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Abstract

The aim of the study is kinematic and dynamic simulation of a hexapod robot walking with a
classical tripod gait on a flat surface. To drive robot legs, a novel central pattern generator is
applied. Time series of the robot’s kinematic and dynamic parameters are reported to assess
the applied control method. Ground reaction forces and overloads acting on the hexapod legs
are estimated on the basis of the inverse dynamics concept. For better analysis and illustration
of the studied hexapod, the simulation model of the robot, suitable for virtual experiments on
the locomotion process, is developed in Mathematica software. The obtained results indicate
some advantages of the applied central pattern generator.
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1 Introduction

Multi-legged walking machines belong to the one of the most important groups of
mobile robots in engineering applications. Due to unique advantages, such as over-
coming obstacles and executing tasks in a wild environment, biologically inspired
multi-legged robots are better at adapting to unknown and unstructured environments
in comparison to wheeled vehicles. However, during the movements, the feet of a
legged robot interact frequently with the ground in different ways. It means that the
demand for drive unit includes not only characteristics of response ability and high
control accuracy, but also dynamic compliance (Ba et al., 2017). Therefore, the im-
pact on the driving systems implemented in the joints of the robot legs should be
reduced, which can protect both individual components and the whole mechanical
structure of the robot. Moreover,it wouldimprove stability of the robot during walk-
ing.
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The selection of control methods of the movements of the robot legs directly
affects the ground reaction forces and overloads acting on robot feet. A brief literature
review on some existing control methods widely applied to variuos motor-driving
legged robots is presented in the paper (Ba et al., 2017). For instance, the impedance
control method has been widely employed both to motor-driving (Poulakakis et al.,
2005; Kimura et al., 2007) and hydraulic-driven legged robots (Rong et al., 2012;
Semini et al., 2015).

The appropriate choice of the robot legs movements can have a positive influence
on the kinematics, dynamics and energy demand of the walking robot . In our pre-
vious investigations, we proposed a novel central pattern generator (CPG) based on
the stick-slip oscillator (Grzelczyk et al., 2016). Using the constructed prototype of
an insect-inspired six-legged robot, we obtained numerical and experimental results
which showed some analogies between the characteristics of the investigated robot
and insects met in nature. In other paper (Grzelczyk et al., 2017), using the same
control method, we conducted kinematic, dynamic and power consumption analysis
for an improved version of the six-legged robot. In contrast to the aforementioned
works, this paper deals with kinematics and dynamics of other construction of the
hexapod robot, controlled by different central pattern generator based on a sine func-
tion. This generator has been previously applied in the control system of a human
lower limb exoskeleton, and it can be used in other multi-legged robots (Grzelczyk
et al., 2018).

The paper is organized as follows: section 2 deals with the robot and its simu-
lation model developed in Mathematica; section 3 contains a brief review of using
CPGs to control a motion of a walking robot and the proposed CPG model; simula-
tions of kinematic and dynamic parameters of the robot are reported and discussed in
Section 4 and conclusions of the study are outlined in Section 5.

2 Model of the robot

The simulation model of the considered hexapod robot implemented in Mathematica
is shown in Fig. 1. The robot consists of a body and six identical legs (denoted
respectively as L1, L2, L3 on the left, and R1, R2, R3 on the right side of the robot).
The created model was used for design and virtual experiments of its motion during
walking. Figure 1 also shows a scheme of a single robot leg.

The robot is located in the global coordinate system Oxy which is fixed to the
ground. The centre of the local coordinate system 0'x’y’ (see Fig. 1) has the co-
ordinates 0'(x,L) with respect to the global coordinate system, where L means the
distance between the ground and the point and the leg is attached to the robot body
when the robot is in its initial configuration). Links /; (i = 1,2,3) with joints j; (i =
1,2,3) form a kinematic scheme of a robot limb. The function A(f) is a time-varying
function responsible for vertical fluctuation of the joint j;, i.e. the pivot point of the
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Fig. 1. The investigated hexapod robot implemented in Mathematica software and a
schematic configuration of a single robot limb.

whole robot leg. Moreover, the definitions of the angular positions ¢;(7) (i = 1,2,3)
of the segments /; in the local coordinate system 0'x’y’ are also visible in Fig. 1. The
considered hexapod robot is embedded in the gravitational field with the coefficient
g=9.81m / s?. The mass of the body of the robot without legs equals M. Each
of the robot limbs contains three links with masses m; and distances a; between the
coordinates of the joints j; and the mass centres of the mentioned links, respectively.

In this study we are most interested in obtaining time histories of the angular po-
sitions @;(7) and @, (¢) which correspond to the joints j; and j,, respectively. As a
supporting point of the robot leg we choose the joint j3. Therefore, forward kinemat-
ics for the mentioned point has the following form:

{ x’(t):ll sin(pl(t)—lzsin(n—gol(t)—(pz(t)), (1)
(1) = —=h(t) = licos @1 (1) — L cos(w — @1 (1) — 9a(1)),

whereas inverse kinematics is given as

_ =X B+ (1) +(/ () +h(t)* -3
¢i(1) = atan( <>+h(r>)+a"°s<11\/xw)2 0 h<z>)22>’

22 ()2 2
92(1) = acos (1AL OO,

2

In our model, we assume that the segment /3 is always paralell to the ground in each
phase of the robot gait. Thererfore, we take the time history of the angle ¢3(¢) in the
following form

@3(1) = @1 (1) + @a(t) — /2. 3)

3 Control of robot legs

In contrast to numerous methods applied in the literature, in this study we have used a
relatively simple method to control the movement of robot legs by using a concept of
central pattern generator. In general, central pattern generators are biological neural
networks that produce rhythmic outputs in the absence of rhythmic input (Kuo, 2002).
As a result, they are the source of the tightly-coupled patterns of neural activity that
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Fig. 2. Time histories and phase trajectories of the applied CPG model.
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drive rhythmic motions in different biological processes like breathing, chewing or
walking. Studies have shown that CPGs have been detected in numerous vertebrate
species investigations (Hultborn and Nielsen, 2007), including human (Danner et al.,
2015). Since 1980s this concept has been widely used to control different multi-
legged robots, and an interesting literature review in this area can be found in (Buchli
and Righetti, 2006; Ijspeert, 2008; Chen et al., 2012).

In our study, the representation of the trajectory of the supporting point (joint
J3) is generated by the central pattern generator which is based on the sine function,
previously presented in Grzelczyk et al., 2018. Time histories of the signals produced
by the proposed CPG model and periodic orbits in the phase space for the period
T =2 s (which corresponds to the period of the single robot stride) are shown in Fig.
2.

In our model the variables X,(t), X, () control the motion of the robot legs in the
forward direction, whereas Y, (), Y, () are responsible for controlling the legs moving
in the vertical direction. The subscript a corresponds to the legs R1,R3 and L2, while
the subscript b corresponds to the legs L1, L3 and R2. It should be emphasized that in
this study, we neglect the transient processes associated with the starting and ending
phases of gait, and we focus exclusively on a completely rhythmic gait. These issues
(i.e. transitions between different phases of the gait cycle) will be the goal of our
future research.

Control parameters of a single robot stride can be obtained by the conversion of
the applied CPG signals into the workspace of the mechanism of the robot leg in the
local coordinate system O'x’y’ as follows

xgl(b) (t) = Lswride - Xa(b) (t)> (4)
Ya(b) (t) = hsuide - Y (t)—L,

where [gigeand hgyige are the length and height of a single stride of the robot, respec-
tively. One can easily modify the shape of an orbit by changing the values of yige
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Fig. 3. Time histories of angles in individual joints of the robot legs R1, R3, L2 (a) and
the angles in individual joints of the robot legs L1,L3,R2 (b).

and Agyige. Finally, the trajectories x/ ») (t) -y, ) () must be converted to the joints
space of the legs by means of using the relations (2)-(3).

In this study, the function A(z) is the same for all robot legs. Howewer, tt is clear
that the angular positions in the joints jj, jo, j3 are not the same. In this study, we
investigate tripod gait of the robot. It means that the legs of the robot are divided
into two groups. Namely, the angles @;,(t), ¢2,(¢) and @s,() correspond to the legs
R1,R3 and L2, whereas the angles ¢;,(7), ¢25(t) and @3,(¢) correspond to the legs
L1,L3 and R2.

4 Numerical results

The gait simulation model of the robot (previously presented in Fig. 1) was developed
in Mathematica software. We used this model for virtual experiments and in order to
obtain curcial parameters of the robot motion during walking. Initial parameters of
the robot used in numerical simulations are presented in Tab. 1.

Table 1. Initial parameters of the investigated hexapod robot.

Figure 3 shows time histories of the angles obtained by using relations (2) and
(3) and applied to the joints of the robot legs, for A(t) =0 and L =0.2m. As a
result of applying the computed angular positions in the individual joints, the hexapod
robot moves in the forward direction. Exemplary configurations of the whole robot
at different stages of the gait are presented in Fig. 4.

As it can be seen, fluctuations of the position of the robot body in the vertical
direction are not observed in any phase of the robot motion. The obtained time his-
tories of kinematical parameters of the robot presented in Fig. 5 better illustrate this
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Fig. 4. Configurations of the robot legs at regular time intervals.
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Fig. 5. Displacement curves of the position of the robot body in the vertical (a) and forward
(b) directions.

observation. In comparison to other CPGs developed based on different nonlinear
oscillators (Grzelczyk et al., 2016, 2017), the CPG model employed in this paper is
more advantageous, because it allows keeping position of the robot body in the ver-
tical direction at a constant distance over the ground, whereas the robot position in
the forward direction changes linearly. As a result, the velocity of the robot body in
the vertical direction equals zero, while the velocity of the robot body in the forward
direction is constant (see Fig. 6).

It is known that fluctuation of the robot body can have a great influence on the
ground reaction forces acting on the individual legs of the robot. Due to the lack of
these fluctuations for the considered robot controlled by the employed CPG model,
relatively small fluctuations of the ground reaction forces, in comparison to the force
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Fig. 6. Velocity curves of the position of the robot body in the vertical (a) and forward (b)
directions.
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Fig. 7. Fluctuation of the ground reaction forces acting on the leg L2 (a) and the leg R2
(b).
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Fig. 8. Values of the parameter 1) characterizing overloads acting on central robot legs
(legs L2 and R2).

resulting from gravity, can be expected. Figure 7 presents time histories of a contact
force acting on the middle legs of the robot, i.e. legs L2 and R2. The presented
forces have been estimated by using the method presented in Grzelczyk et al., 2017.
It can be seen that the values of the presented forces oscillate around the reaction
force resulting from the weight of the analysed robot (about 11.1 N). However, these
oscillations are relatively small, especially in comparison to other well known CPG
models.

In this paper, we investigate more carefully the influence of the parameters of the
robot gait (i.e. the period T, the length /4. and the height hgyiqe of a single stride) on
the overloads acting on the robot legs during walking. Figure 8 presents maximum
value of the coefficient 1) characterizing overloads with respect to the force resulting
from gravity, defined as
R(l‘) —Rgra\/lty . 100%> (5)

gravity

r[:max<

Values of the parameter were computed for the central robot legs (these values
are the same both for legs L2 and R2).

In the last part of this work, we analyze also the problem of trajectory planning
of the position of the robot body during walking process. From the viewpoint of the
performed numerical simulations, the possibility of modification of the robot body
position in the vertical direction seems to be the most interesting. The appropriate
fluctuations of the robot in the vertical direction during walking can be preceded by
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Fig. 9. C
onfigurations of the robot legs at regular time intervals in different phases of gait
during walking according to the planned path in the vertical direction.

the relevantadjustment of the function A(¢) introduced in Section 2. As an example,
we took the function in the form A(z) = 0.1 e=%% sin(0.057¢2). Figure 9 shows the
corresponding configurations of the robot during walking on a flat surface, resulting
from the function A(¢) and the parameter L = 0.2 m. The presented snapshots were
captured in regular time intervals. As it can be observed, at any presented stage of
the robot gait, the supporting legs touch the ground, while the fluctuations of the
posision of the robot are accurately reflected by means of the predefined function
h(t). It is realized by the appropriate changes in the configurations of the robot legs
during walking. In this way, we can easily change the vertical position of the robot,
for instance when the robot is walking under or over obstacles.

5 Summary and conclusions

In this paper, a simulation model of a hexapod robot developed in Mathematica soft-
ware is investigated numerically by means of both kinematical and dynamical pa-
rameters characterizing robot locomotion process. To control the robot legs during
walking in the tripod gait on a flat surface, a relatively simple central pattern gener-
ator is employed, which is based on the sine function. Advantages of the employed
CPG model have been clearly emphasized, especially with regard to the kinematic
parameters (i.e. displacement and velocity of the whole robot) and dynamic parame-
ters (i.e. ground reaction forces and overloads acting on the robot legs).

The paper contains some information useful to control the robot legs and the
whole robot with respect to their kinematic and dynamic parameters. The obtained
simulation results can be treated as guidelines for further improvement of the em-
ployed CPG model and its applications in the control system of the multi-legged
robot. Eventually, it should be noticed that it is possible to use this CPG for other
puproses, including specialized control systems of bipeds, quadrupeds or octopods.
In the future, it is also worth considering more detailed cases of robot walking and
controlling its position while moving on irregular terrain.
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