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a b s t r a c t

The so-called intermediate model (IM) was applied in the paper to quantitatively describe

complex trajectories. Using this model it was possible to find the proper fitting function for

describing random trajectories that were recorded during the walking process performed by

a volunteer. Experimental data were acquired using a three-dimensional Motion Capture

system during normal gait of a healthy person on an automatic treadmill. The major aim of

this research was to find if the IM is applicable to fit typical biomechanical measurement

data. Motion Capture data collection is very time-consuming and requires a lot of memory,

so storing movement trajectories in a parametric form helps to increase the data processing

efficiency and mathematical analysis. As a result of the original treatment procedure

described in this paper, we obtained a very accurate fit of the measured data. The results

of this research can be used to model the movement of mechanical devices and for

diagnostic purposes.
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1. Introduction and problem formulation

Is it possible to propose a ‘‘universal’’ fitting function for non-
stationary quasi-reproducible (QR) experiment? This ‘‘unexpect-
ed’’ question sounds irrational to any skeptical researcher. The
traditional interaction between theory and experiment is based
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on a hypothesis and its practical verification. Theorists suggest
models based on certain hypotheses and postulates. Experi-
mental researchers validate these hypotheses in the most
convincing way, minimizing the impact of any uncontrollable
factors and distortions that come from the measured devices or
from the external environment. What kind of major improve-
ment/innovation can be made in this conventional scheme?
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Let us define the verified principle that can be tested
ractically in every experiment. If this principle does exist,
hen from its mathematical formulation a ‘‘universal’’ fitting
unction can be derived which can quantitatively describe any
xperiment. We will call this principle the Verified Principle of
artial Correlations (VPPC). On this basis, the postulate can be
eformulated as follows: subsequent measurements retain
heir partial correlations (memory) and remain partially
orrelated as a result of subsequent measurements. To
nderstand this statement more deeply, it is necessary to
emonstrate some mathematical formulas given in the next
ection. In this paper based on the VPPS, we want to consider
ovement trajectories that can be described in our Interme-
iate Model and compared with each other.
Trajectories of the movement of living organisms such as

ammals are usually very complex so the ‘‘best fit’’ model for
heir description cannot be created. The reason for this are,
mong others, complex bone and muscle systems, a way to
ontrol these systems and muscle redundancy. During muscle
ooperation each movement cycle will be slightly different,
ecause there are as many solutions to the task performed as
here are combinations that meet a specified target (e.g., [1,2]
here the authors analyzed human muscle interactions using
xperimental and mathematical methods).
Many mathematical models have already been created that

escribe more or less precisely the dynamics and kinematics of
uman movement. These investigations concern particular
imbs (see, for example, paper [3]) as well as larger parts of the
uman body (e.g., [4–6]). There are also attempts to develop
rtificial Central Pattern Generators to describe human
ocomotion in controlling humanoid robots (e.g., [7,8]). It is
lso worth mentioning that there are methods using neural
etworks that generate good quality movement sequences
ased on machine learning procedures, even for a full human
ody (e.g. [9]). In this work, we will deal specifically with the
uman normal gait pattern.
In order to verify biomechanical mathematical models, it is

ecessary to obtain comparative experimental data. Usually,
otion Capture techniques are used that make it possible to

ecord kinetic and kinematic data of the movement of the
ntire human body during almost any type of activity. The
ost important contribution to the development of this
ranch of knowledge was the professionalization of sports
ctivities.
Experimental data obtained with the use of the Motion

apture technique are associated with high memory consump-
ion, and thus very time-consuming processing. Depending on
he required level of accuracy, the registration of the entire
uman body movement must be described by 37–57 measuring
oints (called markers) – their trajectories in 3D space. If their
umber is multiplied by the number of repetitions of a given
xperiment, its time and the number of volunteers recorded
several dozens for the analysis to be statistically significant),
here is a serious problem with storing and even browsing such
ata. The number of markers and their placement is usually
ifferent in every Motion Capture laboratory equipment [10] but
t is always large if sufficient accuracy is important. There is,
herefore, a justified need to find a way of mathematical
escription of these specific movement data to facilitate their
urther processing and analysis.
Please cite this article in press as: Nigmatullin RR, et al. Modeling and
(2019), https://doi.org/10.1016/j.bbe.2019.03.005
The method presented in this work allows us to perform
function fitting to complex measurement data as long as they
are quasi-periodic. This condition is perfectly met by most
human normal gait recordings. The purpose of this study was
to check whether the presented method applies to fit typical
biomechanical measurement data, both the position of motion
capture markers and typical joint angle data during the gait
cycle.

The paper is organized in the following way. Description of
the method is given in Section 2, whereas Section 3 deals with
the experimental procedure and data analysis. Section 4
presents the fitting procedure and results obtained, and in the
last Section 5 concluding remarks are presented.

2. Description of the method

Because of importance and generality of the proposed interme-
diate model (IM that is suitable for a wide class of experiments, it
is necessary to reproduce the key ideas of this general theory.
Some examples of its application are considered in papers
[11,12]. It is important to mention that the proposed theory is self-
consistent. It indicates that we do not use any a priori hypothesis
and a ‘‘universal’’ fitting function is found from random
functions computed only from the real measured data.

By an ‘‘ideal’’ experiment (IE) we mean the experiment
when the set of subsequent measurements m (m = 1, 2, . . ., M),
realized in time G in relation to a given input variable x gives
the same response F(x) for any m. In this sense, all
measurements performed within IE can be considered as
completely correlated. Mathematically, this statement can be
written in the following form:

F x þ mTð Þ ¼ F xð Þ; m ¼ 0; 1; :::; M�1 (1)

It should be mentioned that the input variable x ought to
coincide with temporal variable (t), frequency (v), wavelength
(l), etc. This single-factor experiment implies that other
parameters affecting the response function F(x) remain almost
constant and unchanged during measurement period T. The
solution of this functional equation is well-known and
coincides with the segment of the Fourier series
Pr x�Tð Þ ¼ Pr xð Þ. For discrete data, this segment of the F-series
is written as:

F xð Þ ffi PrðxÞ ¼ A0 þ
XK > > 1

k¼1

Ack cos 2pk
x
Tx

� �
þ Ask sin 2pk

x
Tx

� �� �
(2)

Parameter Tx determines a certain mean period with respect to
variable x. It is obvious that the requirement of IE (1) cannot be
realized in reality and for quasi-reproducible (QR) experiments
it is necessary to introduce a more general equation

F x þ LTð Þ ¼
XL�1

l¼0

hal xð ÞiF x þ lTð Þ (3)

In this case, it is necessary to find a solution of the functional
equation (3). This becomes possible if the set of functions
hal xð Þi referred to in (3) is known and satisfies periodic
conditions hal x�Tð Þi ¼ hal xð Þi, and in other aspects it may be
 experimental validation of walking processes. Biocybern Biomed Eng
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arbitrary. Consider a solution of Eq. (3) when the value of
memory parameter L is known. In comparison with this
equation, we expect that all subsequent experimental
measurements satisfy the following equation

FLþm xð Þ ¼
XL�1

l¼0

hal xð ÞiFlþm xð Þ; m ¼ 0; 1; :::; M�1 (4)

To obtain functions hal xð Þi (l = 0, 1, . . ., L; L < M) we modify
the well-known LLSM and presume that the functional
dispersion assumes the minimal value defined as follows:

s xð Þ ¼ FLþm xð Þ�
XL�1

l¼0

hal xð ÞiFlþm xð Þ
" #2

¼ min (5)

Taking the derivatives with respect to unidentified func-
tions hal xð Þi, we obtain

� ds xð Þ
dhal xð Þi ¼

1
M�L

XM�L�1

m¼0

Flþm xð Þ FLþm xð Þ�
XL�1

s¼0

has xð ÞiFsþm xð Þ
  !" #

¼ 0

(6)

In the next step we perform the smoothing process on all
sets of measurement data. It is assumed that the set of
functions hal xð Þi (l = 0, 1, . . ., L; L < M) is independent of the
measurement index m.

The pair of correlation functions

KL;l ¼ 1
M�L

XM�L�1

m¼0

FLþm xð ÞFlþm xð Þ; Ks;l ¼ 1
M�L

XM�L�1

m¼0

Fsþm xð ÞFlþm xð Þ;
s; l ¼ 0; 1; :::; L�1

(7)

define the system of linear equations that allows us to find
functions hal xð Þi from the following equation:

XL�1

s¼0

Ks;l xð Þhas xð Þi ¼ KL;l xð Þ; for l ¼ 0; 1; :::; L�1 (8)

The approach presented so far is defined as the functional
least squares method (FLSM) including the classical LLSM as a
partial case. Let us come back to the solution of functional
equation (4). Now, a solution to Eq. (4) is sought:

F0 xð Þ ¼ k xð Þ½ �x=TPr xð Þ; Fm xð Þ ¼ k xð Þ½ �mþx=TPr xð Þ (9)

Here, functions k x�Tð Þ ¼ k xð Þ; Pr x�Tð Þ ¼ Pr xð Þ are periodic
according to conditions hal x�Tð Þi ¼ hal xð Þi, so like in formula (2)
they can be described by the fragment of the Fourier series in
the following way:

F xð Þ ¼ A0 þ
XK > > 1

k¼1

Ack cos 2pk
x
T

� �
þ Ask sin 2pk

x
T

� �h i
(10)
Please cite this article in press as: Nigmatullin RR, et al. Modeling and e
(2019), https://doi.org/10.1016/j.bbe.2019.03.005
Naturally, the decomposition coefficients Ack, Ask (k = 1, 2,
. . ., K) in (10) depend on the type of the selected function F(x).
Substituting the trial solutions (9) into (4), the equation
describing unknown functions k(x) is derived:

k xð Þ½ �L�
XL�1

l¼0

hal xð Þi k xð Þ½ �l ¼ 0 (11)

Assuming that ‘‘roots’’ kq xð Þ; q ¼ 1; 2; :::; L (10) are given by
Eq. (11), the general solution Fm(x) can be written as follows:

F0 xð Þ ¼
XL
q¼1

kq xð Þ� 	x=TPrq xð Þ; Fm xð Þ ¼
XL
q¼1

kq xð Þ� 	mþðx=TÞPrq xð Þ;

m ¼ 0; 1; :::; M�1

(12)

The set of periodic functions Prq(x) should correspond to the
number of functions described by Eq. (11). Any additional
comments and descriptions related to (12) can be found in
[11,12].

For further purposes, it will be necessary to use the fitting
function for L = 2. This function contains the minimum
number of fitting parameters and may be suitable for
describing movement trajectories. This case will be used for
the fitting process in the next section. For L = 2 we find

F2þm xð Þ ¼ ha1 xð ÞiF1þm þ ha0 xð ÞiFm
m ¼ 0; 1; :::; M�1:

(13)

Eq. (8) for this case takes the following form

K00 xð Þha0 xð Þi þ K10 xð Þha1 xð Þi ¼ K20 xð Þ
K10 xð Þha0 xð Þi þ K11 xð Þha1 xð Þi ¼ K21 xð Þ (14)

The solution of Eq. (13) can be written as

F0 xð Þ ¼ k1 xð Þ½ �x=TPr1 xð Þ þ k2 xð Þ½ �x=TPr2 xð Þ;

k1;2 xð Þ ¼ ha1 xð Þi
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ha1 xð Þi

2

� �2

þ ha0 xð Þi
s

:
(15)

The desired function for the fitting purposes can be
presented in the following final form

y xð Þ ffi F x; K; Txð Þ ¼ A0E
1ð Þ
0 xð Þ þ

XK
k¼1

Ac 1ð Þ
k Ec 1ð Þ

k xð Þ þ As 1ð Þ
k Es 1ð Þ

k

� �
þ
XK
k¼1

Ac 2ð Þ
k Ec 2ð Þ

k xð Þ þ As 2ð Þ
k Es 2ð Þ

k

� �
;

E0 xð Þ ¼ k1 xð Þ½ �x=Tx þ Re k2 xð Þ½ �x=Tx
� �

;

Ec 1ð Þ
k ¼ k1 xð Þ½ �x=Tx

� �
�cos 2pk

x
Tx

� �
; Es 1ð Þ

k ¼ k1 xð Þ½ �x=Tx
� �

�sin 2pk
x
Tx

� �
;

Ec 2ð Þ
k ¼ Re k2 xð Þ½ �x=Tx

� �
�cos 2pk

x
Tx

� �
; Es 2ð Þ

k ¼ Re k2 xð Þ½ �x=Tx
� �

�sin 2pk
x
Tx

� �
:

(16)

Here, the known functions k1,2(x) should be related to
reduced values of the smoothened roots. Functions
E0 xð Þ; Ec 2ð Þ

k xð Þ; Es 2ð Þ
k xð Þ include the possibility that root k2(x)

can be negative. Function F(x; K, Tx) contains only two nonlinear
fitting parameters. They can be calculated from the minimi-
zation of the relative error surface
xperimental validation of walking processes. Biocybern Biomed Eng
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in RelError
stdev y xð Þ�F x; K; Txð Þð Þ

mean yðxÞj jð Þ
� �

�100%
� �

(17)

hat is given by (K, Tx). Usually, the mean period Tx is not
nown and lies in the interval (0.5 Tin < T < 2 Tin), Tin = (x1–x0)�
ength(x). The minimum value of final mode K results from the
ondition that the level of the relative error should be inside
he acceptable range (1%–10%). After the process of minimiz-
ng the value (17), the desired amplitudes

0; Ac 1;2ð Þ
k xð Þ; As 1;2ð Þ

k xð Þ are found using the LLSM formulas (16).

. Experimental details and data handling
rocedure

 three-dimensional Motion Capture system was used to
ecord human movement during normal walking. Our labora-
ory is equipped with an OptiTrack system (NaturalPoint Inc.,
orvallis, OR, USA) consisting of 6 Flex 13 cameras (120 Hz,
50 nm IR strobe LEDs) recording the position of passive and
ctive markers (in infrared light) attached to the body of the
ubject. In the present research, 37 reflective (passive) markers
ere placed according to the standard protocol suggested by
he systems manufacturer (Baseline Markerset). The OZ axis
ndicated the direction of walking, the OX axis was transversal
o the walking direction, and the OY axis was longitudinal to
he direction of gravity force.

The authors of this manuscript declare that the research
as organized according to the Helsinki regulations and the
articipant was a volunteer who was informed in detail about
he aim of the research and examination protocol, he also
ccepted and signed a written consent (conscious agreement).

 volunteer (24-year old male, 72.2 kg, 177.5 cm tall) was a
tudent of the Lodz University of Technology and was found by
he university announcement. He did not declare any kind of
ardiovascular or pulmonary problems, or problems with
ig. 1 – (a) Photo of the volunteer equipped with reflective mark
otion Capture 3D body reconstruction using 37 reflective ma

Please cite this article in press as: Nigmatullin RR, et al. Modeling and
(2019), https://doi.org/10.1016/j.bbe.2019.03.005
locomotion system and postural stability. After attaching the
markers, the volunteer was asked to stand upright in order to
calibrate the system and then after a brief warm-up, he made a
10-min walk on an automatic treadmill with a normal walking
speed of about 4 km/h (see Fig. 1). The volunteer gave written
informed consent before participating in the experiment.

The obtained data were filtered and post-processed
according to standard biomechanical measurement proce-
dures [13,14] and suggestions from the OptiTrack Documenta-
tion. Raw measurement data were first processed to find all
marker tracking errors (including unlabeled markers, swapped
markers and marker occlusion). This process was semi-
automatic and needed special attention. After these rectifica-
tions, each marker trajectory signal was filtered to eliminate
the frequencies not present in human gait. A low-pass
Butterworth 4th order filter with a cut-off frequency of 10 Hz
was used. In the next step, detection of repeating gait phases
was carried out (see Figs. 2 and 3). From the 10-min recording,
510 steps were extracted. In order to meet the requirements of
the presented function fitting algorithm, additional cubic
spline interpolation was performed to multiply the number of
measurement points by 5 to about 650 data points. As a
reference marker for determining the successive gait steps
(phases), the one placed on the left ankle of the subject was
used (labeled ‘‘LAnkleOut’’, according to the OptiTrack
Baseline protocol placed on the lateral end of the malleolus
bone). The above data processing procedure was implemented
in the SciLab package (open-source MATLAB alternative). The
whole processing procedure is presented in Fig. 4.

Trajectories of the left ankle marker were also used to carry
out the desired fitting procedure within the intermediate
model. The basic problem was to find the accurate fit of the
averaged X(t), Y(t) and Z(t) trajectories within the intermediate
model when the proper mechanical model was absent. As an
example of typical biomechanical data analysis, also hip, knee
and ankle joint angles were processed. We demonstrate and
ers and EMG electrodes during normal gait on the treadmill; (b)
rkers.

 experimental validation of walking processes. Biocybern Biomed Eng
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Fig. 2 – Vertical position of the left leg ankle marker during one step in the OY axis direction.

Fig. 3 – Vertical position of the left leg ankle marker after extracting 200 steps realized along the OY axis.

Fig. 4 – Measurement process and data handling.
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Fig. 5 – (a) The randomly taken trajectories recorded along
the OX axis. (b) The distribution of the slopes for OX-
trajectory calculated according to Eq. (18). The cyan line
corresponds to the ordered measurements. Two blue lines
demonstrate the division of all measurements on three
clusters in accordance with the 3-sigma criterion
explained in the text. (c) After integration of the SRA
depicted in the previous figure (cyan line) we obtain a bell-
like curve. The red line demonstrates the selection of all
measurements on three independent groups (clusters).
After averaging all trajectories, only three averaged
trajectories are obtained according to Eq. (21). The quality
of the realized measurements calculated using Eq. (20)
equals Rt = 71.1%.
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xplain in detail the treatment procedure for trajectories
orresponding to the OX axis. Other trajectories along the OY
nd OZ axes and biomechanical angles data were treated in a
imilar manner.

. Fitting procedure and results

n order to obtain the desired fit we divided the whole
rocedure into the following steps.

.1. The clusterization procedure

onsider the definition of slopes with respect to the mean
easurement

lm ¼ slope hyi; ym
� �� ym�hyi

� �
hyi�hyið Þ;

yi ¼ 1
M

� �XM�1

m¼0

ym; A�Bð Þ ¼
XN
j¼1

AjBj:
(18)

The parenthesis determines the scalar product between
wo functions including j = 1, 2, . . ., N measured data points. It
s assumed here that the initial measurements ym(x), for m = 0,
, . . ., M � 1, coincide approximately with the functions Fm(x)
ym xð Þffi Fm xð Þ �

appearing in equations (16). If the plot Slm is
onstructed with respect to a subsequent measurement m and
hen all measurements are rearranged in the descending order
L0 > SL1 > . . . > SLM-1, then all performed measurements can
e divided into three groups. The first ‘‘up’’ group has slopes
ocated in the first interval (1 + D, SL0); the mean group
denoted by ‘‘mn’’) has slopes in the range (1 � D, 1 + D); the
ast ‘‘down’’ group (denoted by ‘‘dn’’) with slopes from (1 � D,
LM � 1). The value D is chosen separately for each set of quasi-
eproducible measurements. This procedure is explained in
ig. 5(a–c).
The bell-like curve (BLC) (which can be fitted with the help

f four fitting parameters a, b, A, B) is derived after the
limination of the corresponding mean value and the
ubsequent integration can be described by the beta-function

d m; a; b; A; Bð Þ ¼ A mð Þa M�1�mð Þb þ B (19)

eflecting the quality of the realized measurements. Quantita-
ively, all three cases can be characterized by the ratio

t ¼ Nmn
Nup þ Ndn þ Nmn

� �
�100% ¼ Nmn

M

� �
�100% (20)

In this case Nup, Ndn and Nmn determine the number of
easurements that form the initial ‘‘up’’, final ‘‘dn’’ and
iddle ‘‘mn’’ part of the beta-distribution, respectively.
In the last expression (20), M determines the total number

f corresponding measurements. Based on the Rt ratio it is
ossible to find three classes of measurements: ‘‘good’’
hen 60% < Rt < 100%, ‘‘acceptable’’ when 30% < Rt < 60%,
nd ‘‘bad’’ when 0 < Rt < 30%. This analysis is shown in Figs. 5
Please cite this article in press as: Nigmatullin RR, et al. Modeling and experimental validation of walking processes. Biocybern Biomed Eng
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(b and c). Therefore, after the clusterization process instead of
Eq. (12) we have approximately

F2 xð Þ ¼ ha1ðxÞiF1 xð Þ þ ha0 xð ÞiF0 xð Þ;

F2 xð Þ � Yup xð Þ ¼ 1
Nup

XNup�1

m¼0

y upð Þ
m xð Þ; 1 þ D < Slm < SL0;

F1 xð Þ � Ydn xð Þ ¼ 1
Ndn

XNdn�1

m¼0

y dnð Þ
m xð Þ; SLM < Slm < 1�D;

F0 xð Þ � Ymn xð Þ ¼ 1
Nmn

XNmn�1

m¼0

y mnð Þ
m xð Þ; 1�D < Slm < 1 þ D

(21)

Here, the SLm function determines slopes placed in the des-
cending order and the parameter D associated with the value
of the confidence interval is selected separately for each specific
set of measurement data. Results of the separation procedure
using expression (21) are shown in Fig. 6.

4.2. The calculation of roots (15)

The second important stage is related to the calculation of
roots according to expression (15). They enter the final fitting
function (16) and are shown in Fig. 7.

4.3. The final fit of the function (16)

The functions entering the triad are strongly correlated.
Therefore, it is instructive to realize the fit only for the Ymn
(t) function which is shown in Fig. 8. Some additional
parameters are collected in Table 1. The calculated amplitudes
Ac 1;2ð Þ

k ; As 1;2ð Þ
k are shown in Fig. 9.

In the same way, we treated the trajectories corresponding
to the OY and OZ axes. Their final fit is shown in Fig. 10(a and b)
along with the desired amplitudes for the OY and OZ
trajectories, respectively. Fig. 11(a and b) correspond to the
OZ trajectory.
Fig. 6 – The calculated triad of the averaged trajectories for the OX
inside the triad.

Please cite this article in press as: Nigmatullin RR, et al. Modeling and e
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Fitting results for biomechanical angles data are presented
in Fig. 12. Other fitting parameters are listed in Table 1. The
complete fitting procedure takes about 1–2 min per data file
using the code written in MathCad 15, after about 2 min of
processing the raw motion capture data in SciLab (see Fig. 4).

5. Discussion and conclusions

In most biomechanical processes, including human body
movements, the set of experiments carried out cannot be
perfectly repeated each time. This means that even if we use
components of the movement of one person, the measure-
ment suffers from the presence of ‘‘uncontrollable factors’’
that would be of interest to the conducted research, but not
always. The latter drawback is also associated with the
frequently used commercial software applied by biomechan-
ics researchers based on raw marker data, when sometimes
averaged or fitted data would be good enough. A good example
of this would be to look for a trajectory controlling the
movement of a human exoskeleton or other type of equipment
that should reproduce human movement. In this case,
averaged trajectories from the series of recordings or fitted
by our method are sufficient. In the latter case, to obtain
validated data, it is necessary to repeat the experiment several
times and in a sense to average the digital data to get ‘‘reliable’’
data. Our approach is validated by other experimentally
obtained data proving its universality and including the field
of biomechanics. This approach has been recently approved by
a study of a single heartbeat, showing its nontrivial application
to demonstrate its effectiveness in quantitative modeling of
ECG data within the proposed theory [12]. In addition, there are
other examples showing powerful feature of the proposed
approach based on the Prony series including the experimen-
tal data associated with typical working conditions of the
injection system in a common rail diesel engine [11]. This
 axis. The small figure above shows the strong correlations

xperimental validation of walking processes. Biocybern Biomed Eng

https://doi.org/10.1016/j.bbe.2019.03.005


401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

Fig. 7 – The distribution of the roots that enter the final fitting function (16) and are calculated in the frame of the functional
least squares method according to Eq. (15).

Fig. 8 – The fit of the Ymn(t) function corresponding to trajectory along the OX axis. The values of the relative error together
with other parameters are listed in Table 1.

Table 1 – Additional parameters that enter to the fitting function (16).

Axes True value of the period (Ttr) Range (k1) Range (k2) A0 Range (Atot) RelErr (%) Final mode K

OX 0.70395 0.99562 0.50452 0.11286 0.41876 0.27021 6
OY 0.92134 1.01 0.54473 0.08609 0.31767 0.19829 6
OZ 0.92134 1.002 0.36216 0.46306 0.96584 0.0678 6
Hip 77.1309 1.25 0.41 0.9161 29.7164 1.17939 4
Knee 77.1309 1.19 0.75 20.8911 118.59 0.418289 6
Ankle 77.1309 1.35 0.62 2.3519 88.2102 1.87778 10

The operator ‘‘Range’’ is defined by conventional relationship Range( f) = Max( f) � Min( f). The column 6 determines the total range for all
amplitudes that enter in (16). The 7th column determines the value of the fitting error that fit (16) to the averaged values of the trajectories Ymn
(t).
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Fig. 9 – The distribution of the Ac 1;2ð Þ
k ; As 1;2ð Þ

k amplitudes that enter the fitting function (16) corresponding to the trajectory
along the OX axis.

Fig. 11 – (a)The fit of the Ymn(t) function corresponding to
the trajectory along the OZ axis. The values of the relative
error together with other parameters are given in Table 1.
(b) The distribution of the amplitudes Ac 1;2ð Þ

k ; As 1;2ð Þ
k that

enter the fitting function (16) corresponding to the
trajectory along the OZ axis.

Fig. 10 – (a)The fit of the Ymn(t) function corresponding to
the trajectory along the OY axis. The values of the relative
error together with other parameters are given in Table 1.
(b) The distribution of the Ac 1;2ð Þ

k ; As 1;2ð Þ
k amplitudes that

enter the fitting function (16) corresponding to the
trajectory along the OY axis.

b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g x x x ( 2 0 1 8 ) x x x – x x x 9

BBE 346 1–11

Please cite this article in press as: Nigmatullin RR, et al. Modeling and experimental validation of walking processes. Biocybern Biomed Eng
(2019), https://doi.org/10.1016/j.bbe.2019.03.005

https://doi.org/10.1016/j.bbe.2019.03.005


m
c
p

a
r
c
b
fi

A
m
d
s
F
a
b
a
fi

f
c
p

c
e

d
a
T
w
t
r
p
r
S

g

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

Fig. 12 – The fit of the Ymn(t) function corresponding to hip, knee and ankle joint angles along medio-lateral direction (OX
axis). The value of the relative error together with other parameters are given in Table 1.
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eans that our approach is validated even for more complex
ases and even for instabilities occurring in the measurement
rocess.
It should be emphasized that our theoretical background

llows us to describe the experiment associated with quasi-
eproducible data reflecting self-similar properties of a wide
lass of complex systems including those from the field of
iomechanics. In addition, the problem is reduced to a set of
tting parameters belonging to the segment of the Prony series.
nother advantage is that the analytically derived ‘‘best fit’’
odel allows for its employment in other approaches aimed at
escribing many dynamical phenomena of the human body
egments based on ordinary non-linear differential equations.
or example, it may play an important role in the adaptation of
 control system while carrying out the human postural
alance. A robust control strategy including the role of knee,
nkle and hip joints based on the analytically developed ‘‘best
t’’ model ensures low numerical costs of simulation of the
unctioning of these joints. It also minimizes the efforts of the
entral nervous system to stabilize the body mass center in the
resence of small disturbances in the body balance [15].
As presented in previous sections, the fitting procedure

onsists of a number of processing steps that lead to an
quation which represents (fits) the repetitive raw input data.
The mean time of total processing, from raw motion capture

ata file to a fitting function was about 3–5 min per data file. This is
 relatively long time for data processing but it can be shortened.
he reconstruction process takes about 1 min to obtain raw data
ith the original frequency from the fitting function. The most
ime-consuming point is the search of the minimum value of the
elative error surface – expression (17). The authors see the
ossibility of shortening the calculation time (fitting and
econstruction) after optimizing the code and transferring it from
ciLab and MathCad to the MATLAB environment.
The calculated percentage ratio (Eq. (20) and Fig. 5(a–c)) is a

ood predictor of the quality of the measurement process in
Please cite this article in press as: Nigmatullin RR, et al. Modeling and
(2019), https://doi.org/10.1016/j.bbe.2019.03.005
terms of biomechanics and stability of the analyzed movement.
In this case, we define stability as the ratio of repeatability of the
movement. The activity of walking on the treadmill is
characterized by constant velocity and constant external
conditions such as no obstacles on the walking surface and a
flat surface that provides secure support for every step. Under
such conditions, any deviation from the average trajectory of
movement means certain instability of this movement.

The presented results show that both the data of the 3D
marker position and of the three joint angles (hip, knee and
ankle), typical for biomechanical analysis, can be parameter-
ized using the described fitting method, with a satisfactory
quality of about 1% of the mean error (see Table 1).

It has been shown that IM can be used to store a
representative sample of complex biomechanical movement
trajectories (or its larger part) in a parametric form, instead of
raw measurement data (see Eq. (16) and Figs. 8, 10a and 11a).
This important peculiarity will save space for stored data and
speed up their subsequent analysis, processing and browsing,
after significant optimization of algorithms.

Finally, it is also worth noting that the proposed calculation
scheme has a wide range of applications and can be used to
parameterize any complex trajectory in 3D space after
preliminary filtering.
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