
International Journal of Non-Linear Mechanics 118 (2020) 103302

Contents lists available at ScienceDirect

International Journal of Non-Linear Mechanics

journal homepage: www.elsevier.com/locate/nlm

Analysis of flexible elastic–plastic plates/shells behaviour under coupled
mechanical/thermal fields and one-sided corrosion wear
J. Awrejcewicz a,∗, A.V. Krysko b,c, E.Yu. Krylova d, T.Y. Yaroshenko e, M.V. Zhigalov e,
V.A. Krysko e

a Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
b Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, 410054 Saratov, Politehnicheskaya 77, Russian Federation
c Cybernetic Institute, National Research Tomsk Polytechnic University, 634050 Tomsk, Lenin Avenue, 30, Russian Federation
d Department of Mathematical and Computer Modelling, Saratov State University, 43 Astrachanskay Str., 410054 Saratov, Russian Federation
e Department of Mathematics and Modelling, Saratov State Technical University, 77 Politehnicheskaya Str., 410054 Saratov, Russian Federation

A R T I C L E I N F O

Keywords:
Plates and shells
Vibration
Non-linearity
Temperature

A B S T R A C T

Mathematical models of a non-linear shallow shell subjected to mechanical and temperature fields and
one-sided corrosion wear are proposed. The governing equations are yielded by Hamilton’s principle. The
geometric and physical non-linearity follow the Föppl–Kármán approximation and the plastic deformation
theory, respectively. Dolinskii and Gutman corrosion models as well as the Duhamel–Neumann model are
implemented. The governing mixed-type PDEs are derived. The algorithm to solve the PDEs is based on the
method of variational iterations (MVI) and linearization. Convergence of the developed procedure is proved.
Theoretical considerations are validated by numerical results.

1. Introduction

Due to its importance, the problem of corrosion wear and damage
has been reconsidered in recent years. Numerous metallic construc-
tions and machines are subjected to aggressive chemical compounds
in the atmosphere, rivers, and seas (ships/boats operating in water
environments), in mining as well as in technological and working
toxic/oxidable environments of different industries. The corrosion wear
is harmful in shipbuilding, machine constructions, and other branches
of industry. Interaction of metals with aggressive environments causes
chemical reactions resulting in damage of mechanical constructions and
qualitative change in their stress–strain state. The corrosion processes
are non-invertible, and the corroded system cannot come back to its
initial state. The occurred dynamic mechano-chemical regimes cause a
change in parameters of the force (mechanical) load, which is accom-
panied by a change in the construction volume (thickness) as well as
the occurrence of thermal stresses. Engineers and application-oriented
researchers are focused on developing mechanical constructions able
to work in the aggressive environment and in conditions of non-
uniform and non-stationary heating (for instance, in air and rocket tech-
niques, pipeline systems, micromechanical systems, etc.). Therefore,
there is a need for updated and reliable modelling of those dynamical
systems and reliable methods of their numerical solutions [1–15].
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The state-of-the art regarding nonlinear shells vibration is reported in
Ref. [16].

Since plates and shells are widely used in almost all industrial
branches, their dynamical regimes, the interplay with the aggressive en-
vironment, and the yielded wear corrosion phenomena are challenging
from the point of view of both theory and application.

Numerous metal structures used in the aircraft industry, ships and
offshore structures, as well as chemical engineering, are subjected
to both internal/external high-pressure and chemical action of the
environments, and hence their damage is induced by mechanical stress,
electrochemical corrosion, and mechano-chemical wear [17–21].

The problems of dynamics, durability, and stability of thin-walled
structures, including high-pressure vessels, cylindrical pipes and tubes,
bars, plates, and shells under stress-assisted wear and mechano-
chemical corrosion are important in numerous branches of engineering.

Gutman et al. [21] proposed a method for detection of the critical
time of stability loss in thin-walled high-pressure vessels under uniform
corrosion from the inside. In the paper, the authors demonstrated how
the critical time was estimated based on knowledge of the respective
problem of the static stability loss for the vessel and the law of corrosion
rate.

Then, Gutman et al. [22] carried out similar investigations of thin-
walled cylindrical pipes with non-circular cross-section and variable
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wall thickness along the directrix to non-homogeneous corrosion from
the inside. The presented numerical results concerned the pipe of an
elliptical cross-section.

Bergman et al. [23] investigated stability loss of thin-walled elastic
circular cylindrical pipes under the simultaneous action of longitudinal
forces and uniform corrosion from the outside. The critical time of
stability loss was estimated for pipes made from steel and aluminium
with different initial wall thickness.

Peng et al. [24] studied the influence of the interaction between
multiple local wall thinning defects on strength of pipes subjected to
different load conditions. A quantified index was introduced to measure
the interaction between the occurred defects.

Pronina [25] analysed the uniform surface mechano-chemical cor-
rosion of an elastic thick-walled cylindrical tube under internal and
external pressure and a temperature field. However, the problem was
strongly reduced to the first-order ordinary differential equation. El-
ishakoff et al. [26] investigated the durability of a bar under ten-
sion and corrosion. Closed-form formulae were derived for structural
durability, and the obtained results were validated.

Eslami-Majd and Rahbar-Ranji [27] carried out free vibration anal-
ysis of stiffened/unstiffened pitted corroded plates. Corrosion patterns
on the one-sided plates were studied for different plate frequencies and
modes.

Pronina [28] derived an analytical solution for the equal-rate
mechano-chemical wear of an ideal elastic–plastic thick-walled cylin-
drical tube under internal/external pressure. It was shown that the
plastic zone propagation through the tube wall can be much greater
than the length of the pure elastic stage.

Zhang et al. [29] conducted tensile tests under different loading
conditions to study the corrosion phenomena of low carbon and low
alloy steel with different microstructures in the NaCl solution. It was
illustrated that steel exhibited more serious damage under the dynamic
loading condition than under the static one and that dual phase steel
underwent high sensitivity to mechano-chemical effect.

Sedova and Pronina [30] proposed an analytical solution for deter-
mining the optimal initial thickness of a spherical member under the
conditions of double-side mechano-chemical corrosion. It was assumed
that the corrosion rates were linearly dependent on the maximum stress
and exponentially decaying with time.

Pronina et al. [31] compared two analytical solutions for the equal-
rate mechano-chemical corrosion of the elastic spherical shells under
external and internal stress. The corrosion rates at the inner/outer
surfaces were shown to be proportional to the maximum principal stress
and the involved surface.

Pronina [32] employed various corrosion models and proposed a
new closed-form analytical solution for plane problems of the mechano-
chemical corrosion of an elastic plate with an elliptical hole under
uniform remote tension. It was shown that the stress concentration
factor is dependent on the relationship between the corrosion kinetics
constants and applied stress.

Gutman et al. [33] investigated the stability loss of a thin-walled
elastic closed spherical shell under external pressure and internal cor-
rosion. It was illustrated how the critical time of stability loss of the
shell can be estimated depending on the upper critical load for static
stability loss and the corrosion rate law at different temperatures.

Gutman et al. [34] studied stability loss of a loaded thin-walled
spherical shell subjected to internal corrosion. The critical time of the
shell stability loss was detected. It was demonstrated that an increase
in the safety coefficient for stability yields reduction of the relative
durability and that the temperature increase yields an increase in the
corrosion rate, and hence a decrease in the vessel lifetime.

Yang et al. [35] analysed the effect of low levels of elastic stress on
corrosion behaviour of Q235B steel in an aerated 3.5% NaCl solution
by measurements of linear polarization resistance, potentiodynamic
polarization characteristics, and electrochemical impedance spectra.
New corrosion models were elaborated based on both theoretical and

experimental results. Analytical expressions for the structure’s lifetime
were derived and the effect of corrosion models on lifetime assessment
were investigated.

The so far carried out review of the state-of-the-art of modelling and
theoretical aspects regarding non-linear vibrations of shells subjected
to the mechano-chemical corrosion and coupling of deformation and
temperature fields shows that there is a lack of a general theory feasible
to fit adequately the phenomena often met in the engineering practice.
This motivated us to take a deeper look at the problem of non-linear
deformations of geometrically and physically non-linear shallow shells
with doubled curvature and static and dynamic loads, taking also the
mechano-chemical corrosion wear into account.

The mentioned methodology has been earlier employed to study
non-linear dynamics of the structural members including beams, plates,
and shells [36–46].

The paper is organized in the following way. A mathematical model
of non-linear vibrations of a shallow shell is introduced in Section 2,
whereas Section 3 deals with the mathematical model in one-sided
corrosion wear conditions. The method of solution, including theorems
and their proofs, is reported in Section 4. Section 5 comprises four case
studies based on the earlier developed algorithms to solve the problem
in a feasible way. The last Section 6 presents concluding remarks.

2. Mathematical model

In this section, the mathematical model of non-linear vibrations
of a shallow shell with variable thickness is derived with respect to
displacements. It considers the shell subjected to the external normal
uniform load. In order to formulate the mathematical model, the fol-
lowing assumptions regarding the shell geometry, material properties,
and exploitation conditions are introduced:

(i) transverse shell cross-sections remain planes and are perpendic-
ular to the deformed shell axis (the Kirchhoff–Love hypotheses
are satisfied [47]);

(ii) the inertia of rotational shell elements are neglected;
(iii) external forces do not change their directions under the shell

deformations;
(iv) the shell planform is significantly bigger than its transverse

dimensions;
(v) geometric non-linearity follows the Kármán proposal [48];

(vi) normal stresses can be neglected as their effects are insignificant
in comparison with the fundamental stresses, i.e. normal and
tangent stresses in the middle shell surface and in the layers
parallel to it; this hypothesis can be employed since the studied
shell is thin, isotropic and slightly deformed [49,50];

(vii) according to the Dolinskii model, the influence of the corrosion
wear is based on the assumption that the corrosion velocity de-
pends linearly on the maximum stresses which are exponentially
delayed in time [17];

(viii) the temperature distribution along the shell thickness is arbi-
trary, i.e. we consider an independent 3D heat transfer PDE;

(ix) the isotropic homogeneous shell with a variable thickness is
studied;

(x) dissipative systems are considered.

As it has been mentioned, we introduce the mathematical model of
non-linear vibrations of the shallow shell with variable thickness, sub-
jected to the external normal continuous load. The studied shallow shell
occupies the region 𝛺 =

{

0 ≤ 𝑥 ≤ 𝑎 ; 0 ≤ 𝑦 ≤ 𝑏 ; − ℎ
2 ≤ 𝑧 ≤ ℎ

2 − 𝛿 (𝑥, 𝑦)
}

of the 𝑅3 space (Fig. 1).
According to the Kirchhoff hypotheses, displacements 𝑢𝑧, 𝑣𝑧, 𝑤𝑧 of

an arbitrary point in a certain shell layer parallel to the middle shell
layer, with the distance of both layers 𝑧 ≠ 0, are governed by the
following equations

𝑢𝑧 = 𝑢(𝑥, 𝑦, 𝑡)−𝑧
𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑥
, 𝑣𝑧 = 𝑣(𝑥, 𝑦, 𝑡)−𝑧

𝜕𝑤(𝑥, 𝑦, 𝑡)
𝜕𝑦

,𝑤𝑧 = 𝑤(𝑥, 𝑦, 𝑡), (1)

2
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Fig. 1. Scheme of the studied shallow shell.

where 𝑢(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧) and 𝑤(𝑥, 𝑦, 𝑧) stand for displacements cor-
responding to the plate’s middle surface point in directions 𝑥, 𝑦, 𝑧,
respectively.

Full shell deformations 𝜀𝑧𝑖𝑗 , taking into account the geometric Kár-
mán non-linearity, the shell variable thickness, curvature, and thermal
deformations, have the following form

𝜀𝑧𝑥𝑥 = 𝜕𝑢𝑧

𝜕𝑥
+ 1

2

( 𝜕𝑤
𝜕𝑥

)2
− 𝑘𝑥𝑤 − 1

2
𝑤𝜕

2ℎ
𝜕𝑥2

− 𝛼𝑡𝑇 (𝑥, 𝑦, 𝑧, 𝑡)

= 𝜀𝑥𝑥 + 𝑧𝜒𝑥𝑥 + 𝜀𝑡𝑥𝑥,

𝜀𝑧𝑦𝑦 = 𝜕𝑣𝑧

𝜕𝑦
+ 1

2

(

𝜕𝑤
𝜕𝑦

)2
− 𝑘𝑦𝑤 − 1

2
𝑤𝜕

2ℎ
𝜕𝑦2

− 𝛼𝑡𝑇 (𝑥, 𝑦, 𝑧, 𝑡)

= 𝜀𝑦𝑦 + 𝑧𝜒𝑦𝑦 + 𝜀𝑡𝑦𝑦,

𝜀𝑧𝑥𝑦 = 1
2

(

𝜕𝑢𝑧

𝜕𝑦
+ 𝜕𝑣𝑧

𝜕𝑥

)

+ 𝜕𝑤
𝜕𝑥

𝜕𝑤
𝜕𝑦

− 1
2
𝑤 𝜕2ℎ
𝜕𝑥𝜕𝑦

= 𝜀𝑥𝑦 + 𝑧𝜒𝑥𝑦.

(2)

Here: 𝜀𝑖𝑗 — tangential deformations; 𝜒𝑖𝑗 — bending deformations;
𝜀𝑡𝑥𝑥, 𝑥 ⟷ 𝑦 — temperature deformations; 𝑘𝑥 = 1

𝑅𝑥
, 𝑘𝑦 = 1

𝑅𝑦
—

geometric shell parameters; 𝑅𝑥, 𝑅𝑦 — curvatures of the shell surface;
ℎ = ℎ(𝑥, 𝑦) — function of the changes in the shell thickness; 𝛼𝑡 —
coefficient of heat extension of the shell material; 𝑇 (𝑥, 𝑦, 𝑧, 𝑡) — function
of the temperature field.

The relations between stresses and deformations have the following
forms

𝜎𝑥𝑥 = 𝐸
1 − 𝜈2

(

𝜀𝑧𝑥𝑥 − 𝜈𝜀
𝑧
𝑦𝑦

)

, 𝜎𝑥𝑦 = 𝜎𝑦𝑥 = 𝐸
2 (1 + 𝜈)

𝜀𝑧𝑥𝑦, (3)

where 𝐸, 𝜈 stand for Young’s modulus and Poisson’s ratio, respectively.
Equations of motion as well as boundary and initial conditions of the

shell are yielded by Hamilton’s principle. Namely, two neighbourhood
motions of the system of material points from their initial state at the
time instant 𝑡0 to the terminal state at the time instant 𝑡1 are compared.
In the case of the real (true) motion, the following relation holds

∫

𝑡1

𝑡0
(𝛿𝐾 − 𝛿𝛱 + 𝛿𝑊 )𝑑𝑡 = 0, (4)

where: K — shell kinetic energy; 𝛱 — potential shell energy; 𝛿𝑊 =
𝛿𝑊𝑞 + 𝛿𝑊𝜀 — variations of the external 𝑊𝑞 and damping 𝑊𝜀 forces,
and

𝐾 = 1
2
𝛾
𝑔 ∫𝛺

[

( 𝜕𝑢𝑧

𝜕𝑡

)2
+
( 𝜕𝑣𝑧

𝜕𝑡

)2
+
( 𝜕𝑤𝑧

𝜕𝑡

)2]

𝑑𝑣,

𝛱 = 1
2 ∫𝛺

[

𝜎𝑥𝑥𝜀
𝑧
𝑥𝑥 + 𝜎𝑦𝑦𝜀

𝑧
𝑦𝑦 + 2𝜎𝑥𝑦𝜀𝑧𝑥𝑦

]

𝑑𝑣,

𝛿𝑊𝜀 = ∫𝛺

[

𝜀
𝛾
𝑔
𝜕𝑤
𝜕𝑡
𝛿𝑤

]

𝑑𝑣,

𝛿𝑊𝑞 = ∫

𝑎

0 ∫

𝑏

0
𝑞 (𝑥, 𝑦, 𝑡) 𝛿𝑤𝑑𝑥𝑑𝑦.

(5)

Here, 𝛾 is a specific weight of the shell material; 𝑔 denotes the grav-
ity of Earth; 𝜀 is the external damping coefficient; 𝑞 (𝑥, 𝑦, 𝑡) is the ex-
ternal normal load; ∫𝛺 (.) 𝑑𝑣 = ∫ 𝑎0 ∫ 𝑏0 ∫

ℎ(𝑥,𝑦)
2 −𝛿(𝑥,𝑦)

− ℎ(𝑥,𝑦)
2

(.) 𝑑𝑧𝑑𝑦𝑑𝑥, and 𝛿(𝑥, 𝑦)

describes the function of the height of corrosion material damage.

Substituting (5) into (1)–(3), taking into account (4), carrying out
variations with respect to the variables 𝑢, 𝑣,𝑤, carrying out the integra-
tions by parts, and comparing the expressions standing by 𝛿 𝑢, 𝛿 𝑣, and
𝛿 𝑤 to zero, one can obtain the following equations of motion

𝜕
𝜕𝑥

(

𝑁𝑥𝑥
𝜕𝑤
𝜕𝑥

)

+ 1
2
𝑁𝑥𝑥

𝜕2ℎ
𝜕𝑥2

+ 𝑘𝑥𝑁𝑥𝑥 +
𝜕2𝑀𝑥

𝜕𝑥2
+ 𝜕
𝜕𝑦

(

𝑁𝑦𝑦
𝜕𝑤
𝜕𝑦

)

+1
2
𝑁𝑦𝑦

𝜕2ℎ
𝜕𝑦2

+ 𝑘𝑦𝑁𝑦𝑦 +
𝜕2𝑀𝑦

𝜕𝑦2
−

+𝑁𝑥𝑦
𝜕2ℎ
𝜕𝑥𝜕𝑦

+
𝜕𝑁𝑥𝑦

𝜕𝑥
𝜕𝑤
𝜕𝑦

+ 2𝑁𝑥𝑦
𝜕2𝑤
𝜕𝑥𝜕𝑦

+
𝜕𝑁𝑥𝑦

𝜕𝑦
𝜕𝑤
𝜕𝑥

+ 2 𝜕
2𝐻
𝜕𝑥𝜕𝑦

−
𝛾 (ℎ − 𝛿)

𝑔
𝜕2𝑤
𝜕𝑡2

+
𝛿(ℎ − 𝛿)𝛾

𝑔

(

𝜕3𝑢
𝜕𝑡2𝜕𝑥

+ 𝜕3𝑣
𝜕𝑡2𝜕𝑦

)

+
𝛾
(

ℎ3 − 3ℎ2𝛿 + 6ℎ𝛿2 − 4𝛿3
)

6𝑔

×
(

𝜕4𝑤
𝜕𝑡2𝜕𝑥2

+ 𝜕4𝑤
𝜕𝑡2𝜕𝑦2

)

+ 𝜀
𝛾 (ℎ − 𝛿)

𝑔
𝜕𝑤
𝜕𝑡

+ 2𝑞 = 0,

𝜕𝑁𝑥𝑥
𝜕𝑥

+ 1
2
𝜕𝑁𝑥𝑦

𝜕𝑦
−
𝛾 (ℎ − 𝛿)

𝑔
𝜕2𝑢
𝜕𝑡2

+
𝛿(𝛿 − ℎ)𝛾

𝑔
𝜕3𝑤
𝜕𝑡2𝜕𝑥

= 0,

𝜕𝑁𝑦𝑦

𝜕𝑦
+ 1

2
𝜕𝑁𝑥𝑦

𝜕𝑥
−
𝛾 (ℎ − 𝛿)

𝑔
𝜕2𝑣
𝜕𝑡2

+
𝛿(𝛿 − ℎ)𝛾

𝑔
𝜕3𝑤
𝜕𝑡2𝜕𝑦

= 0,

(6)

as well as the following boundary conditions

𝛿𝑤 = 0 𝑜𝑟
{

𝑁𝑥𝑥
𝜕𝑤
𝜕𝑥

+ 2𝑁𝑥𝑦
𝜕𝑤
𝜕𝑦

}

𝑛𝑥
+
{

𝑁𝑦𝑦
𝜕𝑤
𝜕𝑦

+ 2𝑁𝑥𝑦
𝜕𝑤
𝜕𝑥

}

𝑛𝑦
= 0,

𝜕𝛿𝑤
𝜕𝑥

= 0 𝑜𝑟
{

𝑀𝑥𝑥
}

𝑛𝑥
+ {2𝐻}𝑛𝑦 = 0,

𝜕𝛿𝑤
𝜕𝑦

= 0 𝑜𝑟 {2𝐻}𝑛𝑥 +
{

𝑀𝑦𝑦
}

𝑛𝑦
= 0,

𝛿𝑢 = 0 𝑜𝑟
{

𝑁𝑥𝑥
}

𝑛𝑥
+
{

𝑁𝑥𝑦
}

𝑛𝑦
= 0,

𝛿𝑣 = 0 𝑜𝑟
{

𝑁𝑥𝑦
}

𝑛𝑥
+
{

𝑁𝑦𝑦
}

𝑛𝑦
= 0.

Expressions for the forces and moments, taking the account of the
temperature field are as follows

𝑁𝑥𝑥 = ∫

ℎ(𝑥,𝑦)∕2−𝛿(𝑥,𝑦)

−ℎ(𝑥,𝑦)∕2
𝜎𝑦𝑦𝑑𝑧 = 𝐶1

0,0

{

[

𝜕𝑢
𝜕𝑥

+ 1
2

( 𝜕𝑤
𝜕𝑥

)2
− 𝑘𝑥𝑤 − 1

2
𝑤𝜕

2ℎ
𝜕𝑥2

]

− 𝜈

[

𝜕𝑣
𝜕𝑦

+ 1
2

(

𝜕𝑤
𝜕𝑦

)2
− 𝑘𝑦𝑤 − 1

2
𝑤𝜕

2ℎ
𝜕𝑦2

]}

−𝑁𝑡

+𝐶1
1,0

(

− 𝜕
2𝑤
𝜕𝑥2

+ 𝜈 𝜕
2𝑤
𝜕𝑦2

)

,

𝑁𝑦𝑦 = ∫

ℎ(𝑥,𝑦)∕2−𝛿(𝑥,𝑦)

−ℎ(𝑥,𝑦)∕2
𝜎𝑦𝑦𝑑𝑧 = 𝐶1

0,0

{[

𝜕𝑣
𝜕𝑦

+ 1
2

(

𝜕𝑤
𝜕𝑦

)2
− 𝑘𝑦𝑤 − 1

2
𝑤𝜕

2ℎ
𝜕𝑦2

]

− 𝜈
[

𝜕𝑢
𝜕𝑥

+ 1
2

( 𝜕𝑤
𝜕𝑥

)2
− 𝑘𝑥𝑤 − 1

2
𝑤𝜕

2ℎ
𝜕𝑥2

]

}

−𝑁𝑡 + 𝐶1
1,0

(

− 𝜕
2𝑤
𝜕𝑦2

+ 𝜈 𝜕
2𝑤
𝜕𝑥2

)

,

𝑁𝑥𝑦 = ∫

ℎ(𝑥,𝑦)∕2−𝛿(𝑥,𝑦)

−ℎ(𝑥,𝑦)∕2
𝜎𝑥𝑦𝑑𝑧 =

1
2
𝐶2
0,0

[

𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

+ 𝜕𝑤
𝜕𝑥

𝜕𝑤
𝜕𝑦

−𝑤 𝜕2ℎ
𝜕𝑥𝜕𝑦

]

− 1
2
𝐶2
0,0

𝜕2𝑤
𝜕𝑥𝜕𝑦

,

𝑀𝑥𝑥 = ∫

ℎ(𝑥,𝑦)∕2−𝛿(𝑥,𝑦)

−ℎ(𝑥,𝑦)∕2
𝜎𝑥𝑥𝑧𝑑𝑧

= 𝐶1,0

{

[

𝜕𝑢
𝜕𝑥

+ 1
2

( 𝜕𝑤
𝜕𝑥

)2
− 𝑘𝑥𝑤 − 1

2
𝑤𝜕

2ℎ
𝜕𝑥2

]

− 𝜈

[

𝜕𝑣
𝜕𝑦

+ 1
2

(

𝜕𝑤
𝜕𝑦

)2
− 𝑘𝑦𝑤 − 1

2
𝑤𝜕

2ℎ
𝜕𝑦2

]}

−𝑀𝑡

+𝐶2,0

{

− 𝜕
2𝑤
𝜕𝑥2

+ 𝜈 𝜕
2𝑤
𝜕𝑦2

}

,

3
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𝑀𝑦𝑦 = ∫

ℎ(𝑥,𝑦)∕2−𝛿(𝑥,𝑦)

−ℎ(𝑥,𝑦)∕2
𝜎𝑦𝑦𝑧𝑑𝑧

= 𝐶1
1,0

{[

𝜕𝑣
𝜕𝑦

+ 1
2

(

𝜕𝑤
𝜕𝑦

)2
− 𝑘𝑦𝑤 − 1

2
𝑤𝜕

2ℎ
𝜕𝑦2

]

− 𝜈
[

𝜕𝑢
𝜕𝑥

+ 1
2

( 𝜕𝑤
𝜕𝑥

)2
− 𝑘𝑥𝑤 − 1

2
𝑤𝜕

2ℎ
𝜕𝑥2

]

}

−𝑀𝑡

+𝐶1
2,0

{

− 𝜕
2𝑤
𝜕𝑥2

+ 𝜈 𝜕
2𝑤
𝜕𝑥2

}

,

(7)

𝐻 = ∫

ℎ(𝑥,𝑦)∕2−𝛿(𝑥,𝑦)

−ℎ(𝑥,𝑦)∕2
𝜎𝑥𝑦𝑧𝑑𝑧 =

1
2
𝐶2
1,0

[

𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

+ 𝜕𝑤
𝜕𝑥

𝜕𝑤
𝜕𝑦

−𝑤 𝜕2ℎ
𝜕𝑥𝜕𝑦

]

− 𝐶2
2,0

𝜕2𝑤
𝜕𝑥𝜕𝑦

.

where: 𝐶1
𝑖,𝑗 = 𝐸

1−𝜈2 ∫
ℎ(𝑥,𝑦)∕2−𝛿(𝑥,𝑦)
−ℎ(𝑥,𝑦)∕2 𝑧𝑖𝑑𝑧, 𝐶2

𝑖,𝑗 = 𝐸
2(1+𝜈) ∫

ℎ(𝑥,𝑦)∕2−𝛿(𝑥,𝑦)
−ℎ(𝑥,𝑦)∕2 𝑧𝑖𝑑𝑧

are the stiffnesses, and 𝑁𝑡 = 𝐸
1+𝜈 ∫

ℎ(𝑥,𝑦)∕2−𝛿(𝑥,𝑦)
−ℎ(𝑥,𝑦)∕2 𝛼𝑡𝑇 (𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑧, 𝑀𝑡 =

𝐸
1+𝜈 ∫

ℎ(𝑥,𝑦)∕2−𝛿(𝑥,𝑦)
−ℎ(𝑥,𝑦)∕2 𝛼𝑡𝑇 (𝑥, 𝑦, 𝑧, 𝑡)𝑧𝑑𝑧 stand for thermal forces and mo-

ments. The corrosion wear, according to Dolinskii [17], takes the form

𝜕𝜂
𝜕𝑡

= 𝜑(𝑡)(1 + 𝑘𝜎𝑖), (8)

where 𝜑(𝑡) = 𝑎+𝑏 exp(𝛽𝑡−1)
exp(𝛽𝑡) , and 𝜎𝑖 stand for the stresses intensities,

whereas 𝑎, 𝑏 are the coefficients obtained experimentally.
As it has been already mentioned, there are no a priori constraints

imposed on the temperature distribution along the shell thickness, and
hence the following 3D heat transfer PDE taking into account the
coupling of deformation and temperature fields holds
𝐶0
𝑇0

𝜕𝑇
𝜕𝑡

− 𝜆
𝑇0

(

𝜕2𝑇
𝜕𝑥2

+ 𝜕2𝑇
𝜕𝑥2

+ 𝜕2𝑇
𝜕𝑧2

)

=
𝐸 𝛼𝑡
1 − 𝜈

(

𝜕𝜀𝑥𝑥
𝜕𝑡

+
𝜕𝜀𝑦𝑦
𝜕𝑡

)

, (9)

where 𝐶0 is the specific heat capacity of the shell material and 𝑇0 stands
for the shell temperature in its undeformed state.

Therefore, the following full system of PDEs governing the be-
haviour of the shell with a variable thickness and subjected to the ac-
tion of coupled temperature and deformation fields as well as one-sided
mechanical corrosion wear is obtained

𝜕
𝜕𝑥

(

𝑁𝑥𝑥
𝜕𝑤
𝜕𝑥

)

+ 1
2
𝑁𝑥𝑥

𝜕2ℎ
𝜕𝑥2

+ 𝑘𝑥𝑁𝑥𝑥 +
𝜕2𝑀𝑥

𝜕𝑥2
+ 𝜕
𝜕𝑦

(

𝑁𝑦𝑦
𝜕𝑤
𝜕𝑦

)

+1
2
𝑁𝑦𝑦

𝜕2ℎ
𝜕𝑦2

+ 𝑘𝑦𝑁𝑦𝑦 +
𝜕2𝑀𝑦

𝜕𝑦2
−𝑁𝑥𝑦

𝜕2ℎ
𝜕𝑥𝜕𝑦

+
𝜕𝑁𝑥𝑦

𝜕𝑥
𝜕𝑤
𝜕𝑦

+2𝑁𝑥𝑦
𝜕2𝑤
𝜕𝑥𝜕𝑦

+
𝜕𝑁𝑥𝑦

𝜕𝑦
𝜕𝑤
𝜕𝑥

+ 2 𝜕
2𝐻
𝜕𝑥𝜕𝑦

−
𝛾 (ℎ − 𝛿)

𝑔
𝜕2𝑤
𝜕𝑡2

+
𝛿(ℎ − 𝛿)𝛾

𝑔

(

𝜕3𝑢
𝜕𝑡2𝜕𝑥

+ 𝜕3𝑣
𝜕𝑡2𝜕𝑦

)

+
𝛾
(

ℎ3 − 3ℎ2𝛿 + 6ℎ𝛿2 − 4𝛿3
)

6𝑔

(

𝜕4𝑤
𝜕𝑡2𝜕𝑥2

+ 𝜕4𝑤
𝜕𝑡2𝜕𝑦2

)

+𝜀
𝛾 (ℎ − 𝛿)

𝑔
𝜕𝑤
𝜕𝑡

+ 2𝑞 = 0,

𝜕𝑁𝑥𝑥
𝜕𝑥

+ 1
2
𝜕𝑁𝑥𝑦

𝜕𝑦
−
𝛾 (ℎ − 𝛿)

𝑔
𝜕2𝑢
𝜕𝑡2

+
𝛿(𝛿 − ℎ)𝛾

𝑔
𝜕3𝑤
𝜕𝑡2𝜕𝑥

= 0,

𝜕𝑁𝑦𝑦

𝜕𝑦
+ 1

2
𝜕𝑁𝑥𝑦

𝜕𝑥
−
𝛾 (ℎ − 𝛿)

𝑔
𝜕2𝑣
𝜕𝑡2

+
𝛿(𝛿 − ℎ)𝛾

𝑔
𝜕3𝑤
𝜕𝑡2𝜕𝑦

= 0,

𝜕𝛿
𝜕𝑡

= 𝜑(𝑡)(1 + 𝑘𝜎𝑖),

𝐶0
𝑇0

𝜕𝑇
𝜕𝑡

− 𝜆
𝑇0

(

𝜕2𝑇
𝜕𝑥2

+ 𝜕2𝑇
𝜕𝑥2

+ 𝜕2𝑇
𝜕𝑧2

)

=
𝐸 𝛼𝑡
1 − 𝜈

(

𝜕𝜀𝑧𝑥𝑥
𝜕𝑡

+
𝜕𝜀𝑧𝑦𝑦
𝜕𝑡

)

.

(10)

The following initial conditions are supplemented to the governing
equation (10):

𝑤(𝑥, 𝑦, 𝑡) = 𝜑30(𝑥, 𝑦); 𝑣(𝑥, 𝑦, 𝑡) = 𝜑20(𝑥, 𝑦); 𝑢(𝑥, 𝑦, 𝑡) = 𝜑10(𝑥, 𝑦),
𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 𝜑4(𝑥, 𝑦, 𝑧); 𝛿(𝑥, 𝑦, 𝑡) = 𝜑5(𝑥, 𝑦),
𝜕𝑤 (𝑥, 𝑦, 𝑡)

𝜕𝑡
= 𝜓30(𝑥, 𝑦),

𝜕𝑢 (𝑥, 𝑦, 𝑡)
𝜕𝑡

= 𝜓20(𝑥, 𝑦),
𝜕𝑢 (𝑥, 𝑦, 𝑡)

𝜕𝑡
= 𝜓10(𝑥, 𝑦), 𝑡 = 0.

(11)

The boundary conditions depend on the loading conditions and the
type of clamping of the shell edges. Here, 𝜑𝑖0(𝑥), 𝜓𝑖0(𝑥), 𝜑4(𝑥, 𝑧), 𝜑5(𝑥)
stand for the known functions defining the initial shell state. Observe
that the system of equations describing the motion of the shell element
(6) includes the fourth-order derivatives with respect to coordinates,
which plays a key role while proving the existence of a solution and
convergence of different numerical methods used.

3. Mathematical model in conditions of one-sided corrosion wear

We investigate stability of a flexible shell under the one-sided
corrosion wear. We assume that one side of the shell is embedded in
an aggressive environment, whereas the remaining side is isolated. The
shell is subjected to transverse and longitudinal compression. Although
the shell material is assumed to be isotropic but non-homogeneous,
contrarily to what was presented in Section 1. Observe that 𝜀𝑧 =
1
𝐸

(

𝜎𝑥 − 𝜈𝜎𝑦
)

coincides with Hooke’s law for the plane stress state
only at the first glance. Here 𝐸 and 𝜈 are complex functions 𝐸 =
𝐸(𝑥, 𝑦, 𝑧, 𝜀0, 𝜀𝑖), 𝜈 = 𝜈(𝑥, 𝑦, 𝑧, 𝜀0, 𝜀𝑖), in a given point instead of the fixed
Young’s modulus and Poisson’s ratio defined in the classical linear case.
A similar approach has been used by Birger, who employed the method
of variable parameters of elasticity to investigate elastic and elastic–
plastic problems. While solving specific problems, there is no need to
know the functions 𝐸 and 𝜈. Here we discuss only their widely met
variants: 𝐸 = 𝐸(𝑥, 𝑦, 𝑧), 𝜈 = 𝜈(𝑥, 𝑦, 𝑧) and 𝐸 = 𝐸(𝜀0, 𝜀𝑖), 𝜈 = 𝜈(𝜀0, 𝜀𝑖),
corresponding to a nonhomogeneous, physically linear material and a
homogeneous, physically nonlinear material, respectively. The values
of the mentioned functions change with the change in the deformable
state in the given material point. Therefore, a physically nonlinear body
can be considered as a body whose nonhomogeneity depends on its de-
formable state nonlinearly, although its properties are physically linear.
Physical parameters 𝐸 and 𝐺 are unique functions with respect to the
given point and its associated deformable state. This plays an important
role when it comes to using nonlinear theories of elastic (inversed)
deformations and small elastic–plastic deformations without the lack
of relaxation. The deformed state of a material point is characterized
by the volume deformation 𝜀0 and the deformation intensity 𝜀𝑖. In
a standard problem formulation, the hypotheses on straight normals
are exhibited by preserving the length of a normal element, which
corresponds to the neglection of deformations 𝜀𝑧𝑧 in comparison to
unity (1). However, in the expressions 𝜀0 and 𝜀𝑖, this vector appears
together with other components of the same order and we cannot
neglect the terms 𝜀𝑧𝑧. In order to estimate 𝜀𝑧𝑧, while computing 𝜀0 and
𝜀𝑖, we employ the following condition of the plane stress state: 𝜀𝑧𝑧 = 0.
Here we do not consider the thermal deformations.

Taking into account the physical non-linearity, forces 𝑁𝑥𝑥 =
∫ ℎ(𝑥,𝑦)∕2−𝛿(𝑥,𝑦)−ℎ(𝑥,𝑦)∕2 𝜎𝑥𝑥𝑑𝑧, 𝑥↔ 𝑦 and moments 𝑀𝑥𝑥 = ∫ ℎ(𝑥,𝑦)∕2−𝛿(𝑥,𝑦)−ℎ(𝑥,𝑦)∕2 𝑧𝜎𝑥𝑥𝑑𝑧,

𝐻 = ∫ ℎ(𝑥,𝑦)∕2−𝛿(𝑥,𝑦)−ℎ(𝑥,𝑦)∕2 𝑧𝜎𝑥𝑦𝑑𝑧, 𝑥 ↔ 𝑦, can be recast to the following
explicit forms:

𝑁𝑥𝑥 = 𝐶00𝜀𝑥𝑥 + 𝐶01𝜀𝑦𝑦 + 𝐶10𝜒𝑥𝑥 + 𝐶11𝜒𝑦𝑦, 𝑁𝑦𝑦 = 𝐶01𝜀𝑥𝑥 + 𝐶00𝜀𝑦𝑦

+𝐶11𝜒𝑥𝑥 + 𝐶10𝜒𝑦𝑦,

𝑁𝑥𝑦 = 1
2
(𝐸00𝜀𝑥𝑦 + 𝐸10𝜒𝑥𝑦),𝑀𝑥𝑥 = 𝐶10𝜀𝑥𝑥 + 𝐶11𝜀𝑦𝑦 + 𝐶20𝜒𝑥𝑥 + 𝐶21𝜒𝑦𝑦,

𝑀𝑦𝑦 = 𝐶11𝜀𝑥𝑥 + 𝐶10𝜀𝑦𝑦 + 𝐶21𝜒𝑥𝑥 + 𝐶20𝜒𝑦𝑦,𝐻 = 1
2
(𝐸10𝜀𝑥𝑦 + 𝐸20𝜒𝑥𝑦),

(12)

where the respective stiffnesses are as follows

𝐶𝑖𝑗 =
1
2
[

𝐸𝑖𝑗 + (−1)𝑗𝐸𝑖0
]

, 𝐸𝑖𝑗 = ∫

ℎ(𝑥,𝑦)∕2−𝛿(𝑥,𝑦)

−ℎ(𝑥,𝑦)∕2

𝐸𝑧𝑖

1 + (−1)𝑗𝜈
𝑑𝑧. (13)

We consider a class of problems governed by PDEs in the mixed
form and we employ the following stress (Airy’s) function

𝑁𝑥𝑥 = 𝜕2𝐹
𝜕𝑦2

− 𝑃1, 𝑁𝑦𝑦 =
𝜕2𝐹
𝜕𝑦2

− 𝑃2, 𝑁𝑥𝑦 = − 𝜕2𝐹
𝜕𝑥𝜕𝑦

, (14)

where 𝑃𝑥, 𝑃𝑦 stand for the longitudinal load.
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The potential energy of shell deformation (5) consists of the po-
tential energy of bending and the potential energy of the middle shell
surface 𝛱 = 𝛱𝑏 +𝛱𝑠. Variation of the potential energy of the middle
shell surface has the following form:

𝛿𝛱𝑠 = 𝛿∬𝑆

(

𝑁𝑥𝑥𝜀𝑥𝑥 +𝑁𝑦𝑦𝜀𝑦𝑦 +𝑁𝑥𝑦𝜀𝑥𝑦
)

𝑑𝑆

+∬𝑆

(

𝑄𝑥𝛿𝜀𝑥𝑧 +𝑄𝑦𝛿𝜀𝑦𝑧
)

𝑑𝑆, (15)

where 𝑄𝑥, 𝑄𝑦 are the transverse forces per unit length. In order
to get equations in the mixed form through the stress function and
displacement along the z coordinate, we recast 𝛿𝛱𝑠 to the following,
more feasible form

𝛿𝛱𝑠 = 𝛿∬𝑆

(

𝑁𝑥𝑥𝜀𝑥𝑥 +𝑁𝑦𝑦𝜀𝑦𝑦 +𝑁𝑥𝑦𝜀𝑥𝑦 +𝑄𝑥𝛿𝜀𝑥𝑧 +𝑄𝑦𝛿𝜀𝑦𝑧
)

𝑑𝑆

−∬𝑆

(

𝜀𝑥𝑥𝛿𝑁𝑥𝑥 + 𝜀𝑦𝑦𝛿𝑁𝑦𝑦 + 𝜀𝑥𝑦𝛿𝑁𝑥𝑦
)

𝑑𝑆.
(16)

Relation (16) contains variations of stresses with respect to the
shell middle surface. Observe that, formally, relations (15) and (16)
are equivalent, but the employment of the formula (16) enables one
to introduce the variation with respect to the mixed type equation,
where the variation takes place along the displacement 𝑤 and the stress
function F.

As a result, we obtain differential equations of the equilibrium and
deformation continuity of the following form

𝜕2

𝜕𝑥2

(

𝐴2
𝜕2𝐹
𝜕𝑦2

+
𝐴1

𝜆2
𝜕2𝐹
𝜕𝑥2

)

+ 𝜕2

𝜕𝑦2

(

𝐴1𝜆
2 𝜕2𝐹
𝜕𝑦2

+ 𝐴2
𝜕2𝐹
𝜕𝑥2

)

+2 𝜕2

𝜕𝑥𝜕𝑦

(

(

𝐴1 − 𝐴2
) 𝜕2𝐹
𝜕𝑥𝜕𝑦

)

− 𝜕2

𝜕𝑦2
(

𝐴1𝑃1 + 𝐴2𝑃2
)

− 𝜕2

𝜕𝑥2
(

𝐴2𝑃1 + 𝐴1𝑃2
)

= − 𝜕2

𝜕𝑥2

(

𝐵11

𝜆2
𝜕2𝑤
𝜕𝑥2

+ 𝐵10
𝜕2𝑤
𝜕𝑦2

)

− 𝜕2

𝜕𝑦2

(

𝐵10
𝜕2𝑤
𝜕𝑥2

+ 𝜆2𝐵11
𝜕2𝑤
𝜕𝑦2

)

−2 𝜕2

𝜕𝑥𝜕𝑦

(

(

𝐵11 − 𝐵10
) 𝜕2𝑤
𝜕𝑥𝜕𝑦

)

− 1
2
𝐿
(

𝑤 + ℎ
2
, 𝑤

)

− ∇2
𝑘𝑤,

(17)

𝜕2

𝜕𝑥2

(

𝐵11

𝜆2
𝜕2𝑤
𝜕𝑥2

+ 𝐵10
𝜕2𝑤
𝜕𝑦2

)

+ 𝜕2

𝜕𝑦2

(

𝐵10
𝜕2𝑤
𝜕𝑥2

+ 𝜆2𝐵11
𝜕2𝐹
𝜕𝑦2

)

+2 𝜕2

𝜕𝑥𝜕𝑦

(

(

𝐵11 − 𝐵10
) 𝜕2𝑤
𝜕𝑥𝜕𝑦

)

+ 1
2
𝐿
(

𝑤 + ℎ
2
, 𝐹

)

= − 𝜕2

𝜕𝑦2

(

𝐵10
𝜕2𝐹
𝜕𝑦2

+
𝐵11

𝜆2
𝜕2𝐹
𝜕𝑥2

)

− 𝜕2

𝜕𝑦2

(

𝜆2𝐵11
𝜕2𝐹
𝜕𝑦2

+ 𝐵10
𝜕2𝐹
𝜕𝑥2

)

−2 𝜕2

𝜕𝑥𝜕𝑦

(

(

𝐵11 − 𝐵10
) 𝜕2𝐹
𝜕𝑥𝜕𝑦

)

− 𝜕2

𝜕𝑥2
(

𝐵10𝑃1 + 𝐵11𝑃2
)

− 𝜕2

𝜕𝑦2
(

𝐵11𝑃1 + 𝐵10𝑃2
)

−𝑃1

(

𝜕2𝑤
𝜕𝑦2

+ 𝜕2ℎ
𝜕𝑥2

)

− 𝑃2

(

𝜕2𝑤
𝜕𝑥2

+ 𝜕2ℎ
𝜕𝑦2

)

− 𝑞 + ∇2
𝑘𝐹 .

(18)

In the above equation: 𝐴𝑗 = 1
2

[

1
𝐷01

+ (−1)𝑗+1 1
𝐷00

]

, 𝐵𝑖𝑘 = 1
2

[

𝐷𝑖1
𝐷01

+ (−1)𝑘 𝐷𝑖0𝐷00

]

, ∇2
𝑘 = 𝑘𝑥

𝜕2

𝜕𝑥2
+ 𝑘𝑦

𝜕2

𝜕𝑦2
, 𝐵∗

𝑖𝑘 = 1
2

[

𝐷2
11

𝐷01
+ (−1)𝑘+1

𝐷2
10

𝐷00
(−1)𝑘𝐷20

−𝐷21

]

, 𝐷𝑖𝑗 = ∫ ℎ(𝑥,𝑦)∕2−𝛿(𝑥,𝑦)−ℎ(𝑥,𝑦)∕2
𝐸𝑧𝑖

1+(−1)𝑗𝑣2 𝑑𝑧.

Eqs. (17)–(18) are recast to their counterpart forms through the
following relations:

𝑥 = 𝑥
𝑎
, 𝑦 =

𝑦
𝑏
, 𝑧 = 𝑧

ℎ0
, ℎ = ℎ

ℎ0
, 𝜆 = 𝑎

𝑏
, 𝜆1 =

𝑎
ℎ0
, 𝑡 = 𝑡

𝑡0
, 𝐹 = 𝐹

𝐸ℎ30
,

𝑞 =
𝑞𝑎2𝑏2

𝐺0ℎ40
, 𝑒𝑠 = 𝑒𝑖𝑠𝜆

2
1, 𝑒𝑖 = 𝑒𝑖𝜆

2
1,

𝜎𝑠 = 𝜎𝑖𝑠𝐺
−1
0 𝜆21, 𝐸 = 𝐸𝐺−1

0 , 𝐺1 = 𝐺1𝐺
−1
0 , 𝐵𝑖𝑗 = 𝐵𝑖𝑗ℎ

−1
0 , 𝐴𝑖 = 𝐴𝑖𝐺

−1
0 ℎ−10 ,

𝐸𝑖𝑗 =
𝐸𝑖𝑗

𝐺0ℎ𝑖+10

, 𝜀𝑖𝑗 =
𝜀𝑖𝑗
𝜆21
,

𝜎𝑖𝑗 = 𝜎𝑖𝑗𝐺
−1
0 𝜆21, 𝑒𝑖𝑗 = 𝑒𝑖𝑗𝜆

2
1, 𝑃𝑖 = 𝑃𝑖𝐺

−1
0 ℎ−30 , 𝐵

2
03 = 𝐵2

03𝐺
−1
0

(𝜇 − 1)
8𝜋𝜇

ℎ−20 .

In addition, PDEs (17)–(18) are supplemented by initial and bound-
ary conditions corresponding to loading and damping conditions. It
should be emphasized that the obtained system of resolving PDEs can
be viewed as a modification of the Kármán equations for the problems
of one-sided corrosion wear of the shallow shell.

The system of Eqs. (17)–(18) includes geometric and physical non-
linearity which essentially complicate the process of finding reliable
solutions. In what follows, to simplify the problem, we employ the
iterational procedure for the Kármán equations [48]. Below, we prove
convergence of the above-mentioned procedure.

4. Method of solution

The system of Eqs. (17), (18), without physical non-linearity and
corrosion wear, takes the following form
{

𝑘𝛥2𝑤 − 𝐿 (𝑤,𝐹 ) − 𝑞 = 0,

𝛥2𝐹 + 1
2
𝐿 (𝑤,𝑤) = 0.

(19)

In (19), 𝐿 (𝑤,𝐹 ) and 𝐿 (𝑤,𝑤) stand for the well-known non-linear
differential operators.

Boundary conditions take the form

𝑤|𝛤 = 𝜕2𝑤
𝜕 𝑛2

|

|

|

|𝛤
= 𝐹 |𝛤 = 𝜕2𝐹

𝜕 𝑛2
|

|

|

|𝛤
= 0, (20)

𝑤|𝛤 = 𝜕2𝑤
𝜕 𝑛2

|

|

|

|𝛤
= 𝐹 |𝛤 = 𝜕𝐹

𝜕 𝑛
|

|

|

|𝛤
= 0, (21)

where n is normal to 𝛤 .
We leave only bi-harmonic operators on the left-hand side of the

latter PDEs and shift the non-linear terms to the right-hand side.
Assuming that the function on the right-hand side can be computed
taking into account the previous computational step and assuming
that the equations can be solved successively, the following iterational
procedure is used:
{

𝑘𝛥2𝑤(𝑘) = 𝐿
(

𝑤(𝑘−1), 𝐹 (𝑘−1)) + 𝑞,

𝛥2𝐹 (𝑘) = −1
2
𝐿
(

𝑤(𝑘), 𝑤(𝑘)) , {𝑥, 𝑦} ∈ 𝛺 .
(22)

In the first step of the iterational procedure, the following bi-
harmonic equation is solved for the given load 𝑞(𝑥, 𝑦) ∶

𝛥2𝑤(1)(𝑥, 𝑦) = 𝑞(𝑥, 𝑦).

The obtained value 𝑤(1)(𝑥, 𝑦) is substituted in the right-hand side of
the second equation of the system (20) and, as a result, we obtain a
bi-harmonic equation with respect to 𝐹 (1)(𝑥, 𝑦) with the known right-
hand side. The found value of the stress function is then substituted in
the first equation of the studied system. The so far described process is
terminated when the assumed accuracy is obtained.

Observe that as a result of the application of the mentioned iter-
ational procedure, the system of equations of the Germain–Lagrange
type is obtained.

It should be mentioned that the development of the proof of exis-
tence of a solution to the corresponding boundary value problems is
one of the most important and difficult processes while constructing
theories of beams, plates and shells [51–54].

Proof of convergence of the developed iterational procedure (the given
proof is original).

We denote by 𝐻2 (𝛺) the Sobolev space of functions 𝜉 = {𝑤,𝐹 } such
that 𝜉 ∈ 𝐿2 (𝛺) , 𝜕𝜉

𝜕𝑥𝑖
∈ 𝐿2 (𝛺) , 𝜕2𝜉

𝜕𝑥𝑖𝜕𝑥𝑗
∈ 𝐿2 (𝛺) ; 𝑖, 𝑗 = 1, 2 , where

𝐿2 (𝛺) stand for the functions summed with the square in 𝛺.
By 𝐻2

0 (𝛺) we denote the closure of the function 𝐷 (𝛺) (the space of
the function of the class 𝐶∞ in 𝛺, having a compact carrier in 𝛺) in
the norm 𝐻2 (𝛺):

𝐻2
0 (𝛺) = 𝐷(𝛺)

𝐻2(𝛺)
=
{

𝜉 ∈ 𝐻2(𝛺)||
|

𝜉 |𝛤 =
𝜕𝜉
𝜕𝑛

|

|

|

|𝛤
= 0

}

.
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Since the space 𝛺 is bounded and its boundary 𝛤 is sufficiently
regular, the map 𝜉 → ‖𝛥𝜉‖0,𝛺 defines the norm in 𝐻2

0 (𝛺), which is
equivalent to the norm induced in the space 𝐻2 (𝛺).

Let us assume that 𝑞 ∈ 𝐻−2 (𝛺) (𝐻−2 (𝛺) means conjugated to
𝐻2 (𝛺)). It is known [55] that in this case, the problem (18), (20)–(21)
has a solution (although not necessarily unique).

New variational formulation of the problem
Let us denote by (⋅ , ⋅) a scalar product in 𝐿2 (𝛺) ∶(𝜉, 𝜂) = ∫𝛺 𝜉 𝜂 𝑑𝛺,

an by 𝛽 (𝑤,𝐹 , 𝜇) a three-linear form defined on
(

𝐻2
0 (𝛺)

)3 ∶

𝛽 (𝑤,𝐹 , 𝜇) = (𝛥𝐹 , 𝛥𝜇) + 1
2
(𝐿 (𝑤,𝑤) , 𝜇) . (23)

Let us introduce a set

𝑀 =
{

𝑤,𝐹 ∈ 𝐻2
0 (𝛺) | ∀𝜇 ∈ 𝐻2

0 (𝛺) , 𝛽 (𝑤,𝐹 , 𝜇) = 0
}

, (24)

and a square function 𝐽 (𝑤,𝐹 ) ∶𝑀 → 𝑅

𝐽 (𝑤,𝐹 ) = 1
2
‖𝛥𝑤‖20,𝛺 + 1

2
‖𝛥𝐹‖20,𝛺 − (𝑞,𝑤) . (25)

Theorem 1. The problem of minimization of (25) on the set (24) has at
least one solution.

Proof. Let
{

𝑤𝑛, 𝐹𝑛
}

∈𝑀 stand for the minimization sequence, i.e.

𝐽
(

𝑤𝑛, 𝐹𝑛
)

→ inf
{𝑤,𝐹 }∈𝑀

𝐽 (𝑤,𝐹 ) , (26)

which exists since J stands for the square functional.
For arbitrary 𝑤,𝐹 ∈ 𝐻2

0 (𝛺), the following inequality holds

𝐽 (𝑤,𝐹 ) ≥ 𝑐1 ‖𝑤‖
2
2,𝛺 + 𝑐2 ‖𝐹‖

2
2,𝛺 − 𝑐3. ‖𝑤‖2,𝛺 ,

where ‖ ⋅ ‖2,𝛺 is a norm in 𝐻2 (𝛺), and 𝑐𝑖 are certain positive constants.
It follows from (26) that

𝑐1 ‖

‖

𝑤𝑛‖‖
2
2,𝛺 + 𝑐2 ‖

‖

𝐹𝑛‖‖
2
2,𝛺 − 𝑐3 ‖

‖

𝑤𝑛‖‖2,𝛺 ≤ 𝐽
(

𝑤𝑛, 𝐹𝑛
)

≤ 𝐽
(

𝑤0, 𝐹0
)

= 𝐴,

where 𝑤0, 𝐹0 are arbitrarily chosen functions (initial approximation).
Hence, we get

𝑐1

(

‖

‖

𝑤𝑛‖‖
2
2,𝛺 −

𝑐3
2𝑐1

)2
+ 𝑐2 ‖

‖

𝐹𝑛‖‖
2
2,𝛺 ≤ 𝐴 +

𝑐23
4𝑐1

, ‖

‖

𝑤𝑛‖‖2,𝛺 ≤ 𝑐4,

‖

‖

𝐹𝑛‖‖2,𝛺 ≤ 𝑐5.

Therefore, the series
{

𝑤𝑛, 𝐹𝑛
}

is bounded in
(

𝐻2
0 (𝛺)

)2. Conse-
quently, one can take a subseries

{

𝑤𝑘, 𝐹𝑘
}

such that 𝑤𝑘 → 𝑤̃, 𝐹𝑘 → 𝐹
is weak in 𝐻2

0 (𝛺). Since the embedding 𝐻2
0 (𝛺) → 𝐿2 (𝛺) is compact,

𝑤𝑘 → 𝑤̃, 𝐹𝑘 → 𝐹 is strong in 𝐿2 (𝛺).
We show that the limit

{

𝑤̃, 𝐹
}

of the minimizing series belongs to
M, i.e. that 𝛽

(

𝑤̃, 𝐹 , 𝜇
)

= 0, ∀𝜇 ∈ 𝐻2
0 (𝛺).

Since
(

𝐿
(

𝑤𝑘, 𝑤𝑘
)

, 𝜇
)

=
(

𝐿
(

𝑤𝑘, 𝜇
)

, 𝑤𝑘
)

∀𝜇 ∈ 𝐻2
0 (𝛺) and 𝐿

(

𝑤𝑘, 𝜇
)

→ 𝐿 (𝑤̃, 𝜇) are weak in 𝐻2
0 (𝛺), taking into account that 𝑤𝑘 →

𝑤̃ is strong in 𝐿2 (𝛺), one gets:
(

𝐿
(

𝑤𝑘, 𝑤𝑘
)

, 𝜇
)

= (𝐿 (𝑤̃, 𝑤̃) , 𝜇) and,
consequently, 𝛽

(

𝑤̃, 𝐹 , 𝜇
)

= 0 ∀𝜇 ∈ 𝐻2
0 (𝛺). This implies

{

𝑤̃, 𝐹
}

∈𝑀 . (27)

However, 𝐽 (𝑤,𝐹 ) is semi-continuous from below in a weak topol-
ogy on

(

𝐻2 (𝛺)
)2, and hence the following inequality holds lim𝑘→∞

𝐽
(

𝑤𝑘, 𝐹𝑘
)

≥ 𝐽
(

𝑤̃, 𝐹
)

. Then, it follows from (26) and (27) that
𝐽
(

𝑤̃, 𝐹
)

≤ inf (𝑤,𝐹 ) ∈𝑀𝐽 (𝑤,𝐹 ). Therefore, the following equality holds
𝐽
(

𝑤̃, 𝐹
)

= inf (𝑤,𝐹 ) ∈𝑀𝐽 (𝑤,𝐹 ), which means that
{

𝑤̃, 𝐹
}

∈ 𝑀 stands
for the solution to the problem of minimization. ■

Therefore, it has been proved that there is at least one solution in
the case of minimization of the constructed functional 𝐽 (𝑤,𝐹 ).

Now, we explain how points of the minimum of the functional (25)
are coupled with a solution of the problems (20), (24). For this purpose,
we introduce a definition of a weak solution.

A pair of functions {𝑤,𝐹 } ∈ 𝑀 is called the weak solution of the
problems (20), (24) if the following equation is satisfied

(𝛥𝑤, 𝛥𝜇) − (𝐿 (𝑤,𝐹 ) , 𝜇) = (𝑞, 𝜇) ∀𝜇 ∈ 𝐻2
0 (𝛺) . (28)

Theorem 2. Points of the functional (25) minimum are weak solutions of
the problems (20), (24).

Proof. Let {𝑤,𝐹 } ∈𝑀 be one of the points of the functional minimum
(25). Let 𝜂 = 𝑤 + 𝑡 𝛿𝑤 𝛿𝑤 ∈ 𝐻2

0 (𝛺) and we choose 𝜉 = 𝐹 + 𝛿 𝐹 ,
𝛿 𝐹 ∈ 𝐻2

0 (𝛺) in such a way that {𝜂, 𝜉} ∈ 𝑀 , i.e. in the way that
𝛽 (𝑤,𝐹 , 𝜇) = 0, ∀𝜇 ∈ 𝐻2

0 (𝛺). Then, 𝐽 (𝑤,𝐹 ) ≤ 𝐽 (𝜂, 𝜉), and hence we
obtain

𝑡 (𝛥𝑤, 𝛥𝛿𝑤) + (𝛥𝐹 , 𝛥𝛿𝐹 ) − 𝑡 (𝑞, 𝛿𝑤) +
𝑡2
2
‖𝛥𝛿𝑤 ‖

2
2,𝛺 + 1

2
‖𝛥𝛿𝐹 ‖

2
2,𝛺 ≥ 0,

∀𝑡 ∈ 𝑅, 𝛿𝑤 ∈ 𝐻2
0 (𝛺) ,

(29)

and the condition 𝛽 (𝜂, 𝜉, 𝜇) = 0, taking 𝜇 = 𝐹 , yields

(𝛥𝐹 , 𝛥𝛿𝐹 ) = −𝑡 (𝐿 (𝑤, 𝛿𝑤) , 𝐹 ) − 𝑡2

2
(𝐿 (𝛿𝑤, 𝛿𝑤) , 𝐹 ) . (30)

Substituting (30) in (29), dividing the obtained formula by t, and
transiting into a limit for 𝑡→ 0, we get

(𝛥𝑤, 𝛥𝛿𝑤) − (𝐿 (𝑤,𝐹 ) , 𝛿𝑤) ≥ (𝑞, 𝜇) . (31)

Substituting 𝛿𝑤 by −𝛿𝑤 in (31), we obtain (28).
Let us introduce the following notation

(𝛷 (𝑤,𝐹 ) , 𝜇) = 𝑎1 (𝛥𝑤, 𝛥𝜇) − (𝐿 (𝑤,𝐹 ) , 𝜇) − (𝑞, 𝜇) .

Formula (28) can be presented in the following way

(𝛷 (𝑤,𝐹 ) , 𝜇) = 0, (32)

and it is clear that 𝛷 (𝑤,𝐹 ) ∈ 𝐻−2 (𝛺).
Therefore, each point of the minimum of the functional (28) on M

satisfies (32), and hence it is the weak solution of the problems (19),
(20). ■

Based on the proved theorems, one can say that the solution of
the problems (19), (20) is equivalent to the solution of the problem of
minimization (26) under constraints {𝑤,𝐹 } ∈𝑀 . In order to solve the
problem in practice, one can employ numerous methods of searching
for a minimum. Depending on the choice of the method of solution of
the extremum problem, different algorithms can be constructed to find
solutions of problems (19), (20).

Here we employ the method of gradient projection, which al-
lows, under linear constraints, for essential simplification of the prob-
lem [56].

Let us construct an iterational process of minimization of 𝐽 (𝑤,𝐹 )
on M under the following scheme:

(a) element 𝑤0 ∈ 𝐻2
0 (𝛺) is chosen in an arbitrary way;

(b) after computation of 𝑤𝑛, we find 𝐹𝑛 ∈ 𝐻2
0 (𝛺) and 𝑤𝑛+1 ∈ 𝐻2

0 (𝛺)
as solutions to the following problems

𝛽
(

𝑤𝑛, 𝐹𝑛, 𝜇
)

= 0, 𝐹𝑛 ∈ 𝐻2
0 (𝛺) ∀𝜇 ∈ 𝐻2

0 (𝛺) , (33)
(

𝛥𝑤𝑛+1, 𝛥𝜇
)

=
(

𝛥𝑤𝑛, 𝛥𝜇
)

− 𝜌𝑛
(

𝛷
(

𝑤𝑛, 𝐹𝑛
)

, 𝜇
)

∀𝜇 ∈ 𝐻2
0 (𝛺) ; (34)

(c) the coefficient 𝜌𝑛 in the step (b) is chosen from the following
condition

𝐽
(

𝑤𝑛+1, 𝐹𝑛+1
)

− 𝐽
(

𝑤𝑛, 𝐹𝑛
)

≤ 𝜀
(

𝛷
(

𝑤𝑛, 𝐹𝑛
)

, 𝑤𝑛+1 −𝑤𝑛
)

, 0 < 𝜀 < 1,

(35)

where 𝜀 plays the role of a parameter of the method.

Theorem 3. For iterational process (33)–(34),
(

𝛷
(

𝑤𝑛, 𝐹𝑛
)

, 𝜇
)

→ 0 for
𝑛 → 0 and for an arbitrary point

{

𝑤0, 𝐹0
}

∈ 𝑀 . The series
{

𝑤𝑛, 𝐹𝑛
}

obtained in this process includes a subseries convergent to the weak solution
to the problems (19), (20).

6
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Proof. The possibility of constructing the series
{

𝑤𝑛, 𝐹𝑛
}

follows
from the observation that ∀𝜌𝑛𝑤𝑛+1 ∈ 𝐻2

0 (𝛺) and, consequently, 𝐿
(

𝑤𝑛+1, 𝑤𝑛+1
)

∈ 𝐻−2 (𝛺) , ∇2
𝑘𝑤𝑛+1 ∈ 𝐻−2 (𝛺) [57]. It means that the

equation of coupling 𝛽
(

𝑤𝑛+1, 𝐹𝑛+1, 𝜇
)

= 0 is solvable.
Consider the following difference

𝛥𝐽𝑛 = 𝐽
(

𝑤𝑛+1, 𝐹𝑛+1
)

− 𝐽
(

𝑤𝑛, 𝐹𝑛
)

= 1
2
(

𝛥
(

𝑤𝑛+1 −𝑤𝑛
)

, 𝛥
(

𝑤𝑛+1 +𝑤𝑛
))

+1
2
(

𝛥
(

𝐹𝑛+1 − 𝐹𝑛
)

, 𝛥
(

𝐹𝑛+1 + 𝐹𝑛
))

−
(

𝑞,𝑤𝑛+1 −𝑤𝑛
)

.

(36)

Since
{

𝑤𝑛, 𝐹𝑛
}

∈𝑀 ,
{

𝑤𝑛+1, 𝐹𝑛+1
}

∈𝑀 yields

𝛥𝐽𝑛 =
(

𝛷
(

𝑤𝑛, 𝐹𝑛
)

, 𝛿𝑤
)

+ 1
2
‖𝛥𝛿𝑤 ‖

2
0,𝛺 + 1

2
‖𝛥𝛿𝐹 ‖

2
0,𝛺 ,

where 𝛿𝑤 = 𝑤𝑛+1 −𝑤𝑛, 𝛿𝐹 = 𝐹𝑛+1 − 𝐹𝑛. Formula (34) implies that 𝛿𝑤
stands for a general solution to the following boundary value problem
𝛥2𝛿𝑤 = −𝜌𝑛𝛷

(

𝑤𝑛, 𝐹𝑛
)

, 𝛿𝑤 ∈ 𝐻2
0 (𝛺) .

Hence

𝛿𝑤 = −𝜌𝑛𝐺
[

𝛷
(

𝑤𝑛, 𝐹𝑛
)]

, (37)

where 𝐺 [ ∙ ] ∶ 𝐻−2 (𝛺) → 𝐻2
0 (𝛺) is a linear bounded operator, which

is inverse to the operator 𝛥2 ( ∙ ). Therefore,

𝛥𝐽𝑛 = −𝜌𝑛
(

𝛷
(

𝑤𝑛, 𝐹𝑛
)

, 𝐺
[

𝛷
(

𝑤𝑛, 𝐹𝑛
)] )

+ 1
2
‖𝛥𝛿𝑤 ‖

2
0,𝛺 + 1

2
‖𝛥𝛿𝐹 ‖

2
0,𝛺 .

(38)

Let us consider the second-order terms. We choose 𝜇 = 𝛿𝑤 in (34)
and using (37) we get

‖𝛥𝛿𝑤 ‖

2
0,𝛺 = −𝜌𝑛

(

𝛷
(

𝑤𝑛, 𝐹𝑛
)

, 𝛿𝑤
)

= 𝜌2𝑛
(

𝛷
(

𝑤𝑛, 𝐹𝑛
)

, 𝐺
[

𝛷
(

𝑤𝑛, 𝐹𝑛
)] )

.

(39)

Let us estimate the last term of (38). Since
{

𝑤𝑛, 𝐹𝑛
}

∈ 𝑀 and
{

𝑤𝑛+1, 𝐹𝑛+1
}

∈𝑀 , 𝛿𝐹 should satisfy the following equation

(𝛥𝛿𝐹 , 𝛥𝜇) +
(

𝐿
(

𝑤𝑛, 𝛿𝑤
)

, 𝜇
)

+
(

∇2
𝑘𝛿𝑤, 𝜇

)

+ 1
2
(𝐿 (𝛿𝑤, 𝛿𝑤) , 𝜇) = 0,

𝛿𝐹 ∈ 𝐻2
0 (𝛺) , ∀𝜇 ∈ 𝐻2

0 (𝛺) .

Therefore, in particular, we get [31]

‖𝛥𝛿𝐹 ‖0,𝛺 ≤ 𝑐7
(

‖

‖

‖

𝐿
(

𝑤𝑛, 𝛿𝑤
)

‖

‖

‖𝐿1(𝛺)
+ ‖𝐿 (𝛿𝑤, 𝛿𝑤) ‖𝐿1(𝛺)

+ ‖

‖

‖

∇2
𝑘𝛿𝑤

‖

‖

‖𝐿1(𝛺)

)

.

However, 𝑤𝑛 belongs to a bounded set in 𝐻2
0 (𝛺) for arbitrary n.

Consequently, ‖𝛥𝛿𝐹‖0,𝛺 ≤ 𝑐8 ‖𝛥𝛿𝑤‖
2
0,𝛺 or

‖𝛥𝛿𝐹‖20,𝛺 ≤ 𝑐9 𝜌
4
𝑛
(

𝛷
(

𝑤𝑛, 𝐹𝑛
)

, 𝐺
[

𝛷
(

𝑤𝑛, 𝐹𝑛
)] )2 . (40)

Substituting (39), (40) into (38) and taking into account a positive
definite (in the sense

(

𝛷
(

𝑤𝑛, 𝐹𝑛
)

, 𝐺
[

𝛷
(

𝑤𝑛, 𝐹𝑛
)] )

≥ 𝛼 ‖‖
‖

𝛷
(

𝑤𝑛, 𝐹𝑛
)

‖

‖

‖

2
)

and boundedness of the operator 𝐺 [ ∙ ], one gets

𝛥𝐽𝑛 ≤ −𝜌𝑛𝑐10
‖

‖

‖

𝛷
(

𝑤𝑛, 𝐹𝑛
)

‖

‖

‖

2
(

−1 +
𝜌𝑛
2

+ 𝑐1
𝜌3𝑛
2

‖

‖

‖

𝛷
(

𝑤𝑛, 𝐹𝑛
)

‖

‖

‖

2
)

.

The latter estimation shows that there exist values 𝜌𝑛 ≠ 0, which
satisfy the inequality (35). For this purpose, one can choose 𝜌𝑛 to satisfy
the condition
𝜌𝑛
2

+ 𝑐1
𝜌3𝑛
2

‖

‖

‖

𝛷
(

𝑤𝑛, 𝐹𝑛
)

‖

‖

‖

2
≤ 1 − 𝜀.

This can be done always since 0 < 𝜀 < 1. Choosing 𝜌𝑛 according to
the given algorithm, the following inequality holds on each step

𝛥𝐽𝑛 ≤ −𝜌𝑛𝜀
‖

‖

‖

𝛷
(

𝑤𝑛, 𝐹𝑛
)

‖

‖

‖

2
, (41)

i.e. for arbitrary n, we have 𝐽𝑛+1 − 𝐽𝑛 ≤ 0. Since the functional J
is bounded from below, the latter inequality implies that for 𝑛 →

∞ 𝛥𝐽𝑛 → 0. Besides, the inequality (41) yields the following estima-
tion
‖

‖

‖

𝛷
(

𝑤𝑛, 𝐹𝑛
)

‖

‖

‖

2
≤

−𝛥𝐽𝑛
𝜀𝜌𝑛

. (42)

It should be emphasized that the given algorithm for the choice of
𝜌𝑛 guarantees that for arbitrary n we have 𝜌𝑛 ≥ 𝜌0 > 0. Indeed, since
𝛥𝐽𝑛 ≤ 0, we have

𝐽
(

𝑤𝑛, 𝐹𝑛
)

≤ 𝐽
(

𝑤0, 𝐹0
)

= 𝐴 . (43)

It follows from (43), that the norms ‖
‖

𝑤𝑛‖‖2,𝛺 , ‖
‖

𝐹𝑛‖‖2,𝛺 are bounded.
This implies boundedness of the norm ‖

‖

‖

𝛷
(

𝑤𝑛, 𝐹𝑛
)

‖

‖

‖

. The latter obser-
vation and (42) imply ‖

‖

‖

𝛷
(

𝑤𝑛, 𝐹𝑛
)

‖

‖

‖

→ 0 for 𝑛 → ∞, and consequently
also

(

𝛷
(

𝑤𝑛, 𝐹𝑛
)

, 𝜇
)

→ 0 for 𝑛→ ∞ ∀𝜇 ∈ 𝐻2
0 (𝛺).

The occurrence of a convergent subseries follows from the bound-
aries of the norms ‖

‖

𝑤𝑛 ‖‖2,𝛺 , ‖
‖

𝐹𝑛 ‖‖2,𝛺 (see proof of Theorem 1). ■

Above, we have proved the convergence of the procedure of reduc-
tion of the input system (19) to a successive solution of the bi-harmonic
equation of the Germain–Lagrange type.

In what follows, we employ a method of variational iterations to
solve the bi-harmonic Germain–Lagrange equation. Observe that the
method of variational iterations has been employed on each step of the
iterational procedure [58]. The method of variational iterations (MVI)
is a modified variant of the Kantorovich method [59,60] and it allows
for the improvement of the system of coordinate functions when the
computational process is carried out in all directions.

This method allows for changing the form of the load and bound-
ary conditions. Problems regarding convergence of MVI have been
considered by Kirichenko [61] and, more recently, in Ref. [40]. For
instance, the method has been employed in Refs. [60,62] to study
contact interactions of plates and bending of plates, taking the account
of different materials moduli and physical non-linearity.

Now, let us illustrate advantages of the MVI based on solutions to
the case studies [63], which are obtained from the systems (17), (18).

We illustrate the process of finding the solutions by using the
following equation

𝐴𝑤(𝑥, 𝑦) = 𝑞(𝑥, 𝑦); 𝑥, 𝑦 ∈ 𝛺(𝑥, 𝑦), (44)

where A is a certain operator defined on the set 𝐷(𝐴) of the Hilbert
space 𝐿2(𝛺); 𝑞(𝑥, 𝑦) is a given function, 𝑤(𝑥, 𝑦) stands for the function
being searched; 𝛺(𝑥, 𝑦) is the space of possible changes of the variables
x and y.

If 𝛺(𝑥, 𝑦) = 𝑋 × 𝑌 (X — certain bounded set of the variable x, 𝑌
— bounded set of the variable 𝑦), then the solution to Eq. (44) takes
the form

𝑤𝑁 (𝑥, 𝑦) =
𝑁
∑

𝑖=1
𝑢𝑖(𝑥)𝑣𝑖(𝑦), (45)

where the functions 𝑢𝑖(𝑥) and 𝑣𝑖(𝑦) are found from the below system of
the equations (they do not have to satisfy the boundary conditions)

∫𝑋

(

𝐴𝑤𝑁 − 𝑞
)

𝑢1 (𝑥) 𝑑𝑥 = 0, ∫𝑌

(

𝐴𝑤𝑁 − 𝑞
)

𝑣1 (𝑦) 𝑑𝑦 = 0,

...............................................................................

∫𝑋

(

𝐴𝑤𝑁 − 𝑞
)

𝑢𝑁 (𝑥) 𝑑𝑥 = 0, ∫𝑌

(

𝐴𝑤𝑁 − 𝑞
)

𝑣𝑁 (𝑦) 𝑑𝑦 = 0,

(46)

in the following way: if there is a system of 𝑁 functions given with
respect to one variable, for instance, 𝑢01(𝑥), 𝑢

0
2(𝑥),… , 𝑢0𝑁 (𝑥); then the

first 𝑁 equations of the system (46) define a system of 𝑁 functions
𝑣11(𝑥), 𝑣

1
2(𝑥),… , 𝑣1𝑁 (𝑥); the obtained functions stand for the new choice

of the functions with respect to the variable 𝑥 − 𝑢21(𝑥), 𝑢
2
2(𝑥),… , 𝑢2𝑁 (𝑥);

the given choice defines new functions with respect to the variable 𝑦 −
𝑣31(𝑥), 𝑣

3
2(𝑥),… , 𝑣3𝑁 (𝑥), and so on. Therefore, although the functions

can be given in an arbitrary way in the beginning, they are successively
improved in the computational MVI process. This allows one to choose
the initial approximation in an arbitrary way. We consider the MVI

7
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Table 1
Deflections of the centre 𝑤(0.5; 0.5) of one-layer plate for 𝑞(𝑥, 𝑦) = 50.

Method Boundary conditions

(47) (48)

MVI [40] 0.2030 0.06483
Exact solution [63] 0.2028 0.0631

procedure based on an example. We use the introduced theory to find
solution of the bi-harmonic equation 𝐴𝑖𝑤𝑖 (𝑥 , 𝑦) = 𝑞(𝑥, 𝑦), where the
operator 𝐴𝑖𝑤𝑖 (𝑥 , 𝑦) takes the following form

𝐴𝑖𝑤𝑖 (𝑥 , 𝑦) = 𝐷
[

𝜕2

𝜕 𝑥2

(

𝜕2𝑤𝑖
𝜕 𝑥2

+
𝜕2𝑤𝑖
𝜕 𝑦2

)

+ 𝜕2

𝜕 𝑦2

(

𝜕2𝑤𝑖
𝜕 𝑥2

+
𝜕2𝑤𝑖
𝜕 𝑦2

)]

,

where 𝐷 = 𝐸𝑖 ℎ3

12
(

1−𝜈2𝑖
) is the cylindrical stiffness, 𝐸𝑖 is Young’s modulus,

and 𝜈𝑖 stands for the Poisson’s ratio.
We consider two boundary conditions:
(a) simple support:

𝑤𝑖
|

|

|𝜕 𝛺𝑖
=
𝜕2𝑤𝑖
𝜕 𝑛2

|

|

|𝜕 𝛺𝑖
= 0, 𝑖 = 1, 2, (47)

(b) clamping:

𝑤𝑖
|

|

|𝜕 𝛺𝑖
=
𝜕 𝑤𝑖
𝜕 𝑛

|

|

|𝜕 𝛺𝑖
= 0, 𝑖 = 1, 2, (48)

for the domain 𝛺 = (0, a) × (0, b), where 𝜕𝛺 is the border of 𝛺.
PDE and the mentioned boundary conditions are recast to the

counterpart non-dimensional form by means of the relations:

𝑥 = 𝑥̄𝑎, 𝑦 = 𝑦̄𝑏, 𝑤 = 𝑤̄ℎ, 𝜆 = 𝑎∕𝑏 = 1,

𝑞(𝑥, 𝑦) =
𝑞(𝑥, 𝑦)

12(1 − 𝜈2)
𝑎4

𝐸ℎ4
, 𝜈 = 0.3.

As the initial approximations for two employed types of the bound-
ary conditions, we use the functions 𝑤1(𝑥), 𝑤2(𝑦), which do not satisfy
the boundary conditions, i.e. 𝑤1(𝑥) = 1; 𝑤2(𝑦) = 1. The itera-
tional MVI procedure was terminated already on the 4th step of the
variational iterations. The obtained results are presented in Table 1.

It should be noted that we obtained full coincidence with the exact
solution (in the case of the boundary condition (4)/(5) the obtained
difference is 0.1%/0.6%).

It should be emphasized that the iterational procedure (22) lin-
earizes and decreases the order of the input system of equations.
Furthermore, it can be extended to solve the problem (17), (18).

In order to validate the employed procedure aimed at reducing the
problem to that of finding a solution to the bi-harmonic equation, the
comparative computations were carried out by employing the finite
element method (FDM), the finite element method of (FEM), and the
variational iterations method (MVI).

Observe that the employment of MVI results in the simplification of
the obtained system of bi-harmonic equations by reducing the problems
to solving ODEs on each step of the iterational MVI procedure. Let
us employ this method to solve our problem. For this purpose, the
searched functions of two variables are taken in the following scalar
product form

𝑤(𝑥, 𝑦) = 𝑤1(𝑥) ⋅𝑤2(𝑦), 𝐹 (𝑥, 𝑦) = 𝐹1(𝑥) ⋅ 𝐹2(𝑦). (49)

Knowing 𝑤2(𝑥), 𝐹2(𝑥), we define 𝑤1(𝑥), 𝐹1(𝑥). For this purpose,
we substitute (49) into (22), and we employ the Bubnov–Galerkin
procedure along the direction y. The following ODEs are obtained:

𝐴1𝑤𝐼𝑉1 (𝑥) + 𝐵1𝑤𝐼𝐼1 (𝑥) + 𝐶1(𝑥)𝑤1(𝑥) = 𝐷1(𝑥),
𝐴̃1𝐹 𝐼𝑉1 (𝑥) + 𝐵̃1𝐹 𝐼𝐼1 (𝑥) + 𝐶̃1(𝑥)𝐹1(𝑥) = 𝐷1(𝑥).

(50)

The associated boundary conditions follow

𝑤1(𝑥) = 0, 𝑤𝐼𝐼1 (𝑥) = 0, 𝑥 = 0, 1, 𝐹1(𝑥) = 0, 𝐹 𝐼𝐼1 (𝑥) = 0, 𝑥 = 0, 1.

(51)

Solving (50) with the boundary conditions (46) by an arbitrary
numerical method, we find 𝑤1(𝑥), 𝐹1(𝑥). We consider the obtained
values of 𝑤1(𝑥), 𝐹1(𝑥) as the approximating functions, and then carry
out the Bubnov–Galerkin procedure [64] along the direction x. The
following ODEs are obtained to find 𝑤2(𝑥), 𝐹2(𝑥) ∶

𝐴2𝑤𝐼𝑉2 (𝑦) + 𝐵2𝑤𝐼𝐼2 (𝑦) + 𝐶2(𝑦)𝑤2(𝑦) = 𝐷2(𝑦),
𝐴̃2𝐹 𝐼𝑉2 (𝑦) + 𝐵̃2𝐹 𝐼𝐼2 (𝑦) + 𝐶̃2(𝑦)𝐹2(𝑦) = 𝐷2(𝑦),

(52)

and the supplemented boundary conditions follow

𝑤2(𝑦) = 0, 𝑤𝐼𝐼2 (𝑦) = 0, 𝑦 = 0, 1, 𝐹2(𝑦) = 0, 𝐹 𝐼𝐼2 (𝑦) = 0, 𝑦 = 0, 1.

(53)

Solving (52) with the boundary conditions (53), we find 𝑤2(𝑥),
𝐹2(𝑥). In this way, one step of the variational iterations is completed.
In the next steps, the procedure of finding 𝑤1(𝑥), 𝐹1(𝑥), and then
𝑤2(𝑥), 𝐹2(𝑥) is repeated.

After completing all steps of the variational iterations, the ob-
tained results accuracy is estimated. The final expression for the shell
deflection is:

𝑤(𝑥, 𝑦) = 𝑤(𝑘−1)
1 (𝑥) ⋅𝑤(𝑘)

2 (𝑦), 𝐹 (𝑥, 𝑦) = 𝐹 (𝑘−1)
1 (𝑥) ⋅ 𝐹 (𝑘)

2 (𝑦), (54)

where k stands for the number of the variational iteration.
The coefficients 𝐴𝑖, 𝐵𝑖, 𝐶2, 𝐷2 for both equations for 𝑤𝑖(𝑥) take

the following form:

𝐴1 = ∫

1

0
𝑤2

2(𝑦)𝑑𝑦, 𝐵1 = ∫

1

0
𝑤𝐼𝐼2 (𝑦)𝑤2(𝑦)𝑑𝑦, 𝐶1 = ∫

1

0
𝑤𝐼𝑉2 (𝑦)𝑤2(𝑦)𝑑𝑦,

𝐷1(𝑥) = ∫

1

0
{𝑞(𝑥, 𝑦) + 𝐿(𝑤(𝑥, 𝑦), 𝐹 (𝑥, 𝑦))}𝑤2(𝑦)𝑑𝑦, ⟷

(1,2)

(55)

In fact, the simultaneous employment of the iterational procedure
and the MVI for the system (22) enables one to:

(1) reduce the order of the system by half, i.e. from the 8th to the
4th order;

(2) carry out linearization of the non-linear systems being searched;
(3) transit PDEs to ODEs with constant coefficients.

This can be viewed as a serious achievement in the field of non-
linear PDE of elliptic type. The given approach is illustrated by an
example devoted to the computation of flexible isotropic plates with
constant thickness and a square planform, taking into account the
following three boundary conditions

𝑤|𝛤 = 𝜕2𝑤
𝜕 𝑛2

|

|

|

|𝛤
= 𝐹 |𝛤 = 𝜕2𝐹

𝜕 𝑛2
|

|

|

|𝛤
= 0, (56)

𝑤|𝛤 = 𝜕2𝑤
𝜕 𝑛2

|

|

|

|𝛤
= 𝐹 |𝛤 = 𝜕𝐹

𝜕 𝑛
|

|

|

|𝛤
= 0, (57)

𝑤|𝛤 = 𝜕𝑤
𝜕 𝑛

|

|

|

|𝛤
= 𝐹 |𝛤 = 𝜕𝐹

𝜕 𝑛
|

|

|

|𝛤
= 0. (58)

In order to simplify the computations, we employ MVI only in
the first approximation (𝑁 = 1). The system of ODEs is reduced to
AEs (algebraic equations) by the finite difference method (FDM) with
approximation 0(ℎ2), which is then solved by the Gauss method. The
integration interval [0, 1] is divided into 100 parts.

The dependence 𝑞 [𝑤(0.5, 0.5)] is shown in Fig. 2. Curves 1, 2, and
3 correspond to boundary conditions (56), (57), and (58), respectively.
The curves 2 and 3 are obtained for Poisson’s ratio 𝜈 = 0.33, whereas the
curve 1 — for 𝜈 = 0.1. In the figure, circles refer to the experimental
results [65] while stars are associated with the solution obtained by
the FDM [64], which is applied directly to equations (2.16) (mesh
20×20), and the obtained system of non-linear algebraic equations is
solved with the help of Newton’s method (the curve 4 corresponds to
the solution obtained by FEM with the help of the procedure (22)). The
studied area of the plate is approximated with 30 triangular elements.
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Fig. 2. The function 𝑞 [𝑤(0.5, 0.5)].

Fig. 3. Deflection of the plate centre vs. the number of iterations performed: 1
— regular number of iterations; 2 — reduced number of iterations.

The computation was carried out with the step 𝛥𝑞 = 10, and in order to
accelerate the iterational procedure, the values of 𝑤 and 𝐹 , obtained
in the previous step under a continuous increase in the load, served as
the initial approximations.

The spatial step (in FEM and FDM) was chosen in a way to obtain
satisfying convergence of the obtained results. The presented results
are obtained for a rectangular plate by using the MVI. The dependence
of the deflection of the plate centre on the number of iterations n
is reported in Fig. 3 (curve 1) for the boundary condition (45). The
remaining parameters have the following values: the number of the
mesh partitions 𝑁 = 20; 𝑞 = 60, 𝜈 = 0.28, the assumed computational
accuracy 𝜀 = 10−3. In order to obtain a solution with the required
accuracy, 26 iterations were performed.

One can conclude from Fig. 3 that the plate deflection oscillates
around and then continuously approaches a certain average value.
The explanation of such an observation is as follows. Since the initial
approximation is yielded by a solution to the linear problem, the plate
deflection is higher than its counterpart real value. Substituting 𝑤(𝑥, 𝑦)
in the second equation of the system (27) yields a higher value of
the stress function than the real value. This is why the stress function
𝐹 (𝑥, 𝑦) generates a lower value of the deflection obtained from the
first equation of the system (27). It means that the deflection on the
odd (even), iteration is larger (smaller). This observation allows one to
obtain convergence of the iterational process sooner if the deflection
after iteration is defined by the following formula

𝑤 =
𝑤𝑒𝑣𝑒𝑛 +𝑤𝑜𝑑𝑑

2
. (59)

Owing to application of the formula (59), we reduced the number
of iterations to eight (curve 2 in Fig. 3) for all employed boundary con-
ditions. An increase in the load implies a decrease in the convergence
of the numerical results (in particular, in the case of free support).

Now, we employ the so far presented scheme to study equation (17),
the solutions of which are assumed to be

𝑊𝑗 =
𝑚
∑

𝑘=1
𝑋1𝑘(𝑥)𝑌1𝑘(𝑦), 𝛷𝑗 =

𝑚
∑

𝑘=1
𝑋2𝑘(𝑥)𝑌2𝑘(𝑦).

Physical non-linearity is taken into account with the help of the
method of variable parameters of stiffness, proposed by Birger [65].
Convergence of the latter approach was proved by Umanskiy [66].

In this case, Young’s modulus 𝐸 = 𝐸(𝑥, 𝑦, 𝑧, 𝑒𝑖) and Poisson’s ratio
𝜈 = 𝜈(𝑥, 𝑦, 𝑧, 𝑒𝑖) depend on the stress–strain body state in its each point,
and the following relations hold

𝐸 = 9𝑘𝐺
3𝑘 + 𝐺

, 𝜈 = 1
2
3𝑘 − 2𝐺
2𝑘 + 𝐺

, (60)

where 𝑘 stands for the coefficient of the volume deformation and it has
a constant value.

The shear modulus 𝐺 is defined by the relation

𝐺 = 1
3
𝜎𝑖(𝜀𝑖)
𝜀𝑖

,

where 𝜀𝑖 is the deformations intensity, and 𝜎𝑖 is the stress intensity. In
this case, the following formula holds

𝜀𝑖 =
3
2

[

(

𝜀𝑧𝑥𝑥 − 𝜀
𝑧
𝑦𝑦

)2
+
(

𝜀𝑧𝑦𝑦 − 𝜀
𝑧
𝑧𝑧

)2
+
(

𝜀𝑧𝑥𝑥 − 𝜀
𝑧
𝑧𝑧
)2 + 3

2
𝜀𝑧𝑥𝑦

]
1
2
.

The deformation diagram 𝜎𝑖 = 𝜎𝑖(𝑒𝑖) is bi-linear and satisfies the
following equations:

𝜎𝑖 = 3𝐺0𝜀𝑖, 𝜀𝑖 < 𝜀𝑠, 𝜎𝑖 = 3𝐺0𝜀𝑠 + 3𝐺𝑖(𝜀𝑖 − 𝜀𝑠), 𝜀𝑖 ≥ 𝜀𝑠.

The method of variable parameters belongs to the methods of
successive approximations. The shell is divided into 𝑁 ×𝑁 parts of the
plane and 𝑚 layers with respect to the shell thickness. A 3D mesh is
obtained and each of the nodes should be coupled with the parameters
𝐸 and 𝜈 to be defined. In the initial approximation, the parameters of
elasticity 𝐸 and 𝜈 are chosen as 𝐸 = 𝐸0 and 𝜈 = 𝜈0. Then, the problem
(2.6)–(2.7) is solved with the help of MVI. As a result, w and 𝛷 are
found. Next, 𝜀𝑖 and 𝜎𝑖 are calculated. After that, the parameters 𝐸 and
𝜈 are obtained again from (60). The procedure of computation of 𝐸
and 𝜈 is repeated unless the condition 𝐸𝑘+1−𝐸𝑘

𝐸𝑘
≤ 𝜀𝑝 is satisfied, where

𝜀𝑝 stands for the given accuracy of the final estimation of E, and 𝐸𝑘
means the value of 𝐸 in its 𝑘th approximation. In further computations,
the module of volume deformation is taken as 1.94, and 𝐸0 = 2.56,
𝜈0 = 0.28.

In the numerical experiment, we investigate the mathematical
model of corrosion wear of the plate, i.e. we take 𝑘𝑥 = 0 and 𝑘𝑦 = 0
in Eqs. (17) and (18). The mathematical model of corrosion wear of
the studied plate can be understood as a set of relations governing its
stress–strain state versus external input. However, the interaction of
the metals with aggressive environment requires a series of important
characteristics to be taken into account and the stress damage caused
by corrosion wear is called ‘‘corrosion under stress’’. On the other hand,
the stress–strain state depends on the magnitude of the initial stress and
boundary conditions as well as on the cyclic character of the applied
load. One can observe the localization of the corrosion process in the
plate parts with largest stresses, damage of the surface layers as well
occurrence and damage of the material homogeneity.

In this paper, we employ mathematical models, in which the depth
of corrosion damage 𝛿 depends on time and on the stress–strain of the
plate material, i.e. we take 𝛿 = 𝑓

(

𝑡, 𝜎𝑖𝑗 , 𝜎𝑖
(

𝜀𝑖
))

, where 𝛿 is the depth of
the material corrosion damage, 𝜎 stands for the stress amplitude in the
plate element, and 𝑡 denotes time.

An increase in the corrosion depth 𝛿 results in an increase in 𝜎 due
to a decrease in the object’s thickness ℎ, which accelerates the corrosion
wear process. We employ two models to study dynamics of a plate
embedded in an aggressive environment.

I model (Dolinskii model [17]):
𝜕𝛿
𝜕𝑡

= 𝜑(𝑡)(1 + 𝑘𝜎𝑖), (61)

where: 𝜑(𝑡) = (𝑎 + 𝑏 exp(𝛽𝑡 − 1)) ∕ exp(𝛽𝑡); 𝜎𝑖 — stress intensity; 𝑎, 𝑏 —
coefficients obtained experimentally.

II model (Gutman model [19]):
𝜕𝛿
𝜕𝑡

= 𝑉 (𝑡) exp
(

𝛾𝜎0
)

, (62)

9
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where: 𝜎0 — averaged stress; 𝑉 (𝑡) = 𝛼 exp (𝜇𝑡) — non-dimensional
function of time; 𝛾, 𝛼, 𝜇 — experimentally estimated coefficients.

Let us consider duralumin EN AW-2024 with the following param-
eters:

𝑎 = 0.44 mm/year, 𝑏 = 0.153 mm/year, 𝛽 = 0.2 year −1,
𝑘 = 0.0089 (MPa)−1, 𝛼 = 0.48 mm/year, 𝜂 = 0.091 year −1,
𝛾 = 0.00588 (MPa)−1, 𝑉0 = 0.217 mm/year, 𝛾 = 0.00047 (MPa)−1,

𝐸 = 7.5 ⋅ 105 kg cm2.
We aim to find how these two models can be used to predict

dynamic behaviour of the plate under the action of an aggressive
environment.

A mesh is applied to the whole volume of the plate and the following
two boundary conditions are employed to carry out numerical study:

1. Simple support

𝑤 =𝑀𝑥𝑥 = 𝑁𝑥𝑥 = 𝑁𝑥𝑦 = 0, 𝑥 = 0, 𝑎,

𝑤 =𝑀𝑦𝑦 = 𝑁𝑦𝑦 = 𝑁𝑥𝑦 = 0, 𝑦 = 0, 𝑏;

2. Movable clamping

𝑤 = 𝜕𝑤
𝜕𝑥

= 𝑁𝑥𝑥 = 𝑁𝑥𝑦 = 0, 𝑥 = 0, 𝑎,

𝑤 = 𝜕𝑤
𝜕𝑦

= 𝑁𝑦𝑦 = 𝑁𝑥𝑦 = 0, 𝑦 = 0, 𝑏.

The plate is loaded by the uniformly distributed load 𝑞 until the load
reaches a half of 𝜎𝑠 (plastic flow limit). Then, from one side, the plate
subjected to the fixed load is embedded in an aggressive environment.
The oxidation takes place until 𝜎𝑖 (stress intensity) achieves the strength
of material limit 𝜎𝑝𝑟. The plate stress–strain state is defined on each time
step 𝑡, and then the values of 𝑤 and 𝐹 are estimated with the help of
MVI.

The corrosion wear is quantified based on the model I and II.
Both these models allow for construction of a dependence between the
corrosion wear depth 𝛿(𝑥, 𝑦, 𝑡) and the plate stress–strain state. In the
aggressive environment, the plate thickness ℎ changes in time and the
magnitude of its decrease 𝜇(𝑥, 𝑦, 𝑡) is estimated in all mesh points with
the help of the stress–strain characteristics. The following parameters
are fixed: initial volume 𝑉 = 0.749, Young’s modulus 𝐸 = 2.56, Poisson’s
ratio 𝜈 = 0.28, and 𝐺1 = 0.57, 𝑘𝑥 = 𝑘𝑦 = 0 in (17) and (18).

Remark. Convergence of the MVI in Eqs. (19) has been proved in
Ref. [67] (without the linearization method and dimension reduction).

5. Numerical experiments

Case study 1. For fixed 𝜆1 = 𝑎
ℎ = 20, plates with two boundary

conditions, i.e. simple support and movable clamping, are considered.
Plates are uniformly loaded by transverse load up to the value of 𝑞,
which corresponds to 1∕2 of the plastic flow limit (for 𝜆1 = 20 this value
is equal to 𝑞 = 1.4). Furthermore, for fixed 𝑞, the plates are put into an
oxidable environment. Owing to the model I (II), the simply supported
plate decreases its volume by 51% (48%) after 168 (62) months (curve
2 (4) in Fig. 4). The threshold point responsible for the damage is
reached when 𝜎𝑖 reaches the material strength 𝜎𝑝𝑟. One can notice that
both models of plates reach the threshold with very close value of 𝑉
(the difference is 3%). In the case of movable clamping, the plate of the
model I (II) reaches the material strength limit after 174 (82) months,
which corresponds to curve 1 (4) in Fig. 4.

Boundary conditions affect the rate of the plate damage. If we
compare how the models work, it is interesting to note that both plates
reach the strength material limit with very close values of the volume
𝑉 (with a difference of 3%). However, the corrosion damage estimated
based on the model I takes place at (about 2.5 times) slower rate than
in the case of the model II.

Fig. 4. Plate volume vs. time for 𝜆1 = 20: curve 1 — movable clamping of the model
I; 2 — simple support of the model I; 3 — movable clamping of the model II; 4
— simple support of the model II.

Fig. 5. Change in the thickness ℎ, based on the model I; solid curves concern changes
in ℎ along the axial axis 𝑦 = 0.5, 0 ≤ 𝑥 ≤ 0.5 whereas dashed curves present changes in
ℎ along the diagonal xy : curve 1 — movable clamping 𝜆1 = 20; 2 — simple support
𝜆1 = 20; 3 — movable clamping 𝜆1 = 40; 4 — simple support 𝜆1 = 40.

The change in the thickness ℎ (𝑦 = 0.5, 0 ≤ 𝑥 ≤ 0.5) along the line
0𝑋 (solid curves) and along the diagonal (dashed curves) are shown in
Fig. 5.

Curves 1 (Fig. 5) illustrate the change in the thickness ℎ at the time
instant when the plate reaches the material strength limit along the
diagonal (dashed curves) and along line 0𝑋 (solid curves) based on the
model I with movable clamping. Curves 2 (Fig. 5) exhibit the change in
the ℎ along the axial line 0𝑋 for movable clamping due to the model I.
In this case, the thickness of the plate decreases more in the corner than
in the centre of the plate. In the case of simple support, a significant
decrease in the thickness h takes place on both the plate edge and in
the centre.

However, an opposite observation can be made in the case of the
model II. Namely, for movable clamping, the corrosion process takes
place more intensively and the plate thickness ℎ in the centre decreases
twice (curve 1 in Fig. 6). In the case of simple support (curve 2 in
Fig. 6), the values of ℎ coincide with the change in the thickness for
the same conditions but for model I.

The stress state 𝜎𝑖 of the bottom layer of the plate reaches 𝜎𝑖(0.5; 0.5)
= 1.15 in the centre of the plate for the simple support and the model
I (Fig. 7), and 𝜎𝑖(0.5; 0.5) = 1.105 for the model II (Fig. 8). At the time
instant when the material strength limit is achieved, the character of
the stress process essentially differs with respect to the axial line 0𝑋
and the diagonal 𝑋𝑌 . In particular, different values of 𝜎𝑖 are exhibited
along the diagonal (dashed curves 2 in Figs. 7 and 8).

Case study 2. The problem is solved for 𝜆1 = 𝑎
ℎ = 40. Two kinds

of boundary conditions are considered: simple support and movable
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Fig. 6. Change in the thickness ℎ, based on the model II; solid curves concern the
change in ℎ along the axial axis 𝑦 = 0.5, 0 ≤ 𝑥 ≤ 0.5 whereas dashed curves present
changes in ℎ along the diagonal xy : curve 1 — movable clamping 𝜆1 = 20; 2 — simple
support 𝜆1 = 20; 3 — movable clamping 𝜆1 = 40; 4 — simple support 𝜆1 = 40.

Fig. 7. Stress state 𝜎𝑖 of the bottom layer of the plate, based on the model I: solid
curves represent changes in 𝜎𝑖 along the axial axis 𝑦 = 0.5, 0 ≤ 𝑥 ≤ 0.5 whereas dashed
curves present changes in 𝜎𝑖 along the diagonal xy : curve 1 — movable clamping
𝜆1 = 20; 2 — simple support 𝜆1 = 20; 3 — movable clamping 𝜆1 = 40; 4 — simple
support 𝜆1 = 40.

Fig. 8. Stress state 𝜎𝑖 of the bottom layer of the plate, based on the model II: solid
curves show changes in 𝜎𝑖 along the axial axis 𝑦 = 0.5, 0 ≤ 𝑥 ≤ 0.5 whereas dashed
curves present changes in 𝜎𝑖 along the diagonal xy : curve 1 — movable clamping
𝜆1 = 20; 2 — simple support 𝜆1 = 20; 3 — movable clamping 𝜆1 = 40; 4 — simple
support 𝜆1 = 40.

clamping. Plates are loaded by the uniformly distributed load up to
𝑞 = 5.

In the case of movable clamping, the plate reaches the material
strength limit after 225 months with 𝑉 = 0.326 for the model I (curve
1 in Fig. 9). In the case of model II, it happens after 78 months with
𝑉 = 0.285 (curve 3 in Fig. 9). For simple support of the model I, the
material strength limit is reached after 214 months with 𝑉 = 0.384

Fig. 9. Plate volume vs. time for 𝜆1 = 40: curve 1 — movable clamping of model I; 2
— simple support of model I; 3 — movable clamping of the model II; 4 — simple
support of model the II.

(curve 2 in Fig. 9) and after 104 months with 𝑉 = 0.151 for model II
(curve 4 in Fig. 9).

Therefore, for plates with 𝜆1 = 40, the process of oxidation takes
place twice faster for the model II and the difference between the
threshold volumes for the model II is over twice smaller than in the
case of model I.

The change in the plate thickness ℎ depends on the chosen model.
In the case of movable clamping, the thickness ℎ in the plate centre
decreases up to ℎ(0.5, 0.5) = 0.416 (curves 3 in Fig. 5) for the model I,
and up to ℎ(0.5, 0.5) = 0.016 (curve 3 in Fig. 6) for the model II, before
achieving the material strength limit. For simple support of the model
I, ℎ(0.5, 0.5) = 0.296 (curve 4 in Fig. 5) and ℎ(0.5, 0.5) = 0.4 — model II
(curves 4 in Fig. 6).

Based on the reported results, one can conclude that the decrease
in the critical load, with simultaneous increase in 𝜆1, is of 50% and
10% for the model I and II, respectively. Besides, a general tendency
is observed that an increase in the load 𝑞 decreases the oxidation time,
i.e. the material strength limit is reached faster.

The change in the intensity of stress 𝜎𝑖 (curves 1, 2) essentially
depends on the chosen model (I or II) and the changes are exhibited
along the diagonal 𝑋𝑌 and along the axis 0𝑋 (Figs. 7, 8).

Case study 3. (plates with 𝜆1 =
𝑎
ℎ = 50). Two kinds of boundary con-

ditions are considered: simple support and movable clamping. Plates
are uniformly loaded by continuously distributed load up to 𝑞 = 6.1.

In the case of movable clamping, the plate reaches the material
strength limit after 135 months with 𝑉 = 0.434 (model I, curve 1 in
Fig. 10) and after 92 months with 𝑉 = 0.248 (model II, curve 3 in
Fig. 10). If simple support is considered, then the material strength limit
is reached after 126 months with 𝑉 = 0.399 (model I, curve 2 in Fig. 10)
and after 66 months with 𝑉 = 0.359 (model II, curve 4 in Fig. 10).

Therefore, in the case of plates with 𝜆1 = 50, the oxidation process
is carried out 40% faster for the model II.

The change in the plate thickness ℎ differs depending on the chosen
model. In the case of movable clamping, after reaching the material
strength limit, the thickness ℎ of the centre of the plate decreases
to ℎ(0.5, 0.5) = 0.39 (curves 1 in Fig. 11) and to ℎ(0.5, 0.5) = 0.11
(curves 1 in Fig. 12) for models I and II, respectively. In the case of
simple support, it reaches ℎ(0.5, 0.5) = 0.351 (curves 2 in Fig. 11) and
ℎ(0.5, 0.5) = 0.3 (curves 2 in Fig. 12), respectively.

A change in the stress 𝜎𝑖 intensity based on the numerical compu-
tations differs essentially between the model I (curves 1, 2 in Fig. 13)
and model II (curves 1, 2 in Fig. 14) in both diagonal 𝑋𝑌 and axial 0𝑋
directions.

Case study 4. (plates 𝜆1 = 𝑎
ℎ = 100). We consider two kinds of

the boundary conditions: simple support and movable clamping. The
studied plates are uniformly loaded by continuous load up to 𝑞 = 41.
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Fig. 10. Plate volume vs. time for 𝜆1 = 50: curve 1 — movable clamping of model
I; 2 — simple support of the model I; 3 — movable clamping of the model II; 4
— simple support of the model II.

Fig. 11. Change in the thickness ℎ based on the model I; solid curves depict changes
in ℎ along the axial axis 𝑦 = 0.5, 0 ≤ 𝑥 ≤ 0.5 whereas dashed curves presents changes in
ℎ along the diagonal xy : curve 1 — movable clamping 𝜆1 = 50; 2 — simple support
𝜆1 = 50; 3 — movable clamping 𝜆1 = 100; 4 — simple support 𝜆1 = 100.

Fig. 12. Change in the thickness ℎ based on the model II; solid curves depict changes
in ℎ along the axial axis 𝑦 = 0.5, 0 ≤ 𝑥 ≤ 0.5 whereas dashed curves presents changes in
ℎ along the diagonal xy : curve 1 — movable clamping 𝜆1 = 50; 2 — simple support
𝜆1 = 50; 3 — movable clamping 𝜆1 = 100; 4 — simple support 𝜆1 = 100.

For the model I and the movable clamping, the plate reaches the
limit of material strength (curve 1 in Fig. 15) after 271 months with
𝑉 = 0.375, which stands for its initial volume. In the case of the plate
model II, the material strength limit is reached after 108 months and
𝑉 = 0.117 (curve 3 in Fig. 15). In the case of simple support and the
model I, the material strength limit is reached after 74 months with
𝑉 = 0.521 (curve 2 in Fig. 15) and after 60 months with 𝑉 = 0.421 in
the case of the plate model II (curve 4 in Fig. 15).

Fig. 13. Stress state 𝜎𝑖 of the bottom of the plate, based on the model I: solid curves
show changes in 𝜎𝑖 along the axial axis 𝑦 = 0.5, 0 ≤ 𝑥 ≤ 0.5 whereas dashed curves
presents changes in 𝜎𝑖 along the diagonal xy : curve 1 — movable clamping 𝜆1 = 50;
2 — simple support 𝜆1 = 50; 3 — movable clamping 𝜆1 = 100; 4 — simple support
𝜆1 = 100.

Fig. 14. Stress state 𝜎𝑖 of the bottom layer of the plate, based on the model II: solid
curves show changes in 𝜎𝑖 along the axial axis 𝑦 = 0.5, 0 ≤ 𝑥 ≤ 0.5 whereas dashed
curves presents changes in 𝜎𝑖 along the diagonal xy : curve 1 — movable clamping
𝜆1 = 50; 2 — simple support 𝜆1 = 50; 3 — movable clamping 𝜆1 = 100; 4 — simple
support 𝜆1 = 100.

Fig. 15. Plate volume vs. time for 𝜆1 = 100: curve 1 — movable clamping of model I;
2 — simple support of model I; 3 — movable clamping of the model II; 4 — simple
support of the model II.

Let us briefly summarize the obtained results. The change in the
thickness of plates essentially depends on the chosen model. After
achieving the material strength limit, the thickness ℎ, measured in the
centre of the plate, decreases to ℎ(0.5, 0.5) = 0.369 (curves 3 in Fig. 11,
model I) and to ℎ(0.5, 0.5) = 0.06 (curves 3 in Fig. 12, model II). In the
case of simple support, ℎ(0.5, 0.5) = 0.52 (curves 4 in Fig. 11, model I)
and ℎ(0.5, 0.5) = 0.4 (curves 4 in Fig. 12, model II).
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The change in the intensity of stresses 𝜎𝑖 is essentially different for
the model I (curves 3, 4 in Fig. 13) and model II (curves 3, 4 in Fig. 14)
and along the diagonal 𝑋𝑌 and the axis 0𝑋.

6. Concluding remarks

In this work, two mathematical models of flexible shallow shells
have been derived, taking the account of the geometric non-linearity:
(i) mathematical model under coupled temperature and deformation
(equations in terms of displacements) fields; (ii) mathematical model
taking into account also physical non-linearity. In both models, the one-
sided corrosion wear has been taken considered in terms of Dolinskii
and Gutman models.

We have proposed and successfully employed the method to de-
crease the order of the governing equations and to conduct their
linearization by reduction of the problem to study the bi-harmonic
equation.

In order to solve the reduced problem numerically, the method
of variational iterations (MVI) and the method of variable stiffness
parameter have been used.

It has been shown that the velocity of the decrease in the plate
thickness depends essentially on the load. The change in plate thickness
depends on the chosen (Dolinskii or Gutman) model. The studied plates
reach the strength material limit practically with the same volume, but
after different time intervals.
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