ≤ ℎ∕2}.
The beam mathematical model obeys the following hypotheses and assumptions:

(i) Euler–Bernoulli hypothesis;
(ii) deformation–displacement geometric nonlinearity is based on the von Kármán assumption;
(iii) beam sloping obeys the Vlasov condition [23];
(iv) the beam material is isotropic and the Duhamel–Neumann assumption holds;
(v) both heat transfer coefficient and beam material physical properties do not depend on temperature;
(vi) there are not a priori restrictions on the temperature field distribution along the beam thickness.



4 of 12 KRYSKO et al.

The governing beam PDEs, boundary and initial conditions are yielded by the energetic Hamilton principle. Namely,
a comparison of two neighborhood beam motions in the initial (𝑡0) and final (𝑡1) states are considered. In the case of real
world beam movement, the following condition must be satisfied

𝑡1

∫
𝑡0

(𝛿𝐾 − 𝛿Π + 𝛿𝑊)𝑑𝑡 = 0, (1)

where 𝐾, kinetic Energy; Π, potential energy;𝑊, sum of elementary works of the external forces.
In the case of isotropic homogenous beam material, the stresses caused by kinematic parameters and intensity of the

deformation energy are defined by the following equations

𝜎𝑖𝑗 = 𝜆𝜀𝑖𝑗𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗, 𝑚𝑖𝑗 = 2𝜇𝑙2𝜒𝑖𝑗, (2)

where 𝛿𝑖𝑗 stands for the Kronecker symbol; 𝜎𝑖𝑗 , 𝜀𝑖𝑗 , 𝑚𝑖𝑗 and 𝜒𝑖𝑗 denote components of the classical tensor of stresses 𝜎,
deformation tensor 𝜀, the deviatory part of the symmetric tensor of the higher order moment 𝑚 and the symmetric part
of the curvature 𝜒, respectively; 𝜆 =

𝐸𝜈

(1+𝜈)(1−2𝜈)
, 𝜇 =

𝐸

2(1+𝜈)
- Lamé parameters; 𝜈 - Poisson’s coefficient; 𝑙 - material length

parameter (size dependent), and𝐸 - Youngmodulus. Employing the variational computationswith regard to the functions
𝑢,𝑤, and carrying the integration by parts, the following equations governing beam dynamics are obtained:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐸ℎ

(
𝜕2𝑢

𝜕𝑥2
− 𝑘𝑥

𝜕𝑤

𝜕𝑥
+ 𝐿3(𝑤,𝑤) −

𝜕𝑁𝑡

𝜕𝑥

)
−

𝜗

𝑔
ℎ
𝜕2𝑢

𝜕𝑡2
= 0,

𝐸ℎ

{
−
ℎ2

12

𝜕4𝑤

𝜕𝑥4
+ 𝑘𝑥

[
𝜕𝑢

𝜕𝑥
− 𝑘𝑥𝑤 −

1

2

(
𝜕𝑤

𝜕𝑥

)2

− 𝑤
𝜕2𝑤

𝜕𝑥2

]

+𝐿1(𝑢, 𝑤) + 𝐿2(𝑤,𝑤) −
𝜕2𝑀𝑡

𝜕𝑥2
− 𝑘𝑥𝑁𝑡 −

𝜕

𝜕𝑥

{
𝑁𝑡

𝜕𝑤

𝜕𝑥

}}

+ 𝑞 −
𝜗

𝑔
ℎ
𝜕2𝑤

𝜕𝑡2
− 𝜖

𝜗

𝑔
ℎ
𝜕𝑤

𝜕𝑡
= 0,

(3)

where𝑤(𝑥, 𝑡), beam element deflection; 𝜀, damping coefficient; 𝑢(𝑥, 𝑡), beam element displacement;𝑀𝑇
𝑥 , thermal bending

moment;𝑁𝑇
𝑥 , longitudinal thermal force; 𝑡, time; 𝜗, specific beammaterial weight; 𝑔, Earth acceleration; 𝜌, beam density;

𝑞, external load.
The following nondimensional parameters (with bars) are introduced

�̄� =
𝑤

ℎ
, �̄� =

𝑢𝐿

ℎ2
, �̄� =

𝑥

𝐿
, �̄� =

𝑧

ℎ
, �̄� = 𝑞

𝐿4

ℎ4𝐸
,

𝑐 =

√
𝐸𝑔

𝜌
, 𝜀 =

𝜀𝐿

𝑐
, 𝑡 =

𝑡

𝜏
, 𝜏 =

𝐿

𝑐
, 𝜆 =

𝐿

ℎ
, (4)

𝛾 =
𝑙

ℎ
, 𝑘𝑥 =

𝑘𝑥𝐿
2

ℎ
, 𝑁𝑇

𝑥 =
𝑁𝑇

𝑥 𝐿
2

𝐸ℎ3
, 𝑀𝑇

𝑥 =
𝑀𝑇

𝑥

𝐸ℎ2
, �̄� = 𝛼𝑇,

and the following harmonic external load is employed 𝑞 = 𝑞0 sin(𝜔𝑝𝑡), where 𝑞0 stands for the load amplitude and 𝜔𝑝 for
its frequency.
After introduction of the introduced dependencies (bars over the nondimensional parameters are omitted), the follow-

ing counter part of the governing PDEs are obtained



KRYSKO et al. 5 of 12

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕2𝑢

𝜕𝑥2
− 𝑘𝑥

𝜕𝑤

𝜕𝑥
+

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2
−

𝜕𝑁𝑇
𝑥

𝜕𝑥
−

𝜕2𝑢

𝜕𝑡2
= 0,

1

𝜆2

{(
−

1

12
+

𝑙2

4

)
𝜕4𝑤

𝜕𝑥4
+ 𝑘𝑥

[
𝜕𝑢

𝜕𝑥
− 𝑘𝑥𝑤 −

1

2

(
𝜕𝑤

𝜕𝑥

)2

− 𝑤
𝜕2𝑤

𝜕𝑥2

]

+
𝜕2𝑢

𝜕𝑥2

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑥

𝜕2𝑤

𝜕𝑥2
+

3

2

(
𝜕𝑤

𝜕𝑥

)2
𝜕2𝑤

𝜕𝑥2

}
−

𝜕2𝑀𝑇
𝑥

𝜕𝑥2
− 𝑘𝑥𝑁

𝑇
𝑥

−
𝜕

𝜕𝑥

{
𝑁𝑇

𝑥
𝜕𝑤

𝜕𝑥

}
+ 𝑞 −

𝜕2𝑤

𝜕𝑡2
− 𝜖

𝜕𝑤

𝜕𝑡
= 0.

(5)

It should be noticed that when we remove temperature and take 𝑘𝑥 = 0, PDEs (5) coincide with the PDEs reported in
[20], which validates our modeling procedure.
Thermal moments𝑀𝑇

𝑥 and stresses 𝑁𝑇
𝑥 appeared in (5) are defined in the following way

𝑁𝑇
𝑥 =

1∕2

∫
−1∕2

𝑇(𝑥, 𝑧)𝑑𝑧, 𝑀𝑇
𝑥 =

1∕2

∫
−1∕2

𝑇(𝑥, 𝑧)𝑧𝑑𝑧. (6)

As it has been mentioned that there are not any restrictions imposed to the temperature distribution, and the tempera-
ture field is defined by a solution to the following heat transfer equation

∇2𝑇(𝑥, 𝑧) =
𝜕2𝑇(𝑥, 𝑧)

𝜕𝑥2
+ 𝜆2

𝜕2𝑇(𝑥, 𝑧)

𝜕𝑧2
= 0, (7)

with the boundary conditions either of the first kind

𝑇(𝑥, 𝑧)|Γ = 𝑔1(𝑥, 𝑧), (8)

or of the second kind

𝜕𝑇(𝑥, 𝑧)

𝜕𝑛

||||Γ = 𝑔2(𝑥, 𝑧), (9)

where 𝜕

𝜕𝑛
means differentiation along an external normal to the beam boundary Γ. PDEs (5) require boundary and initial

conditions. We employ either

𝑤(0, 𝑡) = 𝑢(0, 𝑡) = 𝑤′
𝑥(0, 𝑡) = 0, 𝑤(1, 𝑡) = 𝑢(1, 𝑡) = 𝑤′

𝑥(1, 𝑡) = 0, (10)

or

𝑤(0, 𝑡) = 𝑢(0, 𝑡) = 𝑀𝑥(0, 𝑡) = 0, 𝑤(1, 𝑡) = 𝑢(1, 𝑡) = 𝑀𝑥(1, 𝑡) = 0, (11)

and the following initial conditions are taken

𝑤(𝑥, 0) = 𝑓1(𝑥), �̇�(𝑥, 0) = 𝑓2(𝑥), 𝑢(𝑥, 0) = 𝑓3(𝑥), �̇�(𝑥, 0) = 𝑓4(𝑥). (12)

3 ALGORITHMS

It should be mentioned that numerous researchers dealing with nonlinear dynamics of structural members (non-
linear PDEs) employ strong reduced order modeling where often the problem is reduced to either one or two
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TABLE 1 Boundary conditions employed to heat transfer PDE

Duffing-type ODEs. On contrary, in our work we consider more general approach, i.e. we consider problem with almost
infinite dimension.
Namely, we are aimed on application of the FDM of the second order accuracy [22]. For this purpose, the beam space

is substituted by the uniform grid (mesh) with the number of nodes 𝑛 = 80. The partial derivatives are substituted by the
central finite-difference, through the following approximations

Λ𝑥(·𝑖) =
(·)𝑖+1 − (·)𝑖−1

2Δ𝑥
, Λ𝑥2(·𝑖) =

(·)𝑖+1 − 2(·)𝑖 + (·)𝑖−1

Δ𝑥2
,

Λ𝑥4(·𝑖) =
(·)𝑖+2 − (·)𝑖+1 + 6(·)𝑖 − (·)𝑖−1 + (·)𝑖−2

Δ𝑥4
.

(13)

Finally, the problem is reduced to the following counter-part nonlinear ODEs

�̈� =Λ𝑥2(𝑢𝑖) − Λ𝑥(𝑤)𝑖Λ𝑥2(𝑤)𝑖 − Λ𝑥

(
𝑁𝑇

𝑥

)
𝑖
,

�̈� + 𝜀�̇� =
1

𝜆2

{(
−

1

12
+

𝑙2

4

)
Λ𝑥4(𝑤)𝑖 + 𝑘𝑥

[
Λ𝑥(𝑢)𝑖 − 𝑘𝑥𝑤𝑖 −

1

2

(
Λ𝑥(𝑤)𝑖

)2
− 𝑤𝑖Λ𝑥2(𝑤)𝑖

]
(14)

+Λ𝑥2(𝑢)𝑖Λ𝑥(𝑤)𝑖 + Λ𝑥(𝑢)𝑖Λ𝑥2(𝑤)𝑖 +
3

2

(
Λ𝑥(𝑤)𝑖

)2
Λ𝑥2(𝑤)𝑖

}
+ 𝑘𝑥

(
𝑁𝑇

𝑥

)
𝑖
− Λ𝑥2

(
𝑀𝑇

𝑥

)
𝑖
− Λ𝑥

(
𝑁𝑇

𝑥

)
𝑖
Λ𝑥(𝑤)𝑖 − Λ𝑥

(
𝑁𝑇

𝑥

)
𝑖
Λ𝑥2(𝑤)𝑖 + 𝑞.

The FDM is also employed to the boundary conditions (10)-(11) as well as to the initial conditions (12). The nondimen-
sional PDEs (bars are omitted) (14) are solved by using the Runge–Kutta methods of the 4th and 6th order. The carried-out
case studies of computations showed that the results obtained through bothmethods coincide, and hence we have further
used the 4th order Runge–Kutta algorithm due to its efficiency [18].
The heat transfer PDE (7) is also solved using FDM (it is already well known and hence not discussed here). In the

latter case the most optimal grid resolution stands for 10 × 80. The choice has been validated with the analytical solution
obtained by Carslaw and Jaeger [24] for the case of the boundary condition of the first kind. The estimations of𝑀𝑇

𝑥 and𝑁𝑇
𝑥

through formulas (6) are carried out with a help of the Simpson method. We have employed standard approaches during
computations like removement of the points of conjunction, increase (decrease) of the nodes numbers of the nonregular
(regular) grid, etc.
We have also taken into account compatibility conditions while changing boundaries conditions for the case of heat

transfer equation, which are reported and considered in [25].

4 NUMERICAL EXPERIMENTS

Combination of temperature conditions (8)–(9) on the beam’s boundaries Γ allow to study various cases of temperature
action. In this work we consider temperature field of the first kind presented in Table 1, where also temperature field
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TABLE 2 Beam vibration regimes (more details are given in the text)

distribution is shown. Intensity of the given temperature input 𝑇 is in the interval 0 ≤ 𝑇 ≤ 100◦𝐶. Here and further, the
temperature field is given in dimensional form for the case of zinc oxide (ZnO) and in the considered temperature interval
of the beam the material characteristics remain unchanged. In order to carry out transition into dimensional temperature
values we have used the following fixed parameters: 𝐸 = 2.1 × 10

5 mPa, 𝛼 = 6.5 × 10
−6 1/grad and 𝑇 = Δ𝑇 + 𝑇0, 𝑇0 =

22◦𝐶, where Δ𝑇 denotes increment of the temperature 𝑇(𝑥, 𝑧) defined via the heat transfer PDE (7) subjected to (8).
The following parameters are fixed: 𝑘𝑥 = 12, 𝛾 = 0.5, 𝜆 = 50, 𝜀 = 1, 𝑔1(𝑥, 𝑧) = 50 (468 × 106 dimensionless units).

Table 2 reports the vibrational regimes obtained for 𝜔𝑝 = 6. In the table column A periodic regime is shown, i.e. for
𝑞0 = 15 × 10

3 the signal (time history) exhibits one frequency 𝜔𝑝 = 6, the phase portrait demonstrates stable limit cycle
(closed curve) which corresponds to one point of the Poincaré map. Column B of Table 2 (𝑞0 = 20.4 × 10

3) refers to linear
combination of the frequencies (resonances) between three frequencies: 𝜔𝑝 = 6, 𝜔1 = 1∕3𝜔𝑝 = 2 and 𝜔2 = 2∕3𝜔𝑝 = 4.
The phase portrait shows the triple-loop closed curve and the Poincaré map consists of three points. The column C of
Table 2 (𝑞0 = 43.2 × 10

3) is associated with occurrence of two Hopf period doubling bifurcations for the following fre-
quencies amount: 𝜔1 = 1∕4𝜔𝑝 = 1.5, 𝜔2 = 2∕4𝜔𝑝 = 3, 𝜔3 = 3∕4𝜔𝑝 = 4.5 and 𝜔𝑝 = 6. Results shown in column D of the
same table (𝑞0 = 51.6 × 10

3) correspond to chaotic regimewhere time history is irregular, the frequency spectrum is broad
band, and the Poincaré map exhibits chaotic strange attractor.
In order to investigate scenarios of transition of the beam vibrations (from regular to chaotic dynamics) we have mon-

itored FFTs and LLEs for the following fixed parameters: 𝑘𝑥 = 24, 𝜆 = 50, 𝜀 = 1, 𝑔1(𝑥, 𝑧) = 50 and for the following val-
ues of the size-dependent length parameter 𝛾 = 0, 𝛾 = 0.3 and 𝛾 = 0.5. Our investigations are based on the chaos def-
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TABLE 3 Transition from regular to chaotic beam vibrations for 𝛾 = 0 and different 𝑞0 based on FFT (Feigenbaum scenario)

inition given by Gulick [26], where chaotic behavior is defined and recognized by essential system reaction on small
changes of initial conditions and the sign of LLEs. We begin with a scenario of transition from regular to chaotic beam
vibrations for 𝛾 = 0 (see Table 3). For 𝑞0 = 22.5 × 10

3 we have periodic regime (LEE = −0.00712), and the associated
FFT reports one frequency (𝜔𝑝 = 6). Increase of the excitation amplitude up to the value of 𝑞0 = 22.8 × 10

3 implies
birth of 𝜔1 = 1∕2𝜔𝑝 = 3, which corresponds to period doubling bifurcation (LEE = −0.00390). The latter state is pre-
served until the value of 𝑞0 = 23.7 × 10

3. In the interval from 𝑞0 = 24 × 10
3 up to 𝑞0 = 24.6 × 10

3, a zone of periodicity
is exhibited (LEE = −0.03372). Further increase of 𝑞0 up to the value 𝑞0 = 24.8 × 10

3 yields occurrence of the resonant
frequency 𝜔2 = 𝜔𝑝 − 𝜔1. For 𝑞0 = 24.85 × 10

3 there are two frequencies (LEE = −0.01127) associated with bifurcation
𝜔1 = 1∕2𝜔𝑝 = 3 and linear combination of the frequencies is exhibited. Further increase of 𝑞0 up to 𝑞0 = 24.851 × 10

3

shifts the dynamics beam to chaotic state (LEE = 0.01195). The so far described scenario follows well known Feigen-
baum scenario.
Table 4 reports the similar like scenario for 𝛾 = 0.3. For 𝑞0 = 36.9 × 10

3 the beam exhibits periodic vibrations (LEE=

−0.03333), and FFT demonstrates the excitation frequency 𝜔𝑝 = 6. Increase of 𝑞0 up to 𝑞0 = 36.99 × 10
3 implies occur-

rence of the resonance frequency 𝜔2 = 𝜔𝑝 − 𝜔1 (LEE = −0.00288). Further increase of 𝑞0 generates occurrence of new
frequencies (LEE = −0.01320) governed by simple linear relations: 𝜔4 = 𝜔𝑝 − 𝜔3 for 𝑞0 = 37.07 × 10

3 and 𝜔6 = 𝜔𝑝 − 𝜔5

for 𝑞0 = 37.2 × 10
3. Thementioned frequencies begin to competewith increase of 𝑞0 shifting the beamvibrations to chaotic

regime (LEE = 0.05571). The so far described scenario follows the Ruelle–Takens–Newhouse scenario.
Table 5 reports the beam transition form regular to chaotic vibrations for 𝛾 = 0.5. For 𝑞0 = 17.1 × 10

3 we have periodic
vibrations (LEE= −0.00226), with the frequency 𝜔𝑝 = 6. Increase of 𝑞0 up to the value 𝑞0 = 22.5 × 10

3 implies occur-
rence of three frequencies exhibiting the following subharmonic relations: 𝜔1 = 1∕3𝜔𝑝 and 𝜔2 = 2∕3𝜔𝑝 (LE= −0.01523).
Further increase of the excitation amplitude up to the value of 𝑞0 = 30.6 × 10

3 shifts the system to chaotic vibrations
(LEE= 0.01525). The so far scenario follows the previous one, i.e. the Ruelle–Takens–Newhouse scenario.
Therefore, the use of the size-dependent parameter plays a crucial role on the system transition scenario from regu-

lar to chaotic motion. The so far discussed and illustrated scenarios are obtained for fixed values of the chosen control
parameters. In order to investigate the global system behavior for large intervals of changes of the control parameters
𝑞0 ∈ [0; 60 × 10

3
] and 𝜔𝑝 ∈ [0; 10], the long computations are carried out to define the vibrational regimes of the nano-

beams based on the FFT. In result, the charts of nano-beam vibrational regimes versus the values of the amplitude 𝑞0
and frequency 𝜔𝑝 of harmonic excitation are constructed. Each of the charts contains 200 × 200 pixels (points) which
corresponds to getting and analyzing 4 × 104 solutions for a given fixed parameters (𝑞0, 𝜔𝑝) (see Figure 2).
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TABLE 4 Transition from regular to chaotic beam vibrations for 𝛾 = 0.3 and different 𝑞0 (Ruelle–Takens–Newhouse scenario)

TABLE 5 Transition from regular to chaotic beam vibrations for 𝛾 = 0.5 and different 𝑞0 (Ruelle–Takens–Newhouse scenario)

F IGURE 2 Charts of the nano-beam vibration regimes for 𝑘𝑥 = 12: (a) 𝛾 = 0, (b) 𝛾 = 0.3, (c) 𝛾 = 0.5, (d) 𝛾 = 0.7
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F IGURE 3 Charts of the nano-beam vibration regimes for 𝑘𝑥 = 24: (a) 𝛾 = 0, (b) 𝛾 = 0.3, (c) 𝛾 = 0.5, (d) 𝛾 = 0.7

F IGURE 4 Charts of the nano-beam vibration regimes for 𝑘𝑥 = 36: (a) 𝛾 = 0, (b) 𝛾 = 0.3, (c) 𝛾 = 0.5, (d) 𝛾 = 0.7

Based on analysis of the charts reported for 𝑘𝑥 = 12 (Figure 2) one may conclude that increase of the scale parame-
ter 𝛾 from 0 to 0.7 implies decrease of the chaotic zones located in the neighborhood of average (3 < 𝜔𝑝 ≤ 6) and high
(6 < 𝜔𝑝 ≤ 10) frequencies. For 𝑘𝑥 = 24 (Figure 3) increase of periodic zone in interval of the average frequencies is
observed. Finally, for 𝑘𝑥 = 36 (Figure 4), the area of chaotic zone is decreased with increase of periodic nano-beam vibra-
tions zone.
In other words, for 𝑘𝑥 = 12 in the interval of low frequencies (0 < 𝜔𝑝 ≤ 3) the periodic regime dominates. Increase of

𝛾 yields increase of the nano-beam vibrations spanned on the resonance average and high frequencies. Maximum zone
of harmonics takes place for 𝛾 = 0.3. For 𝑘𝑥 = 24 the chart exhibiting maximum zone of periodic vibrations is obtained
for 𝛾 = 0.3. In the case of parameters 𝑘𝑥 = 12 and 𝑘𝑥 = 24, the occurrence of subharmonic vibrations with 𝜔𝑝∕3 in the
interval of average frequencies is observed.
In order to analyze the constructed charts more deeply, the percentage ratios of a given regime to the whole chart area

is shown in Figure 5. It allows to conclude that increase of 𝛾 implies decrease of chaotic zone from 7.8% to 4.85% (𝑘𝑥 = 12),
from 11.47% to 3.8% (𝑘𝑥 = 24) and from 14.88% to 4.71% (𝑘𝑥 = 36).
Increase of the nano-beam curvature 𝑘𝑥 from 12 to 36 yields increase of chaotic zone. Periodic zone decreases with

increase of 𝛾 for 𝑘𝑥 = 12 from 68.7% to 61.84%, while for 𝑘𝑥 = 24 and 𝑘𝑥 = 36 the increase of periodic zone from 65.38% to
66.28% and from 61.30% to 69.31% is observed, respectively. Finally, the vibration zone spanned on resonance frequencies
increases for the all investigated values of the parameter 𝑘𝑥.
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F IGURE 5 Percentage of chaotic (a), periodic (b), and resonance (c) zones versus the size-dependent parameter

5 CONCLUDING REMARKS

This paper presents a methodology for modeling Euler–Bernoulli microbeams and the temperature field based on the
Duhamel–Neumann theory and with an account of the von Kármán geometric nonlinearity. After transition from nonlin-
ear PDEs to a system of coupled nonlinear ODEs with a help of the FDM, the standard numerical approaches have been
employed to detect and monitor the nonlinear system effects including scenarios of transition from regular to chaotic
microbeam dynamics.
Investigation of chaotic dynamics of the size-dependent flexible beams embedded into temperature field allows to for-

mulate the following main conclusions.

1. Nonlinear dynamics of size-dependent beams essentially depends on the control parameters, i.e. amplitude and fre-
quency of harmonic excitation, the geometric parameter 𝑘𝑥 and the scale parameter 𝛾.

2. Scale parameter 𝛾 effects transition from regular to chaotic vibrations of the beam. For 𝛾 = 0 the transition follows the
Feigenbaum scenario. In the case of 0 < 𝛾 ≤ 0.4, the modified Ruelle–Takens–Newhouse scenario is exhibited and for
𝛾 > 0.4, the classical Ruelle–Takens–Newhouse scenario is reported.

3. Analysis of the charts of vibrational regimes in the plane {𝑞0; 𝜔𝑝; 𝑘𝑥; 𝛾} yielded the following observations: (i) increase of
curvature 𝑘𝑥 of the nano-beams implies decrease of the periodic nano-beam vibrations in a zone of low frequencies; (ii)
increase of the scale parameter (𝛾 > 0) yielded decrease of zone of chaotic vibrations in the interval of high frequencies;
(iii) in the case of the nano-beam with 𝛾 = 0.3 and 𝑘𝑥 = 36 subharmonic vibrations are exhibited with 𝜔𝑝∕2.

4. In the case of classical model (𝛾 = 0), increase of 𝑘𝑥 yielded increase (decrease) of the chaotic (periodic) zone in the
interval of high frequencies.

5. Increase of the scale parameter implies decrease of the percentage ratio amount regarding chaotic zone within the
interval 0.5 < 𝛾 ≤ 0.7 independently on the choice of parameter 𝑘𝑥.
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