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Abstract The pendulum is excited horizontally by a
system of a DC motor and a slider–crank mechanism.
Mathematical modeling is realistic and based on exper-
imental rig, taking into account details concerning fric-
tion in the joints as well as realistic mass distribution in
particular elements of the system. Using basic nonlin-
ear tools as phase portraits, Poincaré maps, and Fourier
spectra, we report various solutions including peri-
odic, quasi-periodic and non-periodic ones. To identify
chaotic solutions, we used the 0–1 test. The simulation
results were qualitatively confirmed by experiments.
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1 Introduction

Pendulum or systems of pendulums in different con-
figurations play a role of paradigmatic model to inves-
tigate different problems of physics including espe-
cially nonlinear dynamics as well as wide spectrum of
engineering systems. Even single harmonically excited
pendulum can exhibit almost all phenomena of clas-
sical nonlinear dynamics, including classical bifur-
cations, swinging oscillatory and rotational motion,
chaotic solutions and multistability. Single pendulum
is a subject of continuous interests of scientists and
their numerical, experimental and analytical studies of
this system [1–3]. There exist books devoted to the
pendulum, e.g., in the monograph [4] one can find a
comprehensive study of the subject including the his-
torical point of view. The more recent example is the
book [5]. Single externally forced pendulum cannot
modelmany physical and engineering systems and can-
not exhibit some nonlinear dynamics phenomena. This
is a reason of investigations of other mechanical sys-
tems based on the pendulum, e.g., parametric pendu-
lum [6–8], multi-pendulum systems [9,10] or systems
of pendulums with control [11]. Moreover parametric
pendulum systems are often used as energy harvesters.
See, for example, experimental investigations of a rotat-
ing parametric tri-pendulum system [12], or numerical
and experimental analysis of an inclined parametrically
excited pendulum [13], as a wave energy converters.
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Apart from the classic case of a pendulum with har-
monic vertical or horizontal parametric excitation, it
is often analyzed a pendulum with suspension point
driven with a slider–crank mechanism. For example,
modeling and analysis of bifurcation dynamics of such
single pendulum are presented in the works: [14–17]—
for horizontal driving and [18,19]—for vertical motion
of the pendulum pivot. In those works mainly basic
numerical analysis of bifurcation dynamics is pre-
sented. Some of the investigated models assume kine-
matic driving in the form of a given rotationalmotion of
the crank as a known function of time [18], or additional
mathematical model of DC motor driving the crank is
taken into account [14–17,19]. In the first case, the
difference between the pendulum driven by the crank–
shaft mechanism and classic case of the pendulumwith
harmonic parametric forcing lies in different character-
istics of motion of the pendulum’s pivot point. More-
over in the works [15–17], the model is based on exper-
imental rig and simulation results fit the experimental
data.

Dynamical systems consisting of a DC motor and
a pendulum is a topic of many recent studies [14–
17,19–22]. Thework [21] is a comprehensive review of
mechanical systems with limited energy sources, con-
sisting of, but not limited to, pendulum systems. Here
the main idea is to provide a limited power source to
the pendulum resonator. Similar systems can be also
used for vibration energy harvesting [8,19]. Such a sys-
tem is excited by periodic manner with some of the
sub-/super-harmonics contributions and can move in
various swinging or/and rotational modes. For systems
composed of an unbalanced electric DC motor placed
on a flexible support, this system can show the Som-
merfeld effect [20,22].

This study is a continuation of the works [15–
17]. Full mathematical model of electromechanical
experimental rig consisting of the pendulum forced by
through a system of a DC motor and a slider–crank
mechanism was built and the parameters were esti-
mated leading to good agreement between the simu-
lation and experimental results [15]. But for constant
input voltage the rotational speed of the DC motor was
in good approximation constant and relatively good
results were obtained by the model assuming constant
rotational speed of the crank [16]. Then the experimen-
tal rig wasmodified, i.e., the DCmotor was replaced by
the one of lower power, so the effect of significant influ-
ence of the mechanical system dynamics on rotational

speed of DC motor was achieved, making the dynam-
ics of the system more rich. The new full model of the
electromechanical system was identified and verified
based on preliminary examples of bifurcation dynam-
ics obtained both numerically and experimentally [17].

In the present paper we focus on analysis of numer-
ical solutions of model from the last work. Using the
standard Poincaré maps and Fourier spectra, we iden-
tify the chaotic solutions. The corresponding bifurca-
tion diagrams show the regions of periodic and chaotic
solutions which are verified by the 0–1 test. Simula-
tion results correspond to dynamic behavior of real
electromechanical system. One of novel elements of
the present work is realistic modeling of the pendulum
driven by aDCmotor through slider–crankmechanism,
in fairly good agreement with the experimental results.
Consequently, the suggested 0–1 test for chaos detec-
tion allows simultaneous investigations of experimen-
tal and numerical signals. It is noteworthy to remind
that the 0–1 test is a stochastic tool for chaos detection
from an scalar response of the dynamical system [23].
Especially, neglecting the phase space reconstruction
is very useful for experimental signals.

The present work is organized as follows. In Sect. 2,
the experimental rig (Sect. 2.1), mathematical mod-
els of mechanical system (Sect. 2.2) and DC motor
(Sect. 2.3) and final mathematical model of full elec-
tromechanical system (Sect. 2.4) are presented. In
Sect. 3, the process of the parameters’ estimation is
described. Section 4 is devoted to numerical analysis
of the system dynamics and model validation. Prelim-
inary numerical simulations are presented in Sect. 4.1,
while Sect. 4.2 exhibits results of further analysis based
on the 0–1 test applied to both the numerical and exper-
imental series. The is paper closed by Sect. 5 with some
concluding remarks.

2 Experimental rig and mathematical model

2.1 Experimental rig

Figure 1a, b exhibits experimental rig of the investi-
gated system. Mechanical system consists of a rota-
tional disk 1, a connecting rod 2, a slider 3 and a pendu-
lum 4. The slider moves along a guide 5. A DC motor
with gearbox 6 drives the disk. Shaft of the disk is
mounted on a support 7. Position of the system is mea-
sured by the encoders, and the data are collected by
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Fig. 1 Experimental rig (a,
b), physical model of the
mechanical system (c) and
block diagram of
electromechanical system
(d)

(a)

(b)

(c)

(d)

data acquisition device 8. DC motor is supplied by a
voltage generator 9. More technical information about
experimental rig one can find in the work [17].

2.2 Mechanical system

Physical concept of the mechanical part of experi-
mental rig is presented in Fig. 1c. It is planar two-
degree-of-freedom mechanical system consisting of
four rigid bodies: rotational disk 1, connecting rod
2, slider 3 and pendulum 4. They are connected by
the use of four rotational joints denoted by O , A, B1

and B2. Position of the system is described by two
generalized coordinates: θ − angular position of disk
1 and φ −angular position of the pendulum 4. The
disk 1 represents all rotating masses of the DC motor,
gear transmission and real disk of the experimental
setup reduced to the coordinate θ while M stands for
the corresponding equivalent torque generated by the
motor.

Based on Lagrange’s formalism, the following form
of the governing equations has been found

M(q)q̈ + N(q)q̇2 + w(q) + r(q, q̇) = f(t) (1)

where

M(q) =
[
m11 m12

m21 m22

]
, N(q) =

[
n11 n12
n21 0

]
,

w(q) =
[ a

b (b − b1)mbg cos θ

mgr sin θ

]
,

r(q, q̇) =
[
MRθ (θ, θ̇ )

MRφ(φ̇)

]
, f(t) =

[
M(t)
0

]
,

q =
[

θ

φ

]
, q̇ =

[
θ̇

φ̇

]
, q̈ =

[
θ̈

φ̈

]
, q̇2 =

[
θ̇2

φ̇2

]
,

and where the following notation has been used

m11 = IO + a2
(
F2(m + ms) + F2

1mb

)

+a2

b2
cos2 θ

(
(b − b1)

2 mb + G2 Ib
)

,

m12 = m21 = −amr F cosφ,

m22 = I + mr2,

n11 = aFH
(
1 + ms

m

)
+ aF1H1

− a2

2b2
sin 2θ

(
(b − b1)

2mb

+G2 Ib

(
1 − a2

b2
cos2 θ

))
,

n12 = amr F sin φ,

n21 = −r H cosφ, (2)

while

G = 1√
1− a2

b2
sin2 θ

,

F = (
1 + a

b G cos θ
)
sin θ,

F1 =
(
1 + ab1

b2
G cos θ

)
sin θ,

H = am
(
cos θ + a

b G cos 2θ + 1
4
a3

b3
G3 sin2 2θ

)
,

H1 = amb

(
cos θ + ab1

b2
G cos 2θ + 1

4
a3b1
b4

G3 sin2 2θ
)

.

(3)
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In Eqs. (1–3)mb,mS andm denotemasses of the subse-
quent links (2, 3 and 4); IO , Ib and I—mass moments
of inertia of the bodies 1, 2 and 4, respectively, with
respect to their mass centers denoted by the points
O , C2 and C4; a = OA, b = AB1, b1 = AC2 and
r = B2C4—the corresponding lengths of the mechan-
ical system; MRθ and MRφ—the corresponding gener-
alized forces representing resistance forces in the sys-
tem.

The resistance forces reduced to the corresponding
generalized coordinates read

MRθ

(
θ, θ̇

) = cO θ̇ + 2

π
MO arctan

(
εO θ̇

)

+ a2F2cs θ̇ + 2

π
aFTs arctan

(
εsaF θ̇

)
,

MRφ(φ̇) = cB φ̇ + 2

π
MB arctan

(
εB φ̇

)
. (4)

where cO , cs and cB are viscous damping coeffi-
cients in rotational joint O , slider and rotational joint
B2, respectively. The parameters MO , Ts and MB

stand for the corresponding magnitudes of friction
torques or force in nonlinear parts of resistancemodels:
2
π
MO arctan(εO θ̇ ) (in the joint O), 2

π
Ts arctan(εs ẋB)

(in the slider) and 2
π
MB arctan(εB φ̇) (in the joint B),

where εO , εs and εB are additional parameters and
ẋB = −aF θ̇ is velocity of the point B1 (velocity of
the slider 3). Since for εO , εs, εB → ∞, the corre-
sponding elements of the resistancemodels tend to sign
functions, for relatively large value of these parameters
one obtains Coulomb friction models with magnitudes
of friction force or torque independent from loading.
On the other hand, it occurs (see works [15,17]) that
the smaller values of these parameters allow for bet-
ter fitting of the model to the experimental data. Here
we use set of parameters with the quantities εs and εB
obtained as a result of estimation. The parameter εO
is not identified, and it is assumed to be equal to 103,
since angular velocity θ̇ does not change the sign and its
variability is relatively small when compared to other
velocities in the system, so we expect that influence
of this parameter on system dynamics is smaller than
the corresponding impact of the parameters εs and εB .
The model does not posses elements related directly
to resistance in the rotational joints A and B1. Equiva-
lent influence of friction in these joints on the system

dynamics can, however, appear in particular elements
of models of resistance in the joint O and between the
slider and the guide.

2.3 DC motor

The relationship between voltage, current and rota-
tional speed for the armature-controlled DC motor
takes the following form

u = L
di

dt
+ Ri + KE

dθ0
dt

, (5)

where u—the input voltage, i—winding current,
dθ0/dt—angular velocity of the motor shaft (before
the gear transmission), L—inductance, R—armature
resistance, and KE—the proportionality coefficient
between rotational speed of the DCmotor and the back
electromotive force.

Taking into account that M0 = KT i , ig = θ̇0/θ̇ =
M/M0, where M0—the torque generated on the motor
shaft (before the gear transmission), KT—the corre-
sponding parameter, ig—the gear transmission ratio,
and neglecting the inductance L = 0, one gets the fol-
lowing algebraic expression for the torque M acting on
the disk 1 as a function of the input voltage u

M = KT

R
igu − KEKT

R
i2g
dθ

dt
. (6)

Assumption of inductance equal to zero in the math-
ematical model of DC motor results from our expecta-
tion that electrical time constant L/R is small enough
not to have a significant impact on the dynamics of the
entire mechanical system. Further results of identifica-
tion and model verification confirm the validity of this
assumption.

2.4 Final model of electromechanical system

Taking into account the relation (6), one can present
the governing equations of motion (1) in the following
way

M(q)q̈ + N(q)q̇2 + w(q) + re(q, q̇) = fe(t), (7)

where the modified resistance and external forces’ vec-
tors take the following form
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re(q, q̇) =
[

(CO + a2F2cs)θ̇ + 2
π
MO arctan(εO θ̇ ) + 2

π
aFTs arctan(εsaF θ̇ )

cB φ̇ + 2
π
MB arctan(εB φ̇)

]
,

fe(t) =
[
KMu(t)

0

]
,

where the following parameters have been defined

KM = KT

R
ig, CO = KEKT

R
i2g + cO .

Note that the back electromotive force (multiplied by
some constant parameters) has been moved to the vec-
tor of resistance forces and gathered with the equiva-
lent viscous damping in the rotational joint O . Final
equations (7) describe a system composed of mechan-
ical pendulum and DC motor with mutual interactions
between them. The pendulum acts on rotational speed,
back electromotive force and torque of the DC motor,
which drives the pendulum.

3 Parameters’ estimation

In the parameters’ estimation process (for more infor-
mation see works [15,17]), we define andminimize the
following objective function

FO(p) =
∑N

i=1

∫ θ f i
θ0

[
wφ(φsi (θ, p) − φei (θ, p))2 + wω

(
ω f si (θ, p

) − ω f ei (θ, p))2
]
dθ∑N

i=1(θ f i − θ0)
, (8)

where p—vector of the estimated parameters; N—
number of the compared pairs of solutions; φsi , φei—
the i-th pair of the simulated and experimental angular
positionφ of the pendulum;ω f si ,ω f ei—the i-th pair of
the simulated and experimental filtered angular veloc-
ity of the disk 1; θ0—initial angular position of the disk
1 common for all the compared solutions, θ f i—final
angular position of the disk 1 in the i-th pair of the
compared solutions, wφ and wω—the corresponding
weights.

The experimental rig is equipped with encoders
allowing for direct measurement of angular positions
of disk 1 and pendulum 4. In order to obtain a smooth
signal which can play a role of experimental angular
velocity of the disk 1, we pass its experimental angular
position θei (t) (obtained via linear interpolation of the

experimental data) through a filter of transfer function
G f (s) = s

(T f s+1)2
. As an output one obtains the signal

ω f ei (t). In order to have the proper numerical signal,
comparable with its experimental counterpart, the sim-
ulated angular position θsi (t) of the disk 1 is also passed
through the same filter, where the output is ω f si (t).

Note that the signals in the objective function (8) are
compared in the domain of the angular position θ of the
disk 1. Since there is a lack of any common synchroniz-
ing signal (e.g., common periodic input) in experimen-
tal and numerical models, any uncertainties in the real
system (e.g., small randomfluctuations of friction in the
joints) can lead to random changes in angular position
of the disk, which cannot be predicted using determin-
istic mathematical model. These changes can become
significant after some time (for longer time series) and
may lead to some problems in fitting the simulation to
the experimental data. This is the reason that we have
changed the domain of the compared signals from time
to the angle θ .

In the estimation process, we have used three exper-
imental solutions, with the input voltage having the
form of step function u(t) = u01(t), for u0 = −10.8,
−8.0,−6.5V and common initial conditions for t = 0:
θ0 = −π/2 rad/s, φ0 = 0 rad, θ̇0 = φ̇0 = 0 rad/s. The
signals θ(t) andφ(t)were recorded on the time interval
[0, 60] s. The orbits tend to stable periodic solutions,
thanks to which one avoids the problem of sensitivity
to small perturbations.

Some of the parameters are relatively easy to
be obtained via direct measurements of masses and
lengths. They have been measured and assumed to
be constant during the parameters’ estimation process:
mb = 0.057 kg, ms = 0.777 kg, m = 0.226 kg,
a = 0.080m and b = 0.300m. The remaining quan-
tities assumed to be constant are: εO = 103 s/rad,
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Fig. 2 Three numerical solutions (red lines) compared with the corresponding experimental data (green lines) for final fitting in the
parameters’ estimation process (here f = φ and ω f = φ̇). (Color figure online)

g = 9.81m/s2 and T f = 0.1 s. It is also assumed
that wφ = 1 rad−2 and wω = 1 s2rad−2.

Other parameters (elements of the vector p) are esti-
mated based on minimization of the objective func-
tion F0(p): KM = 3.066 × 10−2 N · m/V, CO =
3.003×10−2 N ·m ·s,MO = 1.937×10−2 N ·m, IO =
5.252×10−3 kg ·m2, Ib = 2.373×10−6 kg ·m2 , b1 =
8.801×10−2 m, cs = 2.171×10−1 N·s, Ts = 6.583×
10−1 N, I = 1.426×10−3 kg·m2, r = 5.417×10−2 m,
cB = 2.486×10−4 N ·m ·s,MB = 2.162×10−3 N ·m,
εs = 27.68 s/m, εB = 3.193 s/rad. Figure 2 presents
comparison of three simulated phase plots with the cor-
responding results based on the experimental data for
final fitting in the parameters’ estimation process.

The process of minimization of the objective func-
tion (8) (estimation of the parameters) is based on the
Nelder–Mead method [24,25], a kind of downhill sim-
plex method and commonly used optimization algo-
rithm, implemented among others in MATLAB and
Scilab environments in the form of function fmin-
search. However, the function (8) is highly dimensional
andnonlinear and canpossessmany localminimawhile
we are looking for global one. Since fundamentally the
Nelder–Mead method stops at local minima, it is well
known the problem how to force the algorithm to seek
for the global minimum. There exist different methods
minimizing the problem of local minima, among oth-
ers starting from different initial guesses or stopping
the classical Nelder–Mead algorithm and then perturb-
ing the solution and starting the minimization process
again. In this work we mix the both mentioned ways.
But it is always a problem how strong perturbation of

the current solution should be. Here we use the concept
of bootstrap restarting and the algorithm presented in
the work [26].

If FO(p, y) is an objective function for a given
parameter vector p and experimental data y, then the
algorithm can be depicted as follows: 0) Using some
starting vector p0, find a local minimum of function
FO(p, y): p̂0. Then repeat the steps 1–3 for k =
1, . . . , K . 1) Create a bootstrap resample y∗

k of original
data y. Using the starting vector p̂k−1, find a local min-
imum of function FO(p, y∗

k ): p∗
k . 2) Using the starting

vector p∗
k , find a local minimum of function FO(p, y):

pk . 3) If FO(pk, y) < FO(p̂k−1, y), then set p̂k := pk ,
otherwise set p̂k := p̂k−1.

The bootstrap resample of the same size as the
original data is obtained using random selection with
replacements of 3 solutions from the original set of
3 experimental time series. In practice the local mini-
mum is searched for until reaching an assumed toler-
ance or maximum number of iterations of the simplex
method. In the steps 0 and 2 of the presented above
algorithm, the maximum number of iterations is equal
to 800, while in the step 1 the Nelder–Mead procedure
is stopped after reaching 200 iterations. Moreover we
have found it more practical to find firstly some initial
solution using shorter experimental time series. There-
fore, we have applied the depicted above algorithm
using the experimental time series limited to the initial
5 s ofmotion (see Fig. 3a), and then, using the estimated
parameters as initial guess, we have applied it to the full
time series of 60 s (see Fig. 3b). Figure 3 presents value
of the objective function versus number of bootstrap
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(a) (b)

Fig. 3 Value of the objective function FO versus number of bootstrap restarts k, in identification process based on initial parts of 5 s
(a) and 60 s (b) of experimental solutions for u0 = − 10.8, − 8.0 and − 6.5 V

restarts k obtained during the steps 2 of the algorithm.
It should be noted that it have not been proved that the
presented solution is the globalminimumof the defined
objective function. We only know that we have math-
ematical model with the parameters which allows for
reliable numerical simulations of good agreement with
experimental data. The software for parameters’ esti-
mation and simulations presented in the present paper
were developed inMATLAB environment and with the
use of ODE45 (Dormand–Prince) solver.

4 Numerical simulations and model validation

4.1 Preliminary numerical simulations

We performed number of numerical simulation of
the model for different values of the parameters. We
noticed the sensitivity of the dynamics of the sys-
tem due to changes in one of the parameters, in this
case the value of parameter u0 was changed, which
is responsible for the initial supply voltage of the
DC motor. Figure 4 presents comparison of the phase
portraits with the Poincaré sections for chosen val-
ues of u0 and the nodal initial conditions. Analyz-
ing Fig. 4, you can see a noticeable difference in the
dynamic response of the system with the increase in
the value of u0. One can notice vibrations with odd
periods (u0 = −11.75-period 5, u0 = −10.5-period 3,
u0 = {−11.55,−8.25}-period 1, u0 = −9.75-period
11) as well as even periods (u0 = −9.5-period 4), as
well as quasi-periodic (u0 = {−11.25,−10.2}) and
chaotic vibrations (u0 = −9.0). Confirmation in a

qualitative manner of the system’s sensitivity to the
value of u0 can be done by means of spectral analysis.
Figure 5 shows the power spectra for the single φ time
series for the respective u0 values. At a later stage, we
wanted to confirm the results of the qualitative analysis
in a quantitative manner by setting the values of the
indicator that would distinguish between periodic and
non-periodic solutions.

4.2 Test 0–1

We used, among other methods like the maximal Lya-
punov exponent, the 0–1 test. This method developed
by Gottwald andMelbourne [23,27,28] is based on the
statistical and spectral properties of a single time series
and can be used as a chaos indicator for both model and
experimental systems [29,30]. Below we would like to
briefly describe themethod. In the first step, the consid-
ered one-dimensional time series is presented in two-
dimensional space (p, q) by means of transformation:

pc(n) =
n∑
j=1

x( j) cos ( jc),

qc(n) =
n∑
j=1

x( j) sin ( jc), (9)

where x is a time series and c ∈ (0, π) constant cor-
responds to fixed frequency in Fourier decomposition
of the time series x . In our case, as the input data for
the 0–1 test we used the φ coordinate from the phase
space. Exemplary phase portraits corresponding to the
numerical solutions in Fig. 4 are shown in Fig. 6.
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Fig. 4 Phase portraits with Poincaré sections of the system obtained numerically from the proposed model (Eq. 7) for different values
of u0

Comparing the figures for individual u0 values,
one can notice their circle like motion (characteristic
for periodic vibrations) and similar to random walk
(characteristic for non-periodic vibrations) only in case
u0 = − 9.0. In the next step, we would like to measure
the boundedness or unboundedness of the auxiliary tra-
jectory in (p, q) plane by the asymptotic growth of the
mean square displacement:

Mc(n) = lim
N→∞

1

N

N∑
j=1

[pc( j + n) − pc( j)]
2

+ [qc( j + n) − qc( j)]
2 , (10)

where n corresponds to total number of points (in prac-
tice the above limit is assumed by taking n = nmax) and
nmax << N (usually N = n/10). It turns out that the

Mc is bounded in time in case x is a regular solution
or scales linearly with time in case x is a non-regular
solution. In the last step, the asymptotic growth of the
Mc function is calculated as a final value (Kc):

Kc(n) = lim
n→∞

logMc(n)

log n
. (11)

Alternatively, the correlation method can be used to
determine the Kc value:

Kc(n) = cov(X,Mc)√
var(X)var(Mc)

, (12)

where X = {1, . . . , nmax},Mc = {Mc(1), . . . , Mc(nmax)}.
The definitions of the covariance cov(X,Y) and vari-
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Fig. 5 Power spectra of the φ coordinate of the system sampled with 3.124 kHz frequency for the corresponding cases shown in Fig. 4

ance var(X) functions for arbitrary vectors X and Y of
nmax elements, and the corresponding mean values X̂
and Ŷ are given by the formulas:

cov(X,Y) = 1

nmax

nmax∑
n=1

(X(n) − X̂)(Y(n) − Ŷ),

var(X) = cov(X,X). (13)

It should be noted that in the case c is a resonance fre-
quency proportional to the component of the Fourier
transform of the x series, the transformation will lead
to the Brownian motion regardless of the dynamics of
the system. To avoid this, for the implementation of the
method, many c values assumed (usually 100 is suffi-
cient) and then calculated the median of all Kc values
which is less sensitive to the extreme values then the

mean. Defined function takes two values (in the limit):
K ≈ 0 for regular dynamic, or K ≈ 1 for chaotic
dynamic. Comparison of the 0–1 test for different val-
ues of u0 is presented in Fig. 7.

Figure 7 shows clear difference in the dynam-
ics response characteristics of the pendulum driven
by a crank–shaft–slider mechanism and a DC motor.
One can see that from one side, for regular: periodic
and quasi-periodic motions (u0 ∈ (−12.0,−9.85) ∪
(−9.5,−9.14) ∪ (−8.37,−8) values of the K ≈
0. On the other side, for chaotic motion (u0 ∈
(−9.86,−9.51) ∪ (−9.13,−8.38) values K ≈ 1.
In those regions, there are also some periodic solu-
tions that are easily identified by the 0–1 test. To
be more specific line structures visible in the bifur-
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Fig. 6 Numerically simulated φ coordinate of the system in the space (p, q) for fixed c0 = 1.0

Fig. 7 Bifurcation diagram
due to a quasistatic increase
in the parameter value u0
together with the K = Kφ

values of the 0–1 test
(estimated from Eq. 12)
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(a) (b)

Fig. 8 (a) scaling of Kφ (for periodic with u0=−10.5V and non-
periodic with u0 = −9V response) depending on the length of
the time series n (Eqs. 11, 12). (b) c dependence of Kc. One can

see the resonances in particular for the case of u0 = −10.5V. To
avoid the resonating condition in the variable transform (Eq. 9),
we used averaging over c

Fig. 9 Time series of φ

coordinate for selected
values u0 for both
simulations (left) and
experiment (right) with
corresponding values of the
0–1 test

cation diagram (Fig. 7) correspond to periodic solu-
tions. Interestingly, the black areas in bifurcation
diagrams correspond to both: quasi-periodic (u0 ∈
(−11.50,−11.05) ∪ (−10.55,−10.05)) and chaotic
(u0 ∈ (−9.86,−9.51) ∪ (−9.13,−8.38) solutions.
This is identified by K values (0 or 1, respectively) and
confirmed by the corresponding power spectra (Fig. 5)
and phase portraits (Fig. 3). In these figures u0=−11.25
and −10.2V lead to quasi-periodic solutions. Scaling

of K = Kφ (for periodic with u0 = −10.5V and non-
periodic with u0 = −9V response) depending on the
length of the time series n and the corresponding depen-
dence of Kc is presented in Fig. 8a, b. Note that the
bifurcation diagrammay slightly differ from the results
of Fig. 4 (see the case of u0=−11.75) because of dif-
ferent initial conditions.

Another qualitative test using the scale index was
discussed by [31,32]. It could be used to distinguish
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particular periodicities of solution from chaotic solu-
tions.

As mentioned earlier, the analyzed pendulum sys-
tem parameters were identified in [17]. To confirm the
results of the 0–1 test, the selected time series obtained
from the simulation as well as the experiment together
with the values of the K function are shown in Fig. 9.
Simulation and experiment no 1 correspond to input
voltage u0 = −10.8 V, no 2—u0 = −6.5 and no 3—
u0 = −8.51. The first to experiments correspond to
the solutions used during parameters’ estimation. Note
that the solutions presented in Fig. 9 are shifted by
multiplicity of 2π , since during the ignored transient
motions full rotations of the pendulum can occur. It can
be noticed that also in the case of data obtained from
the experiment, the K ≈ 0 clearly identifies the peri-
odic response of the system (Experiments 1 and 2), and
the K ≈ 1 clearly indicates the chaotic response of the
system (Experiment 3).

5 Conclusions

Themathematical model of a pendulumwith a peculiar
periodic excitation (with higher harmonics) was veri-
fied based on the conducted experiment, which allowed
to examine the sensitivity of the system to change the
parameter u0 and to observe different bifurcation sce-
narios like period doubling and inverse period dou-
bling). The selected periodic, quasi-periodic and non-
periodic solutionswere observed in phase diagrams and
Poincaré maps as well as confirmed by spectral analy-
sis.

In the further part of the work, a nonlinear chaos
identification method was proposed to confirm the
obtained results in a quantitative way. The K function
values clearly distinguished between regular and irreg-
ular vibrations, both in the case of numerical simula-
tions as well as experimental results. The obtained
results indicate that the chosen method of analysis
turnedout to be effective, and at the same time relatively
easy to implement compared to other methods of non-
linear dynamics, e.g., themaximal Lyapunov exponent.

It should be noted that the pendulum driven by
through a DC motor and slider–crank mechanism is
rather rarely investigated with realistic models, taking
into account details concerning motion resistances in
the joints, realistic mass distribution etc. The reason of
such a situation is rarity or lack of experimental inves-

tigations of such a type of systems. Therefore, as one of
the achievements of the present work can be indicated
the realistic modeling and very good agreement with
the experimental data. It has allowed for original and
positive tests of the 0–1method for chaos detectionwith
parallel investigations of real and numerical signals.
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