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a b s t r a c t 

This paper is devoted to the construction of asymptotically correct simplified models of nonlinear beam 

equations for various boundary conditions. V.V. Bolotin mentioned that in some cases (e.g., if compressed 

load is near the buckling value), the so-called “nonlinear inertia” must be taken into account. The effect 

of nonlinear inertia on the oscillations of the clamped-free beam is investigated in many papers. Bolotin 

used some physical assumption and did not compare the order of nonlinear terms in original equations. 

Below we propose our method for deriving those, which we will named “Bolotin’s equations”. This ap- 

proach is based on fractional analysis of original boundary value problems. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Beams are commonly used as structural elements in macro-,

icro- or nanoscales [1 , 2] . Consequently, models for their analy-

is are currently met in any field of civil and industrial engineer-

ng. Beams are frequently used in many practical applications, for

xample in buildings, bridges, mining supports, railroads, biome-

hanics etc. 

Following the trend to downscale electronic devices, mechanical

evices are also entering the micro- and even nanometer regime

3] . To read out the motion of a beam, it has to be coupled

o an electronic circuit. These systems are the so-called micro-

lectromechanical systems (MEMS) and they find commercial ap-

lications in accelerometers, gyroscopes, mass sensing, pressure

ensing, band-pass filters and scanning probe microscopy. The in-

reasing demand for realistic simulations leads to a higher level

f detail during the modeling phase, especially in nanomechan-

cs and biology (for example, for describing mechanical behavior

f DNA). The resulting complicated non-linear PDEs can be solved

y discrete methods (finite elements, finite differences, etc.). But

he time required to solve high-dimensional discretized models re-

ains a bottleneck towards efficient and optimal design of struc-

ures. To simplify the original equations, model order reduction

ethods are widely used [4 , 5] . This approach is based on partial
∗ Corresponding author. 
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iscretization followed by an analysis of the high-dimensional sys-

em. An alternating approach is fractional analysis [6] , based on the

etection of small parameters using non-dimensionalization and

ormalization with following asymptotic splitting. 

Our paper is devoted to the construction of asymptotically

orrect simplified models of non-linear beam equations for var-

ous boundary conditions. The paper is organized as follows.

irst, we employ the traditional Kirchhoff’s approximation. In

ection 3 , we obtain Bolotin’s equations for clamped–clamped

eam. Section 4 deals with generalization for different boundary

onditions. Section 5 presents an example of non-linear normal

ode construction. Section 6 is devoted to study correct dynamical

quations of a buckled beam. Finally, Section 7 presents concluding

emarks. 

. Kirchhoff’s approximation 

Kirchhoff [7] proposed simple approximate equations of non-

inear beam vibration, which became very popular [8 , 9] . Let us

riefly discuss this approximation. Consider the governing equa-

ions of non-linear beam vibration in the following form 

F 
∂ 2 W 

∂ t 2 
+ 

∂ 2 M 

∂ x 2 
− ∂ 

∂x 

(
T 
∂W 

∂x 

)
= 0 , (1) 

F 
∂ 2 U 

∂ t 2 
− ∂T 

∂x 
= 0 , (2) 

https://doi.org/10.1016/j.mechrescom.2020.103505
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where: M = EI κ , T = EF ε, κ = 

∂ 2 W 

∂ x 2 
,ε = 

∂U 
∂x 

+ 0 . 5 ( ∂W 

∂x 
) 2 ; E is the

Young’s modulus; F , I are the area and the static moment of

transversal beam cross section, respectively; κ is the curvature; U,

W are the longitudinal and normal beam displacements; ρ is the

density of beam material; t is the time, and x is the spatial coordi-

nate. 

Below, we consider two cases of boundary conditions in the ax-

ial direction: prescribed end shortening or dead (forced) loading: 

 = U 

(0) at x = 0 , U = U 

(L ) at x = L, (3)

or 

T = T (0) at x = 0 , T = T (L ) at x = L. (4)

The Kirchhoff hypothesis is that the axial inertial term in

Eq. (2) can be neglected. Then, one obtains ∂T 
∂x 

= 0 , i.e. 

ε = 

∂U 

∂x 
+ 0 . 5 

(
∂W 

∂x 

)2 

= N(t) . (5)

Upon integration of relation (5) with taking into account

boundary conditions (3) we have 

N = 

U b 

L 
+ 

1 

2 L 

∫ L 

0 

(
∂W 

∂x 

)2 

dx, U b = U 

(L ) − U 

(0) . (6)

Using Eqs. (1) and (6) one obtains 

ρF 
∂ 2 W 

∂ t 2 
+ EI 

∂ 4 W 

∂ x 4 
+ 

+ 

EF 

L 

[ 

U b −
1 

2 

( ∫ L 

0 

(
∂W 

∂x 

)2 

dx 

) ] 

∂ 2 W 

∂ x 2 
= 0 . (7)

Eq. (7) describes the approximate Kirchhoff model [8–10] . The

same equation is obtained by applying a correct asymptotic proce-

dure [11] . 

It is worth noting that in Kirchhoff’s book Eq. (7) is not pre-

sented. Kirchhoff [7] , in spite of neglecting the longitudinal inertial

term in Eq. (2) , has also omitted the second term in Eq. (1) , and

the original ‘Kirchhoff’s equation’ has the form 

ρF 
∂ 2 W 

∂ t 2 
− EF 

2 L 

∫ L 

0 

(
∂W 

∂x 

)2 

dx 
∂ 2 W 

∂ x 2 
= 0 . 

Maybe that is why Eq. (7) is sometimes called the “Mettler

equation” referring to the work [12] . For axial boundary conditions

(4) , Eq. (1) is linearized, and takes the following form 

ρF 
∂ 2 W 

∂ t 2 
+ EI 

∂ 4 W 

∂ x 4 
+ T b 

∂ 2 W 

∂ x 2 
= 0 , T b = T (L ) − T (0) (7a)

3. Bolotin’s approximation for a clamped–clamped beam 

Bolotin [13] mentioned that in some cases (e.g., if compressed

load is near the buckling value), the so-called “non-linear inertia”

must be taken into account. The effect of non-linear inertia on the

vibrations of the clamped-free beam (with a non-linear curvature

expression different from ours) is investigated in [14 , 15] . 

Bolotin used some physical assumption and did not compare

order of linear and non-linear terms in original equations. Below

we propose our way for obtaining the mentioned equations, which

we will name “Bolotin’s equations”. We will show that Bolotin’s

approach leads to a system of two equations, first of them is

Kirchhoff-type equation with taking into account non-linear cur-

vature, and the second one takes into account non-linear inertia

and non-linear curvature of the system. These equations stand for

the first and the second approximations of non-quasilinear asymp-

totics, using quantity δ = I /( FL 2 ) as a small perturbation parameter.
Lacarbonara and Yabuno [16] obtained the geometrically exact

quations governing nonlinear beam motion and their simplifica-

ion for moderately large amplitude motion. In this case they used

ac Laurin series expansions. We use also these equations but

ith restricted expansions up to the second polynomial order 

F 
∂ 2 W 

∂ t 2 
+ 

∂ 2 M 

∂ x 2 
− ∂ 

∂x 

(
T 
∂W 

∂x 

)
= 0 , (8)

F 
∂ 2 U 

∂ t 2 
− ∂T 

∂x 
= 0 , (9)

here: 

 = E Iκ, T = E F ε, 

κ = 

∂ 2 W 

∂ x 2 
− ∂ 

∂x 

(
∂U 

∂x 

∂W 

∂x 

)
−

(
∂W 

∂x 

)2 
∂ 2 W 

∂ x 2 

+ 

∂ 

∂x 

( (
∂U 

∂x 

)2 
∂W 

∂x 

) 

, 

ε = 

∂U 

∂x 
+ 0 . 5 

(
∂W 

∂x 

)2 

− 0 . 5 

∂U 

∂x 

(
∂W 

∂x 

)2 

. 

In addition, we use the expression for curvature proposed in

17–20] . This curvature is known as material, normalized, flexural

r mechanical curvature 

Let us assume that 

 = w 0 + δw 1 + · · · , 

U = δu 0 + δ2 u 1 + · · · . (10)

Physically, it means that we deal with the low part of the fre-

uency spectrum, i.e. with prevalent bending oscillations and in-

estigate the influence of axial displacement and inertia on those

ibrations. 

Further, we will use the Fourier series in a spatial variable with

he general term f m 

( t )sin ( m πx / L ) for solving our problem. So we

ust account of the following estimation 

 < min 

[ √ 

F L 2 

I 
, 

L √ 

F 

] 

. (11)

For larger values of m , one must take into account a correction

erm yielded by 3D elasticity. 

Using Ansatz (10) and employing the first approximation, the

ollowing Kirchhoff-type equations are obtained 

∂ T 0 
∂x 

= 

∂ 

∂x 

[ 

∂ u 0 

∂x 
+ 0 . 5 

(
∂ w 0 

∂x 

)2 
] 

= 0 , (12)

F 
∂ 2 w 0 

∂ t 2 
+ EI 

∂ 4 w 0 

∂ x 4 
− T 0 

∂ 2 w 0 

∂ x 2 
= 0 , T 0 = 

EF 

2 L 

∫ L 

0 

(
∂ w 0 

∂x 

)2 

dx. 

(13)

Eq. (12) with an account of boundary conditions 

 0 = 0 at x = 0 , L (14)

ields 

 0 = −1 

2 

∫ x 

0 

(
∂ w 0 

∂x 

)2 

d x + 

x 

2 L 

∫ L 

0 

(
∂ w 0 

∂x 

)2 

d x. (15)

If we suppose that beam ends are simply supported with re-

pect to normal displacements, then we have 

 0 = 0 , 
∂ 2 w 0 

2 
= 0 at x = 0 , L. (16)
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For construction of the second approximation we suppose 

 = T 0 + δT 1 + · · ·
nd hence 

∂ T 1 
∂x 

= ρF 
∂ 2 u 0 

∂ t 2 
= 

= 

ρF 

2 

∂ 2 

∂ t 2 

[ 

−
∫ x 

0 

(
∂ w 0 

∂x 

)2 

d x + 

x 

L 

∫ L 

0 

(
∂ w 0 

∂x 

)2 

d x 

] 

. (17) 

Integration of Eq. (17) allows to find explicitly 

 1 = ρF 
∂ 2 

∂ t 2 
�(x, t) + ϕ(t) , (18)

here 

(x, t) = −1 

2 

∫ x 

0 

( ∫ x 

0 

(
∂ w 0 

∂x 

)2 

dx 

) 

d x + 

x 2 

4 L 

∫ L 

0 

(
∂ w 0 

∂x 

)2 

d x, 

(19) 

For defining the function ϕ( t ), the following expression is used

 1 = EF 

[
∂ u 1 

∂x 
+ 

∂ w 0 

∂x 

∂ w 1 

∂x 

]
(20) 

nd the following boundary conditions are taken 

 1 = 0 at x = 0 , L. (21)

hen, one obtains 

 1 = 

ρ

E 

∂ 2 

∂ t 2 

∫ x 

0 

�(x, t) dx −
∫ x 

0 

∂ w 0 

∂x 

∂ w 1 

∂x 
dx + 

x 

EF 
ϕ(t) , (22) 

here 

(t) = −ρF 

L 

∂ 2 

∂ t 2 

∫ L 

0 

�(x, t) dx + 

EF 

L 

∫ L 

0 

∂ w 0 

∂x 

∂ w 1 

∂x 
dx . (23) 

Finally, the equation of the second approximation can be writ-

en as follows 

F 
∂ 2 

∂ t 2 

[
w 1 − ∂ 

∂x 

[
� − 1 

L 

∫ L 

0 

�dx 

]
∂ w 0 

∂x 

]
+ EI 

∂ 4 w 1 

∂ x 4 
−

EF 

2 L 

∫ L 

0 

(
∂ w 0 

∂x 

)2 

d x 
∂ 2 w 1 

∂ x 2 
− EF 

L 

∫ L 

0 

∂ w 0 

∂x 

∂ w 1 

∂x 
d x 

∂ 2 w 0 

∂ x 2 
= 

 −EI 

2 

∂ 2 

∂ x 2 

[ 

∂ 2 w 0 

∂ x 2 

[ (
∂ w 0 

∂x 

)2 

− 1 

L 

∫ L 

0 

(
∂ w 0 

∂x 

)2 

dx 

] ] 

. (24) 

Boundary conditions for Eq. (24) are as follows 

 1 = 0 , 
∂ 2 w 1 

∂ x 2 
= 0 at x = 0 , L. (25)

In paper [14] , it has been shown that non-linear inertia has the

ost substantial impact on the dispersion relation of a beam. Let

s neglect in Eq. (24) terms caused by nonlinear curvature. Then,

e add Eqs. (13) and (24) and suppose that W ≈ w 0 + w 1 . Bolotin’s

quations can be approximately written as follows: 

F 
∂ 2 

∂ t 2 

[
W − ∂ 

∂x 

[
� − 1 

L 

∫ L 

0 

�dx 

]
∂W 

∂x 

]
+ 

 E I 
∂ 4 W 

∂ x 4 
− E F 

2 L 

∫ L 

0 

(
∂W 

∂x 

)2 

dx 
∂ 2 W 

∂ x 2 
= 0 , (26) 

(x, t) = −1 

2 

∫ x 

0 

( ∫ x 

0 

(
∂W 

∂x 

)2 

dx 

) 

d x + 

x 2 

4 L 

∫ L 

0 

(
∂W 

∂x 

)2 

d x. (27)
. Bolotin’s approximation for various boundary conditions 

Consider the construction of Bolotin’s approximation, limiting

urselves to a linear approximation for the curvature. First, con-

ider the beam with the free axis conditions in the axial direction,

.e. we take 

 = 0 at x = 0 , L. (28)

hen, from Eq. (12) and boundary conditions (28) , one obtains

 0 = 0 and 

 0 = −1 

2 

∫ x 

0 

(
∂ w 0 

∂x 

)2 

dx + C(t) . (29)

Function C ( t ) will be found later. For the additional longitudinal

orce, owing to the effects of inertia, one obtains 

∂ T 1 
∂x 

= ρF 
∂ 2 u 0 

∂ t 2 
= 

ρF 

2 

∂ 2 

∂ t 2 

[ 

−
∫ x 

0 

(
∂ w 0 

∂x 

)2 

dx + C(t) x 

] 

. (30) 

Integrating Eq. (30) taking into account boundary conditions

28) , one obtains 

 1 (x, t) = ρF 
∂ 2 �

∂ t 2 
= (31) 

 ρF 
∂ 2 

∂ t 2 

[ 

−1 

2 

∫ x 

0 

( ∫ x 

0 

(
∂ w 0 

∂x 

)2 

dx 

) 

dx 

+ 

x 2 

4 L 

∫ L 

0 

( ∫ x 

0 

(
∂ w 0 

∂x 

)2 

dx 

) 

dx 

] 

. (31) 

The equation exhibiting the Bolotin’s approximation can be

ritten as follows 

F 
∂ 2 

∂ t 2 

[
w 0 − ∂ 

∂x 

(
�

∂ w 0 

∂x 

)]
+ EI 

∂ 4 w 0 

∂ x 4 
= 0 . (32)

For a beam with clamped-free boundary conditions in the axial

irection, we have 

 = 0 at x = 0 , T = 0 at x = L. (33)

nd hence the equation of Bolotin’s approximation has the form

32) with 

= −1 

2 

[ ∫ x 

0 

( ∫ x 

0 

(
∂ w 0 

∂x 

)2 

dx 

) 

dx −
∫ L 

0 

( ∫ x 

0 

(
∂ w 0 

∂x 

)2 

dx 

) 

dx 

] 

. 

(34) 

. Non-linear normal modes (NNMs) for a clamped–clamped 

eam 

Concept of NNMs for discrete systems plays important role in

onlinear dynamics of lumped mass mechanical systems (see for

etails [21 , 22] ). Kirchhoff model allows for an exact separation of

patial and time variables for some type of boundary conditions.

ah [23] was the first who used this possibility and constructed

NMs for continuous system. Though Bolotin’s equation does not

llow for exact separation of spatial and time variables, but NNMs

an be constructed approximately. 

Let us introduce the following parameters: 

 = 

√ 

I 

F 
, ε = 

h 

L 
, ε << 1 , w = 

W 

h 

, τ = 

t 

L 2 

√ 

EI 

ρF 
, ξ = x/L. (35)

hen Eq. (26) , (27) can be rewritten as follows 

 ττ + w ξξξξ − 1 

2 

w ξξ

∫ 1 (
w ξ

)2 
dξ −
0 
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e  

o  
−ε 2 

2 

∂ 2 

∂ τ 2 

[
−

∫ ξ

0 

(
w ξ

)2 
dξ + ξ

∫ 1 

0 

(
w ξ

)2 
dξ

]
w ξ = 0 . (36)

We suppose simply supported ends of the following form 

w = w ξξ = 0 for ξ = 0 , 1 . (37)

Let us apply one-term approximation, which satisfies the

boundary conditions (37) : 

w ≈ w i ( τ ) sin (iπξ ) . (38)

We must take into account natural restriction i < <ε−1 caused by

conditions of applicability of the beam theory. 

Substituting Ansatz (38) to PDE (36) and using the Kantorovich

procedure [24] one obtains the following ODEs with regard to

w i ( τ ): [
1 + 

3 (π i ) 
2 ε 2 

16 

w 

2 
i 

]
w iττ + 

3 (π i ) 
2 ε 2 

8 

w 

2 
iτ w i + 

+ (π i ) 4 w i + 

(π i ) 
4 

4 

w 

3 
i = 0 . (39)

Observe that the oscillator (39) can be treated as a system with

variable mass [25] , since we have 

d( M 1 w 

iτ ) 

dτ
+ (π i ) 4 w i + 

(π i ) 
4 

4 

w 

3 
i = 0 , (40)

where M 1 = 1 + 

3 (π i ) 2 ε 2 

16 w 

2 
i 
. 

We choose initial conditions in the following form 

w = 1 , w τ = 0 for τ = 0 . (41)

In order to solve ODEs (39) , the successive approximations

method is employed. From the very beginning, let us suppose

ε2 = 0 and obtain expressions for w i ττ and w 

2 
iτ , i.e. we have 

w iττ = −(π i ) 4 w i −
(π i ) 

4 

4 

w 

3 
i = 0 , (42)

w 

2 
iτ = 2 C − (π i ) 4 w 

2 
i −

(π i ) 
4 

8 

w 

4 
i = 0 , (43)

where for initial conditions (41) , C takes the following value 

2 C = 

9 

8 

(π i ) 4 . (44)

Then, the considered oscillator (39) with variable mass can be

approximately replaced by an oscillator with cubic and quintic

non-linear terms of the following form 

w iττ + (π i ) 4 
[

1 + 

27 (π i ) 
2 

64 

ε 2 
]

w i + 

+ 

(π i ) 
4 

4 

[
1 − 9 (π i ) 

2 

4 

ε 2 
]

w 

3 
i −

3 (π i ) 
6 

32 

ε 2 w 

5 
i = 0 . (45)

One can see that an account non-linear inertia slightly modified

linear and cubic terms and leads to appearing of the quintic term. 

The Cauchy problem (45) , (41) has the following exact solution

[26] of the following form: 

w i (t) = 

cn ( q i t, m i ) √ 

c n 

2 ( q i t, m i ) + 

(
6 q (i ) 

1 

q (i ) 
2 

)1 / 2 

s n 

2 ( q i t, m i ) d n 

2 ( q i t, m i ) 

, (46)

where: 

q i = ( 1 6 q 
(i ) 
1 

q (i ) 
2 

) 1 / 4 , m i = 

1 
2 −

q 
(i ) 
3 
4 ( 

3 

2 q 
(i ) 
1 

q 
(i ) 
2 

) 1 / 2 ,q (i ) 
1 

= a (i ) 
1 

+ a (i ) 
3 

+

a (i ) 
5 

, q (i ) 
2 

= 6 a (i ) 
1 

+ 3 a (i ) 
3 

+ 2 a (i ) 
5 

, q (i ) 
3 

= 4 a (i ) 
1 

+ 3 a (i ) 
3 

+ 2 a (i ) 
5 

, a (i ) 
1 

=
(π i ) 4 [ 1 + 

27 (π i ) 2 

64 ε 2 ] , a (i ) 
3 

= 

(π i ) 4 

4 [ 1 − 9 (π i ) 2 

4 ε ] 2 , a (i ) 
5 

= − 3 (π i ) 6 ε 2 

32 ,

cn (, ), sn (, ), dn (, ) are the basic Jacobi elliptic functions. 
The period of vibration is yielded by the following formula 

 = 4 

(
6 

q (i ) 
1 

q (i ) 
2 

)1 / 4 

K( m i ) , (47)

here K () is the complete elliptic integral of the first kind. 

It should be mentioned that the expressions (38) , (46) , (47) ap-

roximately describe NNMs of non-linear beam vibrations with

aking into account non-linear inertia term. 

. Correct nonlinear dynamic equation of buckled beam 

Consider a construction of the correct equations for nonlinear

eam vibrations under boundary conditions, when employed ax-

al loads are close to the buckling value. It should be emphasized

hat in a general case, in order to fit appropriately the experimen-

al results, the boundary conditions can have more complex form

27] . If this circumstance is not taken into account, a comparison

f theoretical and experimental results raises questions. 

Starting from papers [28 , 29] , for analysis of the postcritical be-

avior of a beam, usually an equation of the form (7) is used,

here the term ( EF / L ) U b is changed to T b (see, e.g., [30–32] ). In

hat follows construct the correct model, restricting ourselves to

he case of linear curvature. In this case, the equation of the first

pproximation has the form ( 7a ). Fair ratio 

∂ u 0 

∂x 
+ 0 . 5 

(
∂ w 0 

∂x 

)2 

= 

T b 
EF 

. (48)

For the construction of the second order approximation we sup-

ose that the following asymptotic expansion holds 

 = T b + δT 1 + · · · (49)

Taking into account of the first approximation of Eq. (2) yields

∂ T 1 
∂x 

= ρF 
∂ 2 u 0 

∂ t 2 
. (50)

Eq. (48) gives 

 0 = 

T b 
EF 

x − 1 

2 

∫ x 

0 

(
∂ w 0 

∂x 

)2 

dx + C(t) , (51)

nd then 

∂ T 1 
∂x 

= ρF 
∂ 2 u 0 

∂ t 2 
= −ρF 

2 

∂ 2 

∂ t 2 

∫ x 

0 

(
∂ w 0 

∂x 

)2 

dx + C 1 (τ ) . (52)

Integrating expression (52) with respect to x and taking into ac-

ount the boundary conditions 

 1 = 0 at x = 0 , L (53)

ne gets 

 1 = −ρF ∂ 
2 �
∂ t 2 

, 

= 

1 
2 

[ ∫ x 
0 

(∫ x 
0 

(
∂ w 0 

∂x 

)2 
dx 

)
d x + 

x 
L 

∫ L 
0 

(∫ x 
0 

(
∂ w 0 

∂x 

)2 
d x 

)
d x 

] 
. 

(54)

Finally, the equation for the second order approximation can be

ritten as follows 

F 
∂ 2 

∂ t 2 

[
w 0 − ∂ 

∂x 
(�

∂ w 0 

∂x 
) 

]
+ EI 

∂ 4 w 0 

∂ x 4 
+ T b 

∂ 2 w 0 

∂ x 2 
= 0 . (55)

. Concluding remarks 

1D non-linear thin-walled structures (rods, beams, arches, rings,

tc.) are commonly used as structural elements in macro-, micro-

r nanoscales. Consequently, models for their analysis are currently
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et in any field of civil and industrial engineering. The result-

ng complicated non-linear PDEs can be solved by discrete meth-

ds (FEM, FD, etc.). However, the time required to solve high-

imensional discretized models remains a bottleneck towards the

fficient and optimal design of structures. In this regard, a reason-

ble simplification of the initial boundary value problems with the

bility to control the accuracy of the obtained limit systems is rele-

ant. Asymptotic approaches, i.e. singular and regular asymptotics,

ive the most natural way to solve the stated problem appropri-

tely. The original non-linear boundary value problems contain two

asic small parameters characterizing both system stiffness and

on-linearity. The interplay between these parameters defines vari-

us simplified non-linear boundary value problems for spatially 1D

hin-walled structures. In this paper, reliability and validity of the

irchhoff’s and Bolotin’s approximations have been addressed, an-

lyzed and discussed. 

In addition, the correct equations governing nonlinear behav-

or of a buckled beam are constructed. Analysis of the nonlinear

esponse of a beam in presence of axial loads close to the buck-

ing value is an important topic for further research. It seems that

ome results regarding internal resonances and chaotic behavior of

 buckled beam need to be revisited. 
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