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A B S T R A C T

The topological optimization of composite structures is widely used while tailoring materials to achieve the
required engineering physical properties. In this paper, the problem of topological optimization of the micro-
structure of a composite aimed at the construction of a material with most effective values of the bulk modulus of
elasticity and thermal conductivity taking into account competing mechanical and thermal properties of the
materials included in the composite is defined and solved. A two-phase composite consists of two base materials,
one of which has a higher Young modulus but lower thermal conductivity, while the other has a lower Young
modulus but higher thermal conductivity. A new class of problems for composites containing material pores or
technological inclusions of different shapes is considered. Effective thermoelastic properties are obtained using
the asymptotic homogenization method. A modified solid isotropic material with penalization (SIMP) model is
used to regularize the problem. The problem of the isoperimetric constraints is solved by the method of moving
asymptotes (MMA). The influence on optimal topology of the composite in the presence of two competing
materials, and optimality criteria using linear weight functions are investigated. Pareto spaces that provide deep
understanding of how these goals compete in achieving optimal topology are constructed.

1. Introduction

The use of new composite materials requires a theoretical back-
ground to predict microscopic/effective properties of composites based
on the knowledge of their material components. It is well known and
documented that cell bulk fractions, shapes, and orientation are im-
portant factors in the manufacturing of composite materials with the
effective properties.

The topological optimization of composite structures is a widely
employed method of tailoring materials, used to achieve their improved
and required physical properties. In the recently published papers and
monographs, one can find that the asymptotic homogenization ap-
proach plays a key role in achieving reliable averaging of the complex
microstructural behaviour of an elastic medium [1–4]. An interesting
way to compute modified Young modules in both directions for a two-
dimensional crystal body with a square lattice using the continuum
approach of continuum mechanics is described in Ref. [43].

It appears that the most widely recognized and used methods for the

topological optimization of structures are explicit parametrization
methods, which are known as density-based methods. These methods
are based on the subdivision of the analyzed mechanical object into
finite elements. Instead of a set of properties, each finite element con-
tains only one design variable, which is often understood as the finite
element material density e. The main idea of this approach is to define
the finite element parameters as design variables and derive a re-
lationship between local (for instance, density) and global physical
properties of the material (for instance, Young modulus or thermal
conductivity) in the computational process aimed at finding parameters
in the optimization process. To design microstructures composed of
different materials, the SIMP (Solid Isotropic Material with
Penalization) method [5], the evolutionary structural optimization
(ESO) [6], and the level set method (LS) [7–10] are used. In particular,
the use of the homogenization with SIMP is becoming increasingly
popular and useful.

By virtue of numerous algorithms aimed at finding an optimum,
such as the method of optimal criterion (OC) [11], successive linear
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programming (SLP) or the method of moving asymptotes (MMA) [12],
the optimized material localization allows us to achieve the required
functional material characteristics. The current research has focused on
solving problems aimed at either optimizing the constructions [3,6,8]
or getting functional properties of materials [13–19]. When designing
composite structures, either elastic or thermal/thermoelastic properties
are usually taken into account. In the case of the elasticity criterion,
only the mechanical load is considered [3,39], whereas thermal criteria
take into account the thermal load [20,21], and thermoelastic criteria
cover both mechanical and thermal loads [22,23].

It should be emphasized that there are two approaches that include
both thermal and mechanical criteria in topological optimization pro-
blems. The first one considers the material as thermoelastic without the
coupling between the thermal and mechanical fields in the topological
sense (the thermal load is converted into mechanical load) [22,23]. In
this case, the structure is controlled by the mechanical characteristics.
On the other hand, the second approach takes into account both the
heat and mechanical fields. Namely, the temperature field is considered
first, and then it is matched with the field of deformations. In the
mentioned cases, the design can be guided either by the mechanical
target function [23] or by coupled mechanical and heat functions [24].

The qualitative seminal results in the problem of design of materials
were obtained by Sigmund [15,16] who introduced the method of in-
verse optimization. It is assumed that the composites are built from
identical periodic base cells. The methodology of the topological opti-
mization was employed in the case of the proper distribution of one-
component [14] or multi-phase materials [18,19] in order to achieve
the required physical properties. It is known that direct homogenization
makes it possible to consider global properties based on a structure of
the elementary cell or the representative volume [25]. On the other
hand, the inverse homogenization is aimed at searching the optimized
material distributions within the elementary cell [14]. Differences be-
tween the global homogenized material properties and their target
values are minimized with the help of topological optimization methods
[14,16,19]. In this context, the elastic and heat material properties are
considered separately.

Optimal microstructures of materials have been developed in the
problems of maximizing bulk and shear moduli [19,26]. Using this
approach, novel composites with negative Poisson's coefficient [14] and
materials with extreme or negative coefficients of thermal expansion
[16] have been designed, which demonstrated wide possibilities of this
method in the design of elastic and thermoelastic composites.

On the other hand, in many cases, the heat transfer and elastic
properties of materials compete with each other [27]. Hence, it is often
difficult to achieve both high heat transfer and high stiffness simulta-
neously. For this reason, it is important to develop a procedure that
would work effectively in spite of the conflicting objectives. In general,
the multi-target optimization is difficult or even impossible to obtain a
global optimum for all expected design targets. However, in the opti-
mization process, it can be seen that at some stage, any further im-
provement of one criterion requires a compromise with at least one
other criterion. A set of such solutions determines the Pareto space
which consists of a series of points within the solution space [28],
where for each of the mentioned solutions it is impossible to further
improve some target functions without worsening at least of one of the
remaining target functions. Thus, it is necessary to gather as much in-
formation about the Pareto space as possible to choose the best solu-
tion.

Torquato et al. [29] combined heat transfer and electrical transfer
with equal weight to propose the optimal design of manufacturable 3D
composites with multifunctional characteristics. Yoo et al. [30] used
various weight coefficients to find optimal topologies of the Pareto
solution of a swing arm type actuator in accordance with the flexibility
criteria and eigenfrequency. The mentioned works show that the use of
the weight functions is the best method to obtain a set of Pareto solu-
tions.

Seresta et al. [31] considered a wing box design optimization by
employing composite laminates with blending constraints based on the
inclusion of fibre orientation angle of the layers and the total thickness
of the laminate as design optimization variables. They have shown that
the optimum design has better continuity of the laminate lay-ups.

The multi-criteria (multi-objective) optimization of laminated
composite structures under technological constraints was discussed by
Bassir et al. [32]. The main method based on the NSGA-II program
exhibited its efficiency in obtaining a uniform spray of the Pareto so-
lutions.

Lee et al. [33] developed a multi-objective approach using a parallel
multi-objective generic algorithm to study a stacking sequence design
optimization for a multilayer composite plate. The used methodology
matched a robust multi-objective evolutionary algorithm and a finite
element analysis with a parallel optimization system. It has been shown
analytically that Pareto optimal solutions offer a set of selections for
engineers to improve the composite structure in terms of the industrial
needs (cost) and mechanical properties (weight and stiffness).

Ning et al. [34] developed an experimental method of additive
manufacturing using the fused deposition modelling, which affected the
tensile strength, Young's modulus, yield strength, flexural stresses, and
toughness of reinforced thermoelastic composites.

Madeira et al. [35] proposed the optimal design of laminated
composite panels with constrained layer damping aimed at minimiza-
tion of weight and maximization of model damping. In particular,
trade-off Pareto optimal solutions and the respective treatment con-
figurations were obtained and analyzed.

Salem and Donaldson [36] developed and studied a methodology
for a combined weight and cost optimization of sandwich plates with
hybrid composite face sheets and a foam core. The used multi-objective
optimization technique allowed them to minimize both the weight and
the cost of the hybrid sandwich plate simultaneously. The Pareto
frontier trade of the curve was generated by optimizing a sequence of
combining weight and cost objective functions.

Seretis et al. [37] carried out the multi-parameter design of ex-
periments based on the multi-objective curing cycle optimization for
glass fabric/epoxy composites by using the Poisson regression and
generic algorithm. The authors achieved the estimation of the curing
parameters for optimum tensile and flexural performance with high
accuracy, and they demonstrated that the Poisson regression theoretical
model can predict the tensile and flexural response of the cured com-
posites accurately.

Passos and Luersen [38] employed the multi-objective optimization
of curvilinear fibre composites in two cases: for a square plate and a
fuselage-like section. The considered problems consisted of three to
twelve variables in order to detect the resulting Pareto front properly.
To overcome the long computational time needed by the finite element
method, the Kriging-based approaches were used.

In this work we define and solve the problem of topological opti-
mization of the composite microstructure in order to construct a ma-
terial with the largest effective values of the Young modulus and
thermal conductivity. The studied two-phase composite consists of two
materials: the first one has high Young modulus and low thermal con-
ductivity whereas the second one is characterized by low Young mod-
ulus and high thermal conductivity.

The work presents the study of the influence of two competing
material properties, i.e. mechanical and thermal, using linear weight
functions. In particular, the problem of construction of the Pareto
spaces yielding an insight into the role of competing material properties
in the optimal topologies is addressed. The paper can be treated as an
extension of our earlier research [39].

The paper is organized in the following way. In Section 2 (3), the
effective tensor of elastic properties (the effective heat transfer coeffi-
cient) of the studied composite with mechanical and heat parameters is
defined. The topological optimization is carried out in Section 4. Nu-
merical results of the topological optimization of a composite made: (i)
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from two composite materials; (ii) with technological holes, and (iii)
with technological inclusions are presented in Sections 5.1. 5.2 and 5.3,
respectively. Concluding remarks (Section 6) sum up the study and the
results obtained.

2. Determination of the effective tensor of elastic properties

In this work, the following assumptions are introduced: the com-
posite is linearly elastic and macroscopically transversely isotropic with
respect to both mechanical and heat parameters. Initial stresses are
absent and the introduced inclusions are homogeneous, linearly elastic,
isotropic, and regularly packed. The matrix is homogeneous, linearly
elastic, and isotropic with respect to mechanical and thermal para-
meters. For composites consisting of linear elastic materials, the gov-
erning differential equations of a homogeneous and microstructural
element are composed of linear elasticity equations.

In the elastic regime, the microscopic behaviour of the elementary
periodic cell made from an anisotropic material can be described by the
effective stress tensor ¯ij and deformation tensor īj of a homogenized
medium. The tensors are coupled by means of the effective elasticity
tensor Cijkl

e .

= C¯ ¯ ,ij ijkl
e

kl (1)

and Cijkl
e depends on the volume fraction of the filler and the micro-

structure of the elementary cell.
We introduce the local coordinate system Y( ) to describe the rapid

changes in properties of the microstructure of the material in the global
coordinate system X( ) in the macro scale. The local coordinate y can be
considered as a fast coordinate which is coupled with x through the
relation =y x/ < <( 1). The displacement of an arbitrary material
point in an elastic body can be approximated using two-scale asymp-
totic series [40,41].

= + + +u x u x y u x y u x y( ) ( , ) ( , ) ( , ) ...0 1 2 2 (2)

Substituting (2) into the equilibrium equations, the tensor of the
effective elastic properties is obtained in the following form

=C
Y

C C
y

dY1 ,ijkl
e

Y
ijkl ijpq

p
kl

q (3)

where Y stands for the area of the elementary cell, p
kl is a periodic

field of the allowed displacements in the case of kl load [40] and it
satisfies the following integral equations with respect to the elementary
periodic cell with periodic boundary conditions

=C
y

v
y

d Y C v
y

d Y Yv, .
Y

ijpq
p
kl

q

i

j Y
ijkl

i

j (4)

Here v stands for the kinematically allowed arbitrary field of

displacements.
Problem (4) is farther solved on the elementary cell by the FEM

(finite element method). Along the boundaries of various phases, the
coupling conditions are formulated. For the problem of a plane stress-
strain state, there are two independent loading cases =kl 11, 12 .
Equation (3) can be recast to the following form

= =C
Y

C C
y

dY C1 ,ijkl
e

Y
ijkl ijpq

p
kl

q
ijkl ij

kl

(5)

where Cijkl denotes the averaged elastic tensor dependent on the
material volume fraction, which is estimated based on the classical
mixture laws; ij

kl denotes the averaged stress tensor on the elementary
cell in the case of kl load. It is easy to notice that ij

kl stands for a
correcting term representing the influence of the material micro-
structure of the elementary cell. Formula (5) can be presented in the
following form

=C
Y

C d Y1 ( )( ) ,ijkl
e

Y
pqrs pq

ij
pq

ij
rs

kl
rs

kl0( ) ( ) 0( ) ( )

(6)

where = +pq
ij

y y
( ) 1

2
p
ij

q

q
ij

p
and pq

ij0 ( ) are linearly independent test de-

formations on the base cell, employed to define the characteristics of
the deformations field pq

ij( ). Here, ij are solutions to the following
problem

C v d Y v V( ) ( )
Y

pq
ij

pq
ij

pqrs rs
kl

Y
0( ) ( )

defined on the elementary periodic cell, and =V v y( )Y stands for
the set of sufficiently smooth functions obtained in Y and exhibiting Y
periodicity.

For 2D problems, there are three test deformation fields that
take the following form: = [1 0 0]pq

0 (11) , = [0 1 0]pq
0 (22) and

= [0 0 0,5]pq
0 (12) [41] (symmetry =pq pq

0 (12) 0 (21) implies reduction in the
number of test fields from four to three).

Let us consider a 2D elementary periodic cell of a symmetric mi-
crostructure (Fig. 1a) made from an isotropic material. In the case of the
plane stress-strain state, the governing equations have the following
form

=
C C
C C

C

¯
¯
¯

0
0

0 0

¯
¯
2¯

.

e e

e e

e

11

22

12

1111 1122

1122 1111

1212

11

22

12 (7)

For the isotropic tensor, the homogenized elastic tensor Cijkl
e has

three components C C C, ,e e e
1111 1122 1212. If initial deformation 0 occurs in

the x-direction ( = = =1, 0, 011
0

12
0

22
0 ), then equation (6) yields

=C
Y

C C C d Y1 ( ) .e

Y
1111 1111 1111 11

(11)
1122 22

(11)

(8)

Fig. 1. Elementary periodic composite cell: (а) the area of topological optimization Y and boundary conditions for case (b,c) on the quarter of the base cell.
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Taking into account initial stresses 0 in the y-direction
( = = =0, 0, 111

0
12
0

22
0 ), one gets

=C
Y

C C C d Y1 ( ) .e

Y
1122 1122 1111 11

(22)
1122 22

(22)

(9)

If we consider shear initial stresses 0 ( = = =0, 0,5, 011
0

12
0

22
0 ),

then formula (6) yields

=C
Y

C C d Y1 ( 2 ) .e

Y
1212 1212 1212 12

(12)

(10)

Now, from (7)–(10) we obtain

= + =K C C G C( )/2, /2,e e e e e
1111 1122 1212 (11)

where K e/Ge is the effective bulk/shear model.
It is necessary to impose corresponding periodic boundary condi-

tions on the characteristic displacement fields . However, in the case
when periodic cell exhibits symmetry, the periodicity conditions can be

replaced by typical boundary conditions. Namely, if the composite
material consists of isotropic components and the periodic cell has
symmetry along two axes, then problem (4) is reduced to the problem
of a quarter of the cell. In the case of the plane stress-strain state for the
quarter part of the elementary cell, the mentioned boundary conditions
[42] for the characteristic function can be defined as follows (see
Fig. 2): =i j (1 or 2) on = =y y Y0,1 1 1 = 0ij

1
( ) and on

= =y y Y0,2 2 2 = 0ij
2
( ) (Fig. 1b); in the case of load =ij 12 (or 21) on

= =y y Y0,1 1 1 = 02
(12) and on = =y y Y0,2 2 2 = 01

(12) (Fig. 1c).

3. Determination of the effective heat transfer coefficient

To calculate the effective heat transfer coefficient of an elementary
periodic cell, the homogenization method is applied, and the associated
homogenized terms can be obtained from heat transfer equations.
According to references [1,2,27,40], the effective coefficient of heat
transfer can be defined in the following way

= =k
Y

k y k y
y

dY
Y

k y I
y

dY1 ( ( ) ( ) 1 ( ) ,ij
e

Y
ij ij j

i

j Y
ij

i

j (12)

with a local coordinate y. In contrast to the mechanical problem (6),
where homogenized coefficients Cijkl

e are expressed in terms of initial
given deformations pq

ij0 ( ) in the existing finite element programs, it is
impossible to set initial values of temperature gradients. One of the
methods proposed by the authors to calculate kij

e is as follows. Em-
ploying notation =I y

T
y

i
j

i
j
[40] and using the scheme analogous to

that used to interpolate the local stiffness tensor, the characteristic
function Ti is yielded by the following PDE

=
y

k y T
y

( ) 0.
j

ij
i

j (13)

Fig. 2. Boundary conditions for the heat problems (а), (b).

Fig. 3. Convergence of the maximization process of the bulk modulus (number
of iterations n are marked on the horizontal axis, whereas numerical values of
the bulk modulus (BM) refer to the vertical axis).

Fig. 4. Optimal microstructures of composites for two competing base materials: (a) maximization tr k( )e ( = 0); (b) maximization K e =( 1); (c) maximization Ge

=( 1).
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Consequently, the effective heat transfer tensor (12) for an isotropic
material with the heat transfer coefficient k y y( , )1 2 can be recast to the
following form

=k
Y

k y y
T
y

dY1 ( , ) .ij
e

Y

j

i
1 2

(14)

For a 2D cell, the effective heat transfer tensor can be presented in
the following form

=
k

k
k

0
0

.e
e

e
11

22 (15)

Therefore, the general effective material conductance can be esti-
mated as follows

= +tr k kk( ) .e e e
11 22 (16)

Now the boundary conditions [40] for the characteristic functionsTi
for a representative cell which take the classical form, are shown in

Fig. 2 a,b and have the following form:
for k e

11

= = = =T y T y T
y

y T
y

y(0, ) 0, (1, ) 1, ( , 0) ( , 1) 0,1 2 1 2
1

1
1

1

1
1

for k e
22

= = = =T y T y T
y

y T
y

y( , 0) 0, ( , 1) 1, (0, ) (1, ) 0.2 1 2 1
2

2
2

2

2
2

4. Topological optimization

The method of homogenization [1–3] is one of the most effective
approaches to compute the global physical properties of a composite,
such as the bulk stiffness modulus, the shear modulus or the heat
transfer coefficient.

Having both the elastic and thermal homogenization determined,
one can define an optimization problem aimed at defining the optimal
topology for thermoelastic problems. Such problems are particularly
interesting when the elastic and thermal properties of materials
strongly compete with each other and the optimal topologies for in-
dividual problems differ significantly from each other. To solve the
problem, it is necessary to simultaneously take into account both the
elastic and thermal material properties.

Let us assume that the elementary periodic cell is divided into finite
elements and each finite element has its own variable density n
( =n N1, ..., ). Following the rule of SIMP [40], where the role of the
control variable is played by an artificially introduced density x( ),n the
corresponding Young's modulus E x( ) and heat transfer coefficient k x( )
for the two-component composite in the n-th finite element can be
written as

= +E E Ex x x( ) ( ) (1 ( )),n n
p

n
p

1 2

= +k k kx x x( ) ( ) (1 ( )),n n
p

n
p

1 2

Fig. 5. Optimal topologies from the Pareto set (red/blue colour corresponds to the first/second material). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 6. Relative changes of the effective bulk modulus K K( )/ (1)e e (1) and heat
transfer coefficient tr k tr k( ( ))/ ( (0))e e (2).
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where E1, E2 are Young's moduli of the materials, and k1, k2 are the heat
transfer coefficients of the materials.

The exponent p 1 is used as a penalty factor and the increase in p
leads to a clearer decomposition of the material phases (typically =p 4
or =p 5 [41]).

Usually, for the convenience of calculations, optimization problems
with respect to the maximum are reduced to the minimum.

Let Me denote one of the mechanical quantities, i.e., the effective
bulk modulus K e or the effective shear modulus Ge. The target function
is defined as follows

+ +q tr
k

q h h dYk ymin ( 1) (1 ) ( ) ( ) ,
e

b

e

b Y

0 max 2

(18)

where: – weight coefficient taking into account the input of target
functions of the elastic and thermal terms and k;b b – given values of
the effective elastic modulus (shear modulus or bulk effective modulus)
and the heat transfer coefficient used for the normalization purpose.
The second term is the penalty function to exclude the so-called
chessboard effect in the optimization process; h0 is the initial mesh size

and hmax is the current mesh size. The quantity q0 1 plays the role
of a coefficient that makes it possible to balance the target function and
penalty function. It should be noted that the search for the minimum of
function (18) corresponds to the search of the function maximum
standing next to the multiplier q( 1), since q 1 0 [27].

The isoperimetric constrains for the artificially introduced density
x( ) are chosen in the following way

dYy0 ( ) ,
Y (19)

< x0 ( ) 1. (20)

In formula (19) A stands for the total volume of the material of the
optimized space Y in the elementary periodic cell for =x( ) 1 and
denotes the material fraction with parameters E1, k1.

To obtain a numerical solution, the stiffness cannot disappear en-
tirely. Thus, in inequality (20), we assume that is sufficiently small to
avoid the occurrence of singularity of the input stiffness matrix in the
optimization process.

Table 1
Optimal microstructures and values of effective moduli.

0 0.2 0.7 0.775 1

K e 2.4288 2.4545 2.5100 3.0513 3.2190
tr k( )e 2.3640 2.3401 2.2027 1.8002 1.7249

0 0.2 0.5 0.715 1

Ge 1.6191 1.6348 1.6900 1.9314 1.9463
tr k( )e 2.3640 2.2099 1.9413 1.6744 1.6331

Table 2
Optimal microstructures and values of effective moduli for a composite with circular holes.

0 0.2 0.5 1

K e 15281 1.5809 2.1414 2.5262
tr k( )e 1.9783 1.9382 1.8334 1.3070

Ge 1.2160 1.3434 1.5361 1.6338
tr k( )e 1.9783 1.8326 1.3626 1.2438
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5. Numerical results

5.1. Topological optimization of a composite made from two competing
materials

We consider the elementary cell composed of two competitive ma-
terials in the ratio 1:1 ( = 0,5), i.e., Young's modulus is greater in one
material than in the second material, whereas in the second material,
the heat transfer coefficient is larger than in the first one. Let us take

= =E k1, 51 1 = =E k( 5, 1)2 2 for the first (second) material. The
computations were carried out by FEM and the elementary cell was
divided into 2500 elements. In order to solve the optimization problem,
the method of moving asymptotes (MMA) introduced by Svanberg [12]
was employed.

The MMA is based on a special type of convex approximation and it
handles element sizes as design variables, shape variables and material
orientation angles. In each step of the iterative process, convex ap-
proximating subproblems are generated and solved. The latter are
controlled by the so called “moving asymptotes” stabilizing and im-
proving the process convergence.

Fig. 3 presents the convergence of the maximization process of the
bulk modulus depending on the number of iterations n. Curve 1/2
corresponds to the change in the first/second term of penalty function
(18) for = 1, whereas curve 3 corresponds to the integral values in
inequality (19). At least 25 iterations are required to obtain a suffi-
ciently accurate solution.

First, the problem dealing with the maximization of the effective
heat transfer coefficients was solved, i.e. we took the weight coefficient
in (18) = 0. In all further reported figures, red/blue colour corre-
sponds to the first/second material. Fig. 4а reports the obtained optimal
topology for this problem. The optimal value is =tr k( )/2 2.364e . The
shear modulus and bulk modulus =G 1.619e , =K 2.428.e For the pro-
blem dealing with the maximization of the bulk modulus ( = 1), the
optimal topology is presented in Fig. 4b. In this case, the obtained
optimal values =K 3.219,e and =tr k( )/2 1.725.e For the shear modulus
( = 1), the optimal topology is shown in Fig. 4c (the optimal values of

=G 1.946e and =tr k( ) 1.633e ).
As it follows from Fig. 4, the optimal microstructures for the max-

imum heat transfer and mechanical moduli strongly differ from each
other. Solutions to the multi-criteria problems should be sought only

Table 3
Optimal microstructures and values of effective moduli for a composite with square holes.

0 0.2 0.5 1

K e 1.5073 1.5634 2.0590 2.3727
tr k( )e 1.9035 1.7934 1.8063 1.2943

Ge 1.1788 1.2905 1.5709 1.6093
tr k( )e 1.9035 1.8345 1.2583 1.2422

Table 4
Optimal microstructures and values of effective moduli for a composite with square inclusions.

0 0.2 0.5 1

K e 2.6069 2.6254 3.0512 3.367
tr k( )e 2.6844 2.6683 1.7779 1.6626

Ge 1.7792 1.8013 1.8782 1.9416
tr k( )e 2.6844 2.5697 2.3977 1.7052
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among the set of alternative optimal solutions in the Pareto sense, i.e.,
those solutions that could not be substituted by other “better” solutions.
Fig. 5 shows optimal topologies depending on the weight coefficient
for the optimization carried out with respect to two criteria, i.e., the
effective shear modulus and the heat transfer coefficient belonging to
the set of Pareto solutions [42]. The horizontal axis corresponds to the
relative values of the shear modulus G G/ (1)e e , where G (1)e denotes the
optimal value of the shear modulus for = 1. The vertical axis presents
the relative values of tr trk k( )/ ( (0))e e , where tr k( (0))/2e stands for the
optimal value of the heat transfer coefficient for = 0.

When the weight coefficient in target function (18) changes, there
is a change in priorities of optimization from the criterion of the
maximum heat transfer coefficient for = 0 up to optimization under
the criterion of the maximum bulk modulus or shear modulus.

In Fig. 6, curve 1 shows the relative change in the optimal effective
bulk modulus K K( )/ (1)e e , whereas curve 2 presents the analogous
value for the heat transfer coefficient.

Fig. 6 shows that in the case study devoted to the optimization of
the bulk modulus for 0.75, there is a change in priorities in the
target function. For < 0.75, the priority is given to the maximization
of the heat transfer coefficient, whereas for > 0.75, the bulk modulus
is maximized. The optimal constructions obtained for close to the
threshold point = 0.75 strongly depend on the initial approximation,
and the values of their effective moduli exhibit a sudden change when
transiting through = 0.75.

Table 1 presents the optimal topologies, the values of the effective
mechanical moduli, and heat transfer coefficients for different values of
.
In the considered example, the balance is reached for Ke/Ge for the

fixed weight coefficient 0.75/ 0.7. One can see from Table 1
that a sudden change in the optimal microstructure occurs precisely in
the reported points.

5.2. Topological optimization of composites with technological holes

In addition to continuous structures composed of two competing
materials, we also studied composite structures composed of two ma-
terials with holes of given a priori forms (shapes).

Consider an elementary composite cell having a technological hole
of a circular form and a radius of 0.3, or a cell with a square hole of the
same area. As in the previous case, the optimized cell area is filled with
two competing materials in a 1:1 ratio, with the same parameters.

Table 2 shows the obtained microstructures of composites and the va-
lues of effective moduli for the composite with circular holes for various
values of .

The microstructure optimal with respect to Ke has a similar form to
the microstructure obtained for the cell without a hole, whereas the
form of the optimal microstructure with respect to the value of tr k( )e is
similar to the composite without the hole but is shifted by 1/4 of the
cell. Optimal topologies for the cell with a hole change more smoothly
when changing than in the homogeneous cell optimization (the
change in the target function priorities takes place without a sudden
transition).

Table 3 shows the optimal microstructures as well as values of the
effective moduli for the cell with a square hole.

As can be seen in Tables 2 and 3, the presence of holes in the cell
significantly changes the microstructures that are optimal with respect
to Ge. In contrast to the circular holes, square holes more strongly
change optimal topologies for all effective moduli. The transition from
the microstructures optimal with respect to heat modulus to the mi-
crostructures optimal with respect to mechanical moduli occurs more
smoothly than in the case of the optimization of a homogeneous cell.

5.3. Topological optimization of composites with technological inclusions

Let us consider structures containing inclusions of a given form,
made from a material different than the previous two. The shape and
size of inclusions coincide with the characteristics of holes considered
in the previous case. In the figures, the area of inclusions is marked in
yellow. Both the shape and location of inclusions is a priori specified,
Young's modulus of inclusion =E 3inc , and the heat transfer coefficient

=k 3inc . The ratio of the first and the second material to the remaining
space part is equal to 1:1.

The obtained computational results for the composites with circular
inclusions are presented in Table 4.

The presence of inclusions of a circular shape, in contrast to the
holes, does not fundamentally change the form of topologies for the full
optimization of either the mechanical or heat moduli. However, it
weakens the transition with the change in the priorities in the target
function and increases the values of the optimal effective moduli for all
considered criteria.

Table 5 reports the computational results for the composites with
the inclusions of a square shape.

The presence of inclusions of a square form strongly affects the

Table 5
Optimal microstructures and the effective moduli values.

0 0.2 0.5 1

K e 2.6143 2.7014 3.0023 3.1615
tr k( )e 2.5402 2.5364 1.8873 1.8085

Ge 1.7488 1.7497 1.9005 1.9273
tr k( )e 2.5402 2.4476 2.4397 1.7220
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topology in solving the heat problem or the problem of the maximum
bulk stiffness modulus Ke.

6. Concluding remarks

In this work, problems associated with multifunctional require-
ments with respect to effective characteristics of composites consisting
of two components as well as composites with holes or technological
inclusions have been studied. In the process of investigation, a strong
dependence of the optimal topology of the distribution of materials in
the microstructure of composites on the form of the target functions has
been detected.

The study of transformations of the optimal topology of the com-
posite microstructure with a change in the weight coefficient from

= 0 (maximization of the heat transfer) up to = 1 (maximization of
the mechanical moduli) has been conducted. Moreover, a set of alter-
natives optimal in the Pareto sense has been constructed.

The considered examples clearly indicate the inability to achieve the
best/required properties simultaneously in both cases, which is caused
by conflicting criteria in the target function.
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