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A B S T R A C T

The paper deals with the studies of the forced impacting oscillator when taking into account the dry and
viscous resistance as well as the generalized Hertz contact law during an impact. Numerical investigations
of the mathematical model are accompanied by validations obtained with an experimental rig. To study the
solutions of the mathematical model, the sequences of impacts, when the system evolves in periodic and
chaotic modes, is used. The statistical properties of chaotic impact events are considered in detail. In particular,
successive iterations of the impact map, autocorrelation function and coefficient of variation for the impact
train, histograms for the inter-impact intervals and values of obstacle penetrations are analyzed. It is revealed
that the impact sequence is stationary but non-Poissonian and contains temporal scales that do not relate to
the external stimulus. This sequence can be described by a bimodal distribution. The findings are confirmed
by the analysis of experimental data.

0. Introduction

Impacts phenomena are diverse and widely encountered in mechan-
ical systems. The studies of such systems can be realized within the
framework of nonsmooth dynamical models [1,2] where the limiters
of motion are introduced. Due to nonsmoothness, the consideration of
these mathematical models can lead to the class of strongly nonlinear
models characterized by special behaviors [2–5].

As it has been shown in a wide range of works [6–9], impacting sys-
tems subjected to external excitation possess harmonic, subharmonic,
chaotic and other complicated motions. The bifurcation phenomena
both specific (i.e., various types of grazing bifurcations [10,11]) and
such that are inherent in smooth systems [12] take place when the
control parameters are varied. To date, the general foundations of one-
degree-of-freedom impacting systems, their theoretical description and
experimental validation have been developed essentially.

However, the peculiarities of the impacting system in the case of
presence of multiperiodic or chaotic regimes are still poorly inves-
tigated. To deeper understand the nature of complicated regimes, it
can be useful to analyze the sets of discrete events extracted from
the system’s dynamics. Events or spikes, as they are referred to by
neuroscientists [13], can be identified as abrupt changes in the system
variable [14]. To generate spike sequences, as a rule, the threshold-
crossing and integrate-and-fire techniques [15,16] are employed. In
the case of an impacting system, a natural threshold (i.e., a limiter)
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is present. When the system trajectory crosses the level defined by the
limiter, the temporal moments of impacts form the impacting map [17],
statistical properties of which are extremely interesting (especially in
chaotic modes).

It should be noted that impact sequences can be associated with
Poincaré sections, which are simply defined in the case of harmonic
external loading. As for the advantages of impact sequences [18], let
us consider the situation when the loading is unharmonic. In such
a case, the Poincaré section technique for nonautonomous models
requires some modifications, whereas the studies of impacts can be
carried out in the same manner as in the case of harmonic excitation.
Moreover, inter-impact intervals allow one to assess the dynamical and
geometrical properties of chaotic attractors [19].

Impact events (as well as the displacement or velocity of a cart) are
part of information directly produced by the oscillating system. The
searching for regularities hidden in this information motivates us to
consider discrete event sequences and develop proper tools for these
purposes.

The present paper is organized as follows. In Section 1, we describe
the experimental rig and the corresponding mathematical model. Some
previously obtained results regarding the validation of the model and
the bifurcation scenario are presented as well. In Section 2, the con-
struction of impact trains and their statistical analysis are described.
The final section contains the concluding remarks.
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Fig. 1. The schematic representation of the experimental stand [20].

1. Experimental stand and its mathematical description

The study is based on the dynamical regimes observed on the
experimental rig comprising an impacting oscillator. Since the rig has
been already presented in detail in the reference [20], the present
paper includes only give a short description. The experimental stand
corresponds to the physical model presented in Fig. 1 and consists
of a cart moving along a guide, integrated with a linear ball bearing
and Hall effect sensors. The cart is mounted elastically with springs,
and the external forcing is generated by a rotating unbalance mounted
on a stepper motor with an encoder placed on the cart. The position
of the moving body is limited by an obstacle placed on the support.
The bumpers are made of steel and have locally, near the impact
point, forms of balls of radii equal to 25 mm. Moreover, the centers
of curvatures of both bumpers and the center of the contact point lie
on one line parallel to the direction of motion of the cart.

The experimental data is collected and processed with the use of
the National Instruments equipment and software. To describe the
behavior of the mechanical system from Fig. 1, the mathematical model
is developed first. It is assumed that the moving body has a total mass
𝑚 and its position is described by the coordinate 𝑥. It is connected to
the support by a linear spring with the total stiffness coefficient 𝑘. The
position 𝑥 = 0 corresponds to the resultant force in the springs equal
to zero and a gap 𝑥𝐼 between the two bumpers on the right side of the
cart. The angular position of the disk mounted on the cart is equal to 𝜑,
while its angular velocity 𝜔 = 𝜑̇ is assumed to be constant or varying
very slowly. The unbalance 𝑚0 is placed on the radius 𝑒 of the disk.

As far as the description of the impact is concerned, it is worth
mentioning that one can implement models assuming either hard im-
pacts (instantaneous events), which are often based on the coefficient
of restitution, or the so-called ’’soft’’ collisions. In the case of soft
collisions, one should distinguish between mechanical systems with soft
obstacles and systems with collisions between hard elements, usually
modeled according to the Hertz model as locally deformable elements.
The latter case has been considered in some recent works [8,9] and in
our studies [20].

To describe the contact force during the impact with a compliant
obstacle, a combination of a spring and a damper element (the Kelvin–
Voigt viscoelastic model) is used. In order to avoid linear model’s
drawback related to the jump of the impact force at the beginning
and the end of the contact, Hunt and Crossley [21] have proposed
the nonlinear generalization of the linear model in the form 𝐹 =
𝑘ℎ𝑛1 + 𝑏ℎ𝑛2 ℎ̇𝑛3 , where 𝑛1, 𝑛2, 𝑛3 are some parameters, 𝑘 is the stiffness
coefficient, 𝑏 is the damping coefficient, and ℎ stands for the relative
penetration depth.

The total component of resistance, proportional to velocity of both
the spring and the linear bearing, is modeled in the form of a viscous
damper with the coefficient 𝑐. It is also assumed that there exists
some dry-friction-like component of resistance between the cart and
the guide, inside the linear bearing, but it does not depend on normal
load. The governing equations of the physical model take the following
form

𝑚𝑥̈ + 𝑘𝑥 + 𝐹𝑅(𝑥̇) + 𝐹𝐼 (𝑥, 𝑥̇) = 𝑚0𝑒𝜔
2 sin𝜑, (1)

where the resistance force is described by the formula

𝐹𝑅 = 𝑐𝑥̇ + 𝑇 𝑥̇
√

𝑥̇2 + 𝜀2
,

whereas the impact force is 𝐹𝐼 = 𝑘𝐼 ((𝑥 − 𝑥𝐼 )𝑛1 + 𝑏(𝑥 − 𝑥𝐼 )𝑛2 sgn𝑥̇|𝑥̇|𝑛3 )
for 𝑥 − 𝑥𝐼 ≥ 0 and (𝑥 − 𝑥𝐼 )𝑛1 + 𝑏(𝑥 − 𝑥𝐼 )𝑛2 sgn𝑥̇|𝑥̇|𝑛3 ≥ 0, and 𝐹𝐼 = 0
otherwise. In the work [20], the following set of parameters has been
estimated or assumed a priori, leading to a good agreement between
numerical simulations and experimental investigations: 𝑚 = 8.735 kg,
𝑚0𝑒 = 0.01805 kg⋅m, 𝑘 = 1418.9 N∕m, 𝑐 = 6.6511 N⋅s/m, 𝑇 = 0.63133
N, 𝜀 = 10−6 m∕s, 𝑘𝐼 = 2.3983 ⋅ 108 N/m3∕2, 𝑏 = 0.8485 m−𝑛3 s𝑛3 ,
𝑛1 = 𝑛2 = 3∕2, 𝑛3 = 0.18667. In the paper [20], the model (1) specified
by this set of parameters is called the model BC and is the optimal one
from a group of models tested in the work [20].

The comparison of experimental and numerical studies is presented
in Fig. 2, which shows two bifurcation diagrams obtained numerically
and experimentally for the obstacle position 𝑥𝐼 = −2.086 ⋅ 10−3 m,
based on Poincaré maps defined by sections 𝜑 = 2𝜋𝑖, 𝑖 = 1, 2, 3… . In
the present study, the abovementioned parameters were used for the
position of the limiter 𝑥𝐼 = −2.086 ⋅ 10−3 m.

It should be mentioned that the paper [20] contains the description
of experimental investigations of an oscillating system with impacts, the
construction and validation of different mathematical models as well as
bifurcation diagrams exhibiting the general properties of the observed
oscillating regimes.

In the present research, we study the mathematical model which
fits the experiment best. Moreover, we develop the tools for examining
the attractors (especially chaotic), namely their statistic properties,
with the use of the impact sequences. It turns out these sequences
are extremely informative. In combination with their simple extraction
from the physical model, the impact sequences can have great potential
for future applications.

Fig. 2. Bifurcation diagrams obtained experimentally (left panel) and numerically (right panel) for increasing 𝜔 and the obstacle position 𝑥𝐼 = −2.086 mm [20].
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Fig. 3. The construction of the impact map and inter-impact intervals (a) and the bifurcation diagram for inter-impact intervals (b) at decreasing 𝜔.

2. Studies of properties of attractors

In this section, we investigate the properties of attractors and their
bifurcations via sequences of points generated by the stops impacts.
These sequences form an impact map and can be regarded as a sort
of Poincaré map. To construct the map, we analyze the profile of 𝑥
component, observing the intersections of the increasing trajectory with
the level 𝑥 = 𝑥𝐼 (Fig. 3a). The time moments of impacts define the
beginning of the collision and can be easily derived numerically.

As a result, the impact map can be extracted as a set of points {𝑇𝑗 ∶
𝑥(𝑇𝑗 ) = 𝑥𝐼} from the temporal profile of 𝑥 during the numerical inte-
gration of the model (1). It is obvious that periodic regimes produce the
periodic sequence {𝑇𝑗}, whereas chaotic attractors generate stochastic
sequences. These points define the inter-impact intervals 𝑆𝑗 = 𝑇𝑗+1−𝑇𝑗 .

Using the impact map, the rearrangement of the phase space of
Eq. (1) can be studied by means of the bifurcation diagram when model
parameters vary. To make it, one can put the control parameter 𝜔
along the horizontal axis and the values of interval width 𝑆𝑗 along the
vertical one. The diagram obtained for the frequency 𝜔 decreasing from
40.86 rad/s is plotted in Fig. 3b.

From Fig. 3b it follows that reverse period doubling bifurcations
occur at frequencies close to the initial 𝜔 = 40.86 rad/s. The left part of
the diagram exhibits a specific type of bifurcations met in the models
with impacts. In particular, around 𝜔 = 23 rad/s, additional branches of
the bifurcation curve appear below the main curve corresponding to the
limit cycle. In this case, we deal with the grazing bifurcation [10], when
the trajectory touches the impact point with zero velocity as it is shown
in the insets in Fig. 4. The phase portraits presented in Fig. 4 correspond
to attractors just before the bifurcation at the external frequency 𝜔 =
23.05 rad/s (Fig. 4a) and right after it, at 𝜔 = 23.03 rad/s (Fig. 4b).
Note that, according to Fourier spectral analysis, the former regime
possesses the modes 𝜔 ⋅𝑘, 𝑘 = 1, 2,… , whereas in the latter regime, 𝜔 ⋅𝑘
is accompanied by 𝜔1 < 𝜔 and combinational frequencies 𝜔 ⋅ 𝑘±𝜔1. As
a result, one obtains a regime described by the quasiperiodic function
nonlinearly dependent on two periodic functions of periods 2𝜋∕𝜔 and
2𝜋∕𝜔1 [22].

2.1. Periodic regime

Let us now employ the impact map to study the properties of
the periodic attractor existing at 𝜔 = 23.03 rad/s (Fig. 4b). Let us
integrate the model (1) over 100 s to get the sequence 𝑇𝑗 containing 489
elements. Note that Mathematica’s procedure for capturing the curves
intersections requires a specific value of MaxStepSize, i.e., MaxStep-
Size = 0.01 for a periodic sequence and MaxStepSize = 10−5 for
chaotic impact trains in order to avoid omitting the impacts.

When constructing the sequence of impact intervals {𝑆𝑗} by the
aforementioned method, one can arrange the successive iterations
𝑆𝑗+1 = 𝑓 (𝑆𝑗 ) (Fig. 5a).

In Fig. 5a it can be seen that only four different points are dis-
tinguished. This means that only four distinct intervals (or temporal
scales) are present in the interval sequence. The histogram built for
these points shows that the number of 𝑆𝑗 of each width is equal. It
is worth mentioning that, together with the analysis of the Fourier
spectrum and the classical Poincaré section, the impact map allows one
to supplement the information on the trajectory behavior. In particular,
it is obvious that the sum of four arbitrary successive elements of 𝑆𝑗
equals the period of the trajectory. In other words, the sum of four
coordinates of the histogram bins gives 0.8184.

2.2. Chaotic regime

Consider the properties of the impact map in a chaotic regime when
statistical features of the regime manifest clearly. Let us chose the
case for 𝜔 = 40.86 rad/s (period 0.154). Recall [20] that, after some
transition time, the trajectory tends to the chaotic attractor, the phase
portrait of which is depicted in Fig. 6a. The corresponding Fourier
spectrum for this chaotic trajectory (Fig. 6b) possesses one substantial
extremum at the frequency 𝜔 of forcing, whereas at smaller frequencies,
the spectrum contains a dense set of excited frequencies. Also, an
important characteristic of the chaotic regime is the Poincaré map
coinciding with the set of points 𝑥(𝑡) in the section planes 𝜑 = 2𝜋𝑖,
𝑖 = 1, 2,… . Grouping them into the sequence {𝑥𝑗 ; 𝑥𝑗+1}, we obtain
Fig. 7a [20].

After rearranging the sequence 𝑆𝑖 into the set {𝑆𝑗 ;𝑆𝑗+1}, a simi-
lar sequence can be constructed for the impact map (Fig. 7b). Both
diagrams have a fractal nature, but the successive iterations form
separated branches of the impact map. Note that a similar shape of
the map is obtained in the for the return time map in the Rossler
system [16] and the pendulum system from [18].

In this case, unlike the periodic regime, the sequence of points
generated during the impacts is stochastic. Therefore, the statistic
properties of these impacts train 𝑇𝑗 are in question. Considering the
number 𝑁(𝑡) of impacts in the time interval (0, 𝑡), we lead to studying
the distribution of 𝑁 under the auxiliary assumptions: stationarity,
independent increments and orderliness [23].

At first, let us check the stationarity of 𝑇𝑗 . For this purpose, the
number of impacts should be assessed at different intervals of time.
We take the total time interval 𝑡 = 400 s and divide it into five equal
intervals. Counting the number of impacts in each time interval, one
can obtain {572, 571, 579, 579, 574} impacts (the total number of
impacts is 2875). Since the number of impacts is almost equal in all
intervals, we can state that the process is stationary.

We also suppose that the number 𝑁 depends only on the length of
the time interval and impacts do not appear in groups, providing the
implementation of other assumptions concerning the stochastic process.
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Fig. 4. The periodic trajectory at 𝜔 = 23.05 rad/s just before the grazing bifurcation (a) and right after it (b). The insets show the parts of profiles where the grazing occurs. The
Fourier spectrum (c) for the attractor depicted in panel (b). The symbols 𝑎, 𝑏, 𝑐, 𝑑, 𝑓 designate the frequency combinations 𝜔 ± 𝜔1, 2𝜔 ± 𝜔1, and 3𝜔 − 𝜔1.

Fig. 5. Successive iterations (a) of the Poincaré return map for the periodic trajectory at 𝜔 = 23.05 rad/s and the corresponding histogram (b).

Fig. 6. The phase portrait (a) of the chaotic attractor and the corresponding Fourier spectrum (b) of the 𝑥-component.
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Fig. 7. Successive iterations of the Poincaré return map (a) and the impact map (b).

Fig. 8. The coefficient of variation 𝐶2
𝑉 for numerical (a) and experimental (b) models.

Fig. 9. The relative frequency histogram of inter-impact intervals and its smoothed version estimated numerically (a) and experimentally (b).

As it is well known, a random variable 𝑁 having the aforementioned
properties is described by the Poisson distribution

𝑃 (𝑁(𝑡) = 𝑛) = (𝜆𝑡)𝑛 exp(−𝜆𝑡)∕𝑛!,

where 𝜆 is the rate of Poisson process [23].
Note that many natural temporal processes obey this law, for in-

stance, the number of earthquakes, 𝛽-particles after radioactive decay,
spikes in neural activity. To define the type of distribution, it is useful
to investigate the coefficient of variation 𝐶𝑉 [13]

𝐶2
𝑉 = 𝐷[𝑁]

𝑀[𝑁]
, (2)

where 𝐷[𝑁] and 𝑀[𝑁] are the variance and the expected value of the
variable 𝑁 , respectively.

For the Poisson process, 𝐶2
𝑉 = 1 [23]. For the model (1), estimation

of 𝐶2
𝑉 with the help of a sequence of inter-impact intervals results in

Fig. 8a. It follows from the figure that for a large sample, the quantity
𝐶2
𝑉 tends to its limit value equal about 0.03. Since 𝐶2

𝑉 (𝑖 > 2000) < 1,
then the impact sequence behaves more regularly in comparison to the
Poisson process [13].

The coefficient of variation 𝐶2
𝑉 is also derived for the experimental

sample of inter-impact intervals (Fig. 8b). For large 𝑖, the profile of 𝐶2
𝑉

stabilizes in the vicinity of 0.03, that is a little bit higher than for the
numerical inter-impact intervals. Nevertheless, the general conclusion
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Fig. 10. The autocorrelation function (on the left) and its Fourier transform (on the right). The upper panels correspond to derivations of the numerical model, whereas the lower
panels concern the experimental data.

on the similarity of behavior of both inter-impact intervals sequences
is valid.

Let us consider the relative frequency histogram for inter-impact
intervals, providing the estimation of a probability density function of a
random variable, now. Using the proper tools of Mathematica software,
we arrange 2875 intervals in ten bins and obtain the histogram as
shown in Fig. 9a. The smooth line connecting the histogram bars clearly
highlights two distinct maxima at points 𝑇1 = 0.05 s and 𝑇2 = 0.2 s.
𝑇1,2 can relate to some temporal scales in the chaotic profile of 𝑥.
Note that external forcing is characterized by the period 𝑇 = 2𝜋∕𝜔 =
0.15 s which does not coincide with 𝑇1,2. It is also worth noting that
the histogram looks like a bimodal distribution, which can be often
found in nature [16,24,25]. Until now, the problem of approximating
the derived bimodal distribution has not been considered, although
some progress has been achieved in this field [24]. Let us construct
the relative frequency histogram (Fig. 9b) for the experimental data.
This histogram possesses the substantial maximum for long intervals
and weakly expressed extremum for short intervals. Therefore, the
numerical and the experimental histograms have similar shapes. It
should be noted that the experimental data contains noisy components.
However, as it is shown in [25], incorporation of noise in time series
leads to degeneration of a bimodal distribution into a unimodal one.
Among important tools for analysis of noisy signals, one can mention
studying the autocorrelation function (ACF) and its Fourier spectrum.
Recall that the autocorrelation concerns the probability to find two
impacts at a certain distance [13]. From the signal analysis theory, ACF
defines the similarity of temporally lagged parts of a signal. Thus, the
ACF is defined as follows

ACF(𝑘) = 𝑛
𝑛 − 𝑘 + 1

∑𝑛−𝑘+1
𝑖=1 (𝑆𝑖 − ⟨𝑆⟩)(𝑆𝑖−𝑘+1 − ⟨𝑆⟩)

∑𝑛
𝑖=1(𝑆𝑖 − ⟨𝑆⟩)2

, (3)

where ⟨𝑆⟩ =
∑𝑛

𝑖=1 𝑆𝑖∕𝑛 is the mean value. With the use of the relation
(3), we derive ACF and their Fourier transformations for inter-impact
intervals obtained numerically (the upper panel in Fig. 10) and ex-
perimentally (the lower panel in Fig. 10). There are two peaks in
the Fourier spectrum for the numerical inter-impact intervals and two
weakly prevailing (due to the presence of noise) extrema in the exper-
imental inter-impact intervals. These peaks can be associated with the

Fig. 11. The relative frequency histogram for the penetrations of the obstacle.

temporal scales in the signal. In particular, the scales can be related to
the intervals providing the maxima in the relative frequency histograms
(Fig. 9).

Analyzing the profile of 𝑥 component in Fig. 3a, different heights
of peaks (spikes above the level 𝑥𝐼 ) are observed. This tells us that the
penetrations of the obstacle are different. Consider the distribution of
a random variable 𝐻𝑗 , which is a set of maximal values of obstacle
penetrations during an impact. To derive the sequence 𝐻𝑗 , we estimate
the moments of time when the maximum of 𝑥 is reached, i.e. 𝑥′(𝑡𝑗 ) = 0
and 𝑥(𝑡𝑗 ) > 𝑥𝐼 . Then, 𝐻𝑗 = 𝑥(𝑡𝑗 )−𝑥𝐼 . Let us form the relative frequency
histogram of the corresponding values 𝐻𝑗 . The resulting histogram pre-
sented in Fig. 11 possesses one essential maximum corresponding to the
deepest penetration of the obstacle. There are also a few maxima almost
twice smaller than the main peak. Thus, the observed distribution is not
unimodal but multimodal.

3. Concluding remarks

We have studied the dynamics of the forced impacting oscillator
by examining the sequences of impacts generated by stop impacts. It
has been revealed that this quite simple mechanical system generates
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extremely interesting impact trains, especially in the mode of chaotic
vibrations. In the frequency domain, corresponding to the existence of
periodic solutions, the characteristics of regimes and their bifurcations
(in particular the grazing bifurcation) have been identified. When the
chaotic regime occurs, the impact sequence is chaotic and is studied
from the statistical point of view. At first, the construction of successive
iterations of the impact map leads to the discontinuous locus of points
corresponding to the beginning of impacts, unlike the classical Poincaré
section for this model. Note also that the inter-impact intervals form the
stationary non-Poissonian stochastic sequence and obey the bimodal
distribution. A similar distribution is observed in the experimental data
arranged in the histogram. The multimodal distribution is also revealed
in the sequences of the obstacle penetration. The correlation analysis
of these sequences has revealed the presence of temporal scales. All
these features have been identified in both numerical and experimental
investigations.
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