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Abstract
Purpose – The purpose of this paper is to define and solve the problem of an optimized structural topology
of the simply supported beam made from functionally graded material (FGM) enabling achievement of a
maximum buckling load.
Design/methodology/approach – Two kinds of inclusions are considered: regular distribution of
inclusions of different rigidities and non-uniform distribution of identical inclusions. It is shown that the
optimal conditions are similar for both structural designs. The optimization problems are solved by using the
homogenization method, and the target functions belong to the class of piece-wise continuous functions. Both
optimized structures exhibit border zones free of any inclusions, and the largest amount of inclusions is
localized in the central zone of the beams.
Findings – It has been shown that the final result of the carried out optimization of the internal structure for
both studied types of FGM are similar. The relative increase in the buckling force of the FG beam with the
optimized internal structure is on amount of 20 per cent while comparing it with the regular structure beam.
Originality/value – In contrary to a standard approach, this paper is aimed to detect and study a scenario
of transition from heterogeneous to its counterpart homogeneous beam structure based on the consideration
of the FGM inclusions. In addition, the problem of inversed transition from the optimized homogeneous
structure to the optimal heterogeneous one is solved.

Keywords Homogenization, Optimization, Inclusion, Stability, Functionally graded material,
Functionally graded beam

Paper type Research paper

1. Introduction
Functionally graded materials (FGMs) can be defined as advanced composite materials
fabricated in a way to have graded variation of the relative volume or concentration
fractions of the constituent materials (Suresh and Mortensen, 1998). FGMs can be promising
in several applications, especially in aviation and rockets industries, where beams are
widely used as construction elements. One of the main requirements taken into account in
the design of elastic rods is their stability. In the paper, the stability of FGM beams is
considered in a bifurcation formulation, which is reduced to the eigenvalue problem of linear
ODEs with piecewise constant coefficients. These problems can be solved, for instance, by a
transfer matrix method. In the latter case, the resulting transcendental equation is solved
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numerically. In the case of a single computation, this approach does not present any
difficulties, but having in mind an optimal design it is necessary to carry out analysis of a
large series of such solutions, which leads to a significant expenditure of computer time.
Therefore, an approximate analytical algorithm is preferred to solve the problem.

The recent state-of-the-art regarding the characterization, modeling and analysis of FGM
has been reviewed in reference (Victor and Larry, 2007), whereas various aspects of the
theory and applications of FGM have been illustrated and discussed in Ramu and Mohanty
(2014). The buckling problems of the FGM beams/columns have been overviewed also in
monographs (Alfutov, 2000; Elishakoff, 2005; Wang et al., 2005). On the other hand, the
buckling problems of FGM columns are reconsidered more recently (Singh and Li, 2009;
Huang and Li, 2010; Shahba and Rajasekaran, 2012; Yilmaz et al., 2013).

In the majority of the known works devoted to optimization of the FGM elements, the
internal FG structure of the used materials is modeled as a certain homogenous matter with
variable parameters along one or two coordinates governed by continuous functions
(Banichuk, 1990). Observe that a transition from the input heterogeneous internal structure
to its counterpart homogenous one is neither modeled nor described so far.The present study
is aimed at detecting and studying a scenario of the latter transition taking into account the
FGM inclusions. In addition, a model of an inverse transition from the being defined
optimized homogenous structure to the optimal heterogeneous one, which possesses an
important practical advantage, is proposed.

An approach allowing for getting the macro-scale laws and a constitutive relation by a
roper homogenization over the micro-scale is known as a homogenization method
(Bensoussan et al., 1978; Babushka, 1979; Sanchez-Palencia, 1980; Bakhvalov and
Panasenko, 1989; Manevitch et al., 2002; Movchan et al., 2002; Andrianov et al., 2004;
Kolpakov, 2004; Panasenko, 2005). This method is also successfully used for modeling and
simulating the mechanical behavior of the FG materials (Reiter et al., 1997; Anthoine, 2010)
and the FG structures (FGS). Typically, the term FGS is associated with the constructions
made/fabricated from FGM. However, in this paper, the term FGS is understood in a broader
manner, as the heterogeneous constructions with a controlled heterogeneity parameter are
also taken into account (for instance, the reinforced plates and shells with non-uniformly
distributed ribs of different stiffness; corrugated constructions consisting of FG
corrugations, etc.) (Andrianov et al., 2005, 2006; 2009, 2010; 2011, 2013).

Andrianov et al. (2013) have presented an inverse homogenization method for the
design of two-phase (solid/void) FGM microstructures. Bi-directional evolutionary
structural optimization technique in the form of inverse homogenization has been used
for the design of the FGM (Radman et al., 2013). The common approach for the design of
multi-functional materials in these studies is to extremize a linear combination of
materials functional properties (Mikhlin, 1964; Cadman et al., 2012). Design for cellular
structures consisting of multiple patches of material microstructures using a level set-
based topological shape optimization method has been proposed in Keller (1960) and
Tadjbakhsh and Keller (1962). More recently Li et al. (2018a,b) carry out the topological
design optimization of new functionally graded cellular composites with auxetics using
a level set method.

The technologies used for the FGM fabrication have been rapidly developing, as new
materials are produced all the time (Zhou and Li, 2008). Generally, the materials can be
divided into three fundamental groups: layered and fiber-type materials and the materials
consisting of inclusions made from material being more or less stiff than the matrix
material. As an example, we consider a beamwith inclusions shown in Figure 1.
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In particular, the results obtained in this research can be either used directly or may serve
as a source of ideas to study 1D nanostructures (nanotubes and nanorods) (Keller and
Niordson, 1966; Xing and Chen, 2014a, 2014b).

The paper is organized in the following way. Section 2 is devoted to introduction of the
mathematical models of the FG elasticity modulus with an emphasis on the FG inclusion
sizes and FG steps between inclusions. Optimal design of simply supported composed FG
beams is discussed in Section 3. Concluding remarks are presented in Section 4. In
Appendix, the error introduced by the two-scale asymptotic method is analyzed in detail.

2. Mathematical models of the FG elasticity modulus
The elasticity modulus E of a two-component beam with a regular internal structure
composed of inclusions of the same rigidities and separated by a constant step is defined by
the following piece-wise continuous function:

E ¼ Em 1þ k
Xn
i¼1

H x� « 0:5þ ið Þ þ « 1½ � � H x� « 0:5þ ið Þ � « 1½ �½ �
!
;

0
@ (1)

where: H(. . .) is the Heaviside function; x ¼ X=L; k ¼ Einc
Em
; « ¼ l

L; « 1 ¼ D
2L; Em, Einc are the

modulus of elasticity of the matrix and of the inclusions material, respectively.
In a general case, the elasticity modulus (1) of the two-component beam takes the

following form:

E ¼ Em 1þ k U
x
«

� �� �
; (2)

whereU(x/« ) is a periodic function of the period « .
It should be noticed that in the majority of practical cases, a number of inclusions is large,

and hence, « � 1.

2.1. FG inclusion sizes
In the considered case (Figure 1a), the coefficient k occurring Equation (1), Equation (2) is
defined by a function k = k(x), which describes a way of inclusions change and plays a role
of a target function in the problem of optimization of the FG structure.

Figure 1.
A scheme of the two-
component beam: li -

step of inclusions
(distance between i-th
and (i-1)-th inclusion

centers);D – inclusion
length,D: const;Xi

is the coordinate of
the center of i-th

inclusion and 1# i#
n, n is the number of

inclusions
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We begin with a definition of the interval of possible changes of the function k = k(x). It is
assumed that the inclusions material is stiffer than the one of the matrix, and hence, k(x)� 0.
Let the value of kmax play a role of the upper bound for k(x), where a local buckling may
appear between the successive inclusions. Therefore, the bounds of the k(x) function are as
follows:

0# k xð Þ# kmax: (3)

To estimate the local buckling load Pl, the internal parts between inclusions can be treated
as simply supported beams on their both edges. Furthermore, the classical Euler’s load PL
(Andrianov et al., 2006) yields the following estimation of the local buckling load:

Pl � PL«
�2: (4)

2.2. FG steps between inclusions
In this case (Figure 1b), the elasticity modulus is presented in the following form:

E ¼ Em 1þ k U
f xð Þ
«

� �� �
; (5)

where k = const. Observe that now f(x) stands for a function defining the change of a step
between inclusions.

It is assumed that the number of inclusions is fixed, that is:

n ¼ const: (6)

Because of reference (Andrianov et al., 2011), the condition in Equation (6) will be satisfied if:

f 0ð Þ ¼ 0; f 1ð Þ ¼ 1; f 0 xð Þ � 0; (7)

And the step between inclusions can be estimated as follows:

li � 1=f 0 xið Þ:

As the condition f0(xi) = 0 implies a lack of the i–th inclusion, the function f0(x) can be
interpreted as the target one for inverse problems.

3. Optimal design of simply supported compressed FG beams
A simply supported FG two-component beam (Figure 1) is considered. The beam is
compressed by the forces P acting on its ends. Small deformations are assumed and the
static Euler method is implemented. To compute the minimum value of the buckling force,
the Rayleigh variational principle is used. As a symmetric problem with the same boundary
conditions at the beam ends is considered, it is assumed that the possible distribution of the
control functions k(x) and f0(x) is symmetric with respect to x = 0.5. The symmetry of the
problem also implies the symmetry of the buckling form u(x) which yields ux(0.5) = 0.
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3.1 FG inclusion sizes
Let us analyze an influence of different size of inclusions on the stability of the FGM beam,
keeping the distance between inclusions constant (Figure 1a). The governing self adjoint
eigenvalue problem has the following form:

uxx þ a�1pu ¼ 0; (8)

u 0ð Þ ¼ u 1ð Þ ¼ 0; (9)

ð1
0
a xð Þdx ¼ V ; p ! maxk; (10)

where: u(x) is the normal beam deflection; a xð Þ ¼ 1þ k xð ÞU x
«

� �� �
; p ¼ P

EmI
; and I is the

moment of inertia of the transversal beam cross-section.

3.1.1 Multi-scale homogenization approach. Usually, the number of inclusions is large;
therefore, « � 1 and the problem in Equations (8)-(10) can be simplified with the help of the
multi-scale homogenization approach (Bensoussan et al., 1978; Babushka, 1979; Sanchez-
Palencia, 1980; Bakhvalov and Panasenko, 1989; Manevitch et al., 2002; Andrianov et al.,
2004; Kolpakov, 2004; Panasenko, 2005; Zhang et al., 2006). Let the “fast” variable j be
introduced in the following way:

j ¼ x=« : (11)

The variables x and j are treated as independent ones, and the differential operator d/dx has
the following form:

d
dx

¼ @

@x
þ «�1 @

@j
: (12)

The eigenfunction u and the eigenvalue p can be presented in the following form:

u ¼ u0 x; jð Þ þ « u1 x; jð Þ þ « 2u2 x; jð Þ þ . . . ; p ¼ p0 þ «p1 þ « 2p2 þ . . . ; (13)

where the functions us(x, j ), s = 0, 1, 2, . . . are periodic with respect to j and have the non-
dimensional period 1; ps= const.

Substituting Equations (11)-(13) into the boundary value problem in Equations (8) and
(9), the classical splitting procedure with respect to « is carried out. As a result, one obtains:

u0 ¼ u0 xð Þ; u1 ¼ u1 xð Þ;
u2j j þ u0xx þ a�1 x; jð Þp0u0 ¼ 0:

(14)

In what follows Equation (14) is integrated with respect to j from 0 to 1 while taking into
account the periodicity condition for the function u2(x, j ). Finally, the problem regarding the
maximum buckling force is recast to the following form:
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u0xx þ p0~a
�1u0 ¼ 0; (15)

u0 0ð Þ ¼ u0 1ð Þ ¼ 0; u0x 0:5ð Þ ¼ 0; (16)

ð1
0
~a xð Þdx ¼ v ¼ const; p0 ! maxk; (17)

Where ~a xð Þ ¼
ð1
0
a xð Þ�1dj

 !�1

:

The eigenvalue problem in Equations (15) and (17) governs the buckling of the
homogenized beam (Figure1a). Besides, the introduced constraint in Equation (3) imply the
following inequality:

~a xð Þ � 1: (18)

3.1.2 Stationarity conditions. The stationarity conditions for the boundary value problem in
Equations (15)-(18) are derived based on the standard approach reported in reference (Olhoff
and Rasmussen, 1977). Namely, multiplying Equation (13) by u0 and carrying out the
integration with an account for the boundary conditions in Equation (14), the following
Rayleigh relation is obtained:

p0 ¼

ð1
0
u20xdxð1

0
~a�1u20dx

: (19)

Equation (19) implies that the smallest eigenvalue of Equation (15) is equal to the minimum
of the functional:

p0 ¼
ð1
0
u20xdx (20)

With the supplementary condition:

ð1
0
~a�1u20dx ¼ 1: (21)

The extended Lagrange functional is then introduced by adding the constraints in
Equations (17) and (18) to the functional in Equation (20) with the help of the multipliers l 1,
l 2 in the following way:

J ¼
ð1
0
u20xdxþ l 1

ð1
0
~a�1u20dx� 1

 !
þ l 2

ð1
0
~adx� V

 !
: (22)

Then, the first variation of the functional d J = 0, generated by variation of the variable k(x),
yields the following stationarity condition:
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u20 ¼ l ~a2~a�1
k ; (23)

where l = l 2/l 1.
The stationarity condition in Equation (23) implies the well-posed boundary value

problems, which allows for defining the desired functions k(x), u0(x) and p0.
The constrains in Equation (18) introduced to the design variable guarantee a

satisfaction to the stationarity condition in Equation (23). On the other hand, the symmetry
condition regarding the point x = 0.5 satisfies Equation (23) for x* # 0.5, where a(x) > 1,
whereas for 0 # x # x*, we have a(x) = 1. The latter condition means that there is lack of
inclusions in the interval 0 # x # x*. To find the coordinate x*, the following kinematic
conditions (Bakhvalov and Panasenko, 1989) are formulated for the functions u0(x), u0x(x) at
the point x= x*:

u�0 ¼ uþ0 ; u�0x ¼ uþ0x; (24)

where � � �ð Þ� ¼ lim
x!x*�0

� � �ð Þ; � � �ð Þþ ¼ lim
x!x	þ0

� � �ð Þ:

3.1.3 Example of optimization. Let the function a(x) is approximated in the following
way:

a xð Þ ¼ 1
1� z2 xð Þsin2 pnxð Þ : (25)

where z2(x) = k(x)< 1.
In this case, the condition in Equation (17) takes the following form:

ð1
0

1
1� z2=2

dx ¼ v ¼ const; (26)

Equation (15) and the stationarity condition in Equation (23) are governed by the following
differential and algebraic equations:

u0xx þ p0 r � z2=2
� �

u0 ¼ 0; (27)

z u20 þ
2l

1� z2=2
� �2

 !
¼ 0: (28)

However, if the condition of stationarity in Equation (28) is satisfied only because of the second
factor, then boundary conditions in Equation (16) will not be satisfied. Therefore, the stationarity
condition in Equation (28) with regard to the interval [0, x*] will be satisfied using only the first
factor and assuming z= 0 (we take the second factor equal to zero with respect to the interval [x*,
0.5]). The so farmentioned assumptions and simple computations yield:

1� z2=2 ¼
1; x 2 ½0; x

*
�;

ffiffiffiffiffiffi
2l

p

u0
; x 2 ½x

*
; 0:5�:

8>><
>>: (29)
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Obtaining the function u0 from the stationarity condition in Equation (29) and substituting it
into Equation (27) and conditions in Equation (16) yields the boundary value problem for the
control function z2(x) with regard to the interval [x*, 0.5]:

1
1� z2=2

� �
xx
þ p0 ¼ 0; (30)

z x
*

� � ¼ 0; zx 0:5ð Þ ¼ 0: (31)

Integrating PDE in Equation (30) and taking into account the boundary conditions in
Equation (31) yield the following simple algebraic equation:

1
1� z2=2

¼ p0
2

x2* � x2
� �

þ 1; (32)

where: x ¼ 1
2 � x; x* ¼ 1

2 � x*.
Substituting Equation (32) into the isoperimetric condition in Equation (26) allows to

define the constant p0 of the PDE in Equation (30), that is, we have:

p0 ¼ 3 2v� 1ð Þ
2x3*

: (33)

To define x*, one needs to find u0 on both intervals [0, x*] and [x*, 0.5]. For this purpose, weuse Equations (27) and Equation (16) for z = 0, and taking into account the condition of
stationarity in Equation (28), one gets:

u0 ¼ Csin
ffiffiffiffiffi
p0

p
x; C ¼ const; x 2 ½0; x

*
�; (34)

u0 ¼
ffiffiffiffiffiffi
2l

p p0
2

x2* � x2
� �

þ 1
� �

; x 2 ½x
*
; 0:5� : (35)

Substitution of the functions u0(x) governed by Equations (34) and (35) into the continuity
condition in Equation (24) yields:

Csin
ffiffiffiffiffi
p0

p
x
*

� �
¼

ffiffiffiffiffiffi
2l

p
; (36)

Ccos
ffiffiffiffiffi
p0

p
x
*

� �
¼

ffiffiffiffiffiffiffiffiffiffi
2l p0

p
x*: (37)

Equations (36) and (37) can be reduced to the following algebraic equation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p0x*2

p
sin

ffiffiffiffiffi
p0

p
x* ¼ 1: (38)

Finally, substitution of Equation (33) into Equation (38) allows one to get the equation for
the size of the border zones being free from inclusions x*, that is, we have:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

2
2v� 1
x*

s
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
2v� 1

x3*

s
1� 2x*

2

0
@

1
A ¼ 1; (39)

where 2v� 1.
It follows from the isoperimetric condition in Equation (26) and solution to Equation (39)

that the following inequality should be satisfied:

0# x*# 0:5: (40)

The function x* = x*(v) for v [ [1,10] has been found numerically as a solution to Equation
(39) satisfying the inequality in Equation (40) and it is shown in Figure 2. As can be seen, the
beam boundary layer free from inclusions decreases with increase of v.

In what follows, we quantify the efficiency of the FG beam in comparison to a composite
beam of a regular structure. The buckling load or z=const and r – z2/2 = 1/2v has the
following simple form:

p0 ¼ 2p 2v: (41)

A comparison of the buckling load p0, defined by Equation (33), and the buckling load p0 in
Equation (41) for v [ [1,10] is reported in Figure 3.

The efficiency of the optimal structure is presented in Figure 3b, where:

d ¼ p0 � p0
� �

p0
� 100%: (42)

The obtained graph clearly shows that efficiency of the employment of the FG beams of the
optimal structure, beginning with v= 1, practically does not depend on the value of v.

The optimal structure of the FG beam quantified through a(x) governed by Equation (25)
is presented in Figure 4 for fixed r = 1 and v= 2.

The inverse transition from the optimal FG homogeneous model in Equations (25)
and (29) (Figure 4) to the optimal heterogeneous model (Figure 5) is carried out with the

Figure 2.
Coordinate x	 versus

v numerically
estimated from
Equation (39)
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help of the following scheme (we consider without loss of generality the case of an even
number of inclusions). Namely, the area bounded by the graph of the function a = a(x)
(Figure 4) being located above the dotted line a = 1 determines the total volume of
inclusions:

S ¼ 2
ð0:5
x*

a xð Þ � 1ð Þdx: (43)

The same area bounded by each wave of the graph is computed in the following way
(Figure 4):

s1 ¼
ð1=n
x*

a xð Þ � 1ð Þdx; si ¼
ð iþ1ð Þ=n

i=n
a xð Þ � 1ð Þdx; i ¼ 2; 3; 4; . . . ; n=2: (44)

Then there is convenient to introduce the gradient coefficient:

ri ¼ si
S
; i ¼ 1; 2; 3; . . . ; n=2; (45)

Figure 3.
Buckling loads of the
FG beam of the
optimal structure
Equation (33) and the
regular structure
composite beam
Equation (41) for v [
[1, 10] denoted by
dotted and solid lines,
respectively, (a) and
the function d (v)
governed by
Equation (42) for v [
[1, 10] (b)

Figure 4.
Optimized structure
of FG beam (� = 2)
with parameter in
Equation (45)
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And the volumes of each inclusion of the FG heterogeneous model are determined via the
following simple relation:

vi ¼ riV ; (46)
,whereV is the given total volume of inclusions of the initial heterogeneous model.

Because of the results presented in Figure 5, one may conclude that the character of the
optimized distribution of the inclusions along the beam is close to the character of an
optimal distribution of the material of a simply supported beam having a variable
transverse cross-section (Fish and Chen, 2001, 2004). The inclusions are concentrated in the
middle part of the beam and there is a lack of inclusions in the border zones.

Figure 6 presents the buckling form of the FG optimized beam (solid curve) obtained
based on relations in Equations (34) and (35), and the corresponding form for the regular
composite beam (dotted curve).

It should be mentioned that the structure with the optimized distribution of inclusions
has “a weak zone” in which local buckling may appear before general buckling. It
corresponds to the border zone [0, x*] which does not contain inclusions. The value of the
local buckling load px can be estimated using the beam of the length x* with simply
supported ends andwith the elasticity modulus Em

b , that is, in this case, we have:

px
*
¼ p 2

x
*
2 :

(47)

Assuming that the inequality px* # p0 holds, it is clear that the local buckling is possible.
Substituting the latter inequality in Equation (47) into Equations (33) and (47), one obtains:

x
*
#

3
2p 2 2v� 1ð Þ: (48)

Figure 5.
The optimal scheme

of the FG two-
component beam: ri
(i= 1, 2, 3, . . ., 10) is

the gradient
coefficient in

Equation (45); the
volume of the i-th
inclusion vi= riV,

whereV is the total
volume of inclusions

Figure 6.
Buckling form u0

u0 ¼ u0 xð Þ=�
u0 1=2ð ÞÞ of the FG
beam of optimized

structure (denoted by
a solid curve) and of

the regular composite
beam (dotted curve)
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Substituting the maximum value of x* governed by Equation (48) into Equation (39) implies
that the parameters v, responsible for occurrence of the buckling, should satisfy the
following equation:

sin
p 3

3 2v� 1ð Þ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p 2

p : (49)

The smallest positive root of Equation (49) is as follows:

v ¼ 0:732: (50)

Because of the reported investigations (Figure 2), x* monotonously decreases when v
increases, which implies the increase in the magnitude of the buckling load of the local
buckling. Therefore, Equation (50) indicates that the local buckling is impossible if the
following inequality holds:

v � 0:732: (51)

3.2 FG inclusions step
This type of FGM with variable step of inclusions is more suitable in practice than FGM
with varying magnitude of inclusions. This is motivated by the fact that from the
technological point of view, it is much easier to control the concentration of the same
inclusions than to control regularly distributed inclusions with the assumed a priori
magnitudes.

Following the earlier considerations given in Section 3.1.4, the following function is
derived:

a xð Þ ¼ 1
r � z2sin2 pnf xð Þ� � ; (52)

where z = const, z2 < 1; n = const, which ensures the preservation of the total volume of
inclusions.

3.2.1 Multi-scale homogenization approach (concentrated inclusions). The FG beam in
which the length of inclusions (Figure 1) is much smaller than the distance between them,
that is, the following inequality holds D � min l(x), is further considered. In such a case, it
can be assumed that D ! 0, and hence, the inclusions may be treated as concentrated. The
stability Equation (8) takes the following form:

1þ k
Xn

i¼1

d f xð Þ � i=n
� �0

@
1
Auxx þ pu ¼ 0; (53)

where k1 = 2D1k and d stands for the Dirac delta function.
Let us introduce the function h = f(x). Therefore, x = f�1(h ), and the stability

Equation (53), can be reformulated with respect to h , and it takes the form:
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1þ k1

Xn

i¼1

d h � i=nð Þ
0
@

1
A w hð Þ�1uh
� �

h
þ w hð Þpu ¼ 0; (54)

where w hð Þ ¼ d
dh f�1 hð Þ
� �

.

If the function f(x) satisfies conditions in Equation (7), then the boundary conditions in
Equation (9) regarding the variable h remain unchanged.

If « = n�1 � 1, then the coefficient standing by a higher derivative in Equation (54)
serves as a periodic impulse function, and hence, one may apply the multi-scale
homogenization approach proposed in reference (Andrianov et al., 2017) (here, the
considerations are limited to a smooth step variation between inclusions, that is., we take f0

(x)�1, and hence, w (h )� 1).
The equilibrium equation of the beam part between the successive inclusions is as

follows:

w hð Þ�1uh
� �

h
þ w hð Þpu ¼ 0; (55)

A conjugate conditions can be written in the followingmanner:

uþ ¼ u�; uþh � u�h ¼ k1 w hð Þ�1uh
� �

h
; (56)

where: . . .ð Þ� ¼ limh¼i�0 . . .ð Þ; . . .ð Þþ ¼ limh¼iþ0 . . .ð Þ:
Because of the multi-scale homogenization approach, the fast variable can be introduced

in a classical way:

z ¼ h=« : (57)

As the variables h and z are treated as independent ones, the differential operator d/dh has
the following form:

d
dh

¼ @

@h
þ «�1 @

@z
: (58)

The eigenfunction u and the eigenvalue p are taken in the following series forms:

u ¼ u0 h ; zð Þ þ « u1 h ; zð Þ þ « 2u2 h ; zð Þ þ . . . ; p ¼ p0 þ «p1 þ « 2p2 þ . . . ; (59)

where us(h , z ), s = 0, 1, 2, [. . .] are periodic with respect to z andwith period « .
Substituting Equations (58) and (59) into Equations (55) and (56) and comparing the

coefficients standing by the same powers of « , one obtains:

u0 ¼ u0 hð Þ; u1 ¼ u1 hð Þ; (60)

u2z z þ w hð Þ w hð Þ�1u0h
� �

h
þ w 2 hð Þp0u0 ¼ 0; (61)
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u2

				
z¼1

¼ u2

				
z¼0

; (62)

u2z

				
z¼1

� u2z

				
z¼0

¼ k w hð Þ�1uh
� �

h
: (63)

Observe that in Equation (63), it has been assumed k�« . Equation (61), boundary conditions
in Equation (9) and conjugate conditions in Equation (62), yields:

u2 ¼ � w hð Þ w hð Þ�1u0h
� �

h
þ w 2 hð Þp0u0

� �
z z � 1ð Þ=2: (64)

Substituting Equation (64) into condition in Equation (63), one obtains:

w hð Þ þ k1
� �ðw hð Þ�1u0h Þh þ w 2 hð Þp0u0 ¼ 0: (65)

Coming back to the variable x in the averaged Equation (65), one gets:

1þ f
0
xð Þk1

� �
u0xx þ p0u0 ¼ 0: (66)

3.2.2 Optimal beam design. Let us define the internal structure of the FG beam keeping the
maximum buckling load as follows:

ð1
0
y2dx ¼ k; (67)

where y2 ¼ kf
0
xð Þ. The function y = y(x) plays a role of the design function being symmetric

with respect to x= 0.5.
Under conditions in Equations (16) and (67), the condition of stationarity p0 ! maxy

takes the following form:

y u20 � 2l 1þ y2
� �2� �

¼ 0: (68)

The stationarity condition in Equation (68) and the boundary conditions in Equation (16) are
satisfied when in the interval [0, x*] we have:

y ¼ 0; (69)

which it means that there are no inclusions in that part.
In the interval [x*, 0.5], the target function satisfies the following algebraic equation:

u0 ¼ 6l 1 1þ y2
� �

; (70)

where l 1 ¼
ffiffiffiffiffiffi
2l

p
.

Two signs “6” in Equation (70) are responsible for two directions of stability loss (in
what follows, the case associated with the signþ is considered).
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Using Equation (70), Equation (66) is transformed to the following form:

1þ y2
� �

xx ¼ �p0: (71)

The symmetry condition for the function y = y(x) regarding the beam center as well as the
condition in Equation (69) serve here as boundary condition for the ODE in Equation (71),
that is, we have:

y
				
x¼x*

¼ 0; yx

				
x¼0:5

¼ 0: (72)

The boundary value problem in Equations (71) and (72) while taking into account Equation
(69), yields:

y2 ¼
0; x 2 ½0; x

*
�;

p0
2

1
2
� x

*

� �2

� 1
2
� x

� �2
 !

; x 2 x
*
;
1
2


 �
:

8>>><
>>>:

(73)

Substituting in Equation (73) into condition in Equation (67) and taking into account
symmetry of the function y = y(x), the following formula defining the buckling force is
obtained:

p0 ¼ 12k

1� 2x
*

� �3 : (74)

Now, substituting Equation (73) into the stationarity condition in Equation (70), one finds
the following buckling form in the interval [x*, 0.5]:

u0 ¼ l 1
p0
2

1
2
� x

*

� �2

� 1
2
� x

� �2
 !

þ 1

 !
: (75)

In the interval [0, x*], the buckling form is defined by the boundary value problem in
Equations (66), (69), (16) and (24), which yields:

u0 ¼ l 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p0

4
1� 2x

*

� �2r
sin

ffiffiffiffiffi
p0

p
x; x 2 ½0; x

*
�: (76)

Hence, with the help of Equation (74), the equations for x* takes the following form:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3k

1� 2x
*

vuut sin 2
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k

1� 2x
*

� �3
vuuut x

*

0
BB@

1
CCA ¼ 1: (77)

The numerical results obtained while solving Equation (77) for k ¼ 1� 10 are shown in
Figure 7.
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From Figure 6, one may conclude that the border zone of the optimal beam does not
contain inclusions and it decreases while increasing k. The dependence of the buckling force
p0 yielded by Equation (74) on k for k 2 1; 10½ � is shown in Figure 8.

To estimate efficiency of application of the FG beam of the proposed optimized structure,
the buckling force p0 of the simply supported composite beam of a regular structure is
defined in the following way:

p0 ¼ p 2 1þ k
� �

: (78)

A comparison of the buckling force p0 of the FG beam containing the optimized distributed
inclusions Equation (74) and the buckling force p0 of the beam having the regular structure
Equation (78) is presented in Figure 8. Observe that efficiency of application of the optimized
distribution of inclusions, beginning from k ¼ 4, practically does not depend on k (Figure 8).

To define the coordinates of the optimized localization of inclusions, f(x) is defined from
the following ODE:

f
0
xð Þ ¼ y2k: (79)

The boundary conditions for Equation (79) is:

f 0:5ð Þ ¼ 0:5: (80)

Substituting Equations (73) and (74) into Equation (79) and carrying out the integrations
with an account for condition in Equation (80), one obtains:

f xð Þ ¼
0; x 2 ½0; x

*
�;

1
4

1� 2x
1� 2x*

� �3

� 3
1� 2x
1� 2x

*

 !
; x 2 x

*
; 0:5

h i
:

8>>><
>>>:

(81)

Observe that the function f(x) is symmetric with respect to the point (0.5, 0.5) in the interval
[0.5, 1].

Equation (81) implies that the optimization process of inclusions distribution is realized
via two mechanisms. First, the border zones [0, x*], [1 – x*, 1] free from inclusions are

Figure 7.
Dependence of the
coordinate x	 on k
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separated. Second, the step between inclusions is changed in a way governed by the target
function in Equation (79).

Therefore, the coordinates of optimal inclusions xi i ¼ 1 . . . n2
� �

are found from the
equation:

1
4

1� 2xi
1� 2x

*

 !3

� 3
1� 2xi
1� 2x

*

0
@

1
A ¼ it ; (82)

where t ¼ 1
n.

Coordinates of the optimal inclusions xi i ¼ n
2 þ 1 . . . n

� �
are symmetric with respect to

the point x = 0.5. For odd number of inclusions, the inclusion i ¼ n
2 does not appear. If x* >

t , then the coordinates of the first and last inclusions are defined by the following equations:

x1 ¼ x
*
; xn ¼ 1� x

*
: (83)

The remaining inclusion coordinates are defined by Equation (82). Let us find an optimal
distribution of the inclusions for k ¼ 10; n ¼ 10. In this case, Equation (77) yields
x
*
¼ 0:015 < t ¼ 1

10. It means that the coordinates of all inclusions are defined by
Equations (82) and (83).

The function f(x), based on Equation (81), is shown in Figure 9, where also a nomogram
useful for a graphic determination of the optimized inclusions coordinate xi (i = 1,. . .,5)
(symmetric with respect to x = 0.5) is presented. Numerical values of the optimized
coordinates xi(i = 1,. . .,5) are yielded by Equation (82) for the following parameters: i =
1,. . .,5; x

*
¼ 0:015; t ¼ 1

10.
The optimized structure of the FG beam found with the help of Equation (82) is shown in

Figure 10b, whereas Figure 10a reports the structure of an equivalent regular composite
beam.

The buckling force of the simply supported beam of an optimized structure (Figure 10b)
is 21.59 per cent higher than the corresponding buckling force for the regular beam (Figure
10a). Figure 11 shows the buckling forms of the composite beam with the optimized
structure defined by Equation (82) and (83) and with a regular structure.

Figure 8.
Dependence of the

buckling force p0 on k
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Finally, let us analyze possibility of local buckling for the beam shown in Figure 10b. Low
bound of the local buckling force ~p on the interval [0, x1] can be determined using a beam of
the length x1 = 0.195, where x1 is given by Equation (82): ~p ¼ p 2

x12
¼ 259:55. The general

buckling force defined by Equation (82) yields p0 = 131.88, so, p0 < ~p.

Figure 10.
Two-component
beam

Figure 11.
Buckling form u0
u0 ¼ u0 xð Þ=�
u0 1=2ð ÞÞ of the FG
beamwith optimized
structure (solid curve)
versus the buckling
form of the regular
two-components
beam (dashed curve)
for k ¼ 1; n= 10

Figure 9.
Nomogram for the
graphical
determination of the
optimized coordinates
of inclusion xi (i=
1,. . .,5) for k ¼ 10;
n ¼ 10; t ¼ 0:091;
xi ¼ it if the
coordinates of
inclusions are
regularly distributed
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4. Concluding remarks
Separation of the FG beams into structures with regularly distributed inclusions of variable
cross-section andwith irregularly distributed inclusions of constant cross-section has shown
its effectiveness. It allowed for formulating and solving the problem of optimization of the
internal structure of the FG beam while studying its stability problem. Employment of the
homogenization method allowed one to reduce a class of the required functions to a class of
piece-wise continuous functions. The adequacy of FG homogeneous models increases with
increasing number of inclusions. The latter enabled us to apply the well-known variational
methods.

The optimized internal structures of the FG beam with inclusions of the variable size and
with the non-constant step are similar to each other. They are characterized by occurrence of
the border zones being free of inclusions and exhibiting the inclusions of the biggest size in
the central zone of the beam. However, this implies a potential local buckling in the border
zones, which requires a separate analysis for each of the developed optimal designs.

Remarkably, the final result of the carried out optimization of the internal structure for
both studied types of FGM are similar. The relative increase in the buckling force of the FG
beam with the optimized internal structure is on amount of 20 per cent while comparing it
with the regular structure beam.

The use of Rayleigh relations in Equations (19)-(21) as stationarity conditions allows us
to obtain optimal solutions for the problem under consideration with an account of arbitrary
boundary conditions. On the other hand, the analysis of the influence of boundary
conditions optimal FG rods behavior stands for one of the promising directions for further
research.

Another important area of further research is that devoted to study a combination of the
two schemes of the considered optimal design. The main difficulty here is the impossibility
to use two different objective functions. One of the possible schemes to avoid the occurred
problem is the use of sequential optimization. First, the optimum distribution of the volumes
of the inclusions can be determined, and then their optimal localization should be carried
out.

In addition, it is of interest to study the dual problem (Sanchez-Palencia, 1980) where
minimization of the volume of inclusions at a constant (given) value of the buckling force is
provided.

In conclusion, it should be noticed that even in cases where for reasons of high cost or
difficulties of technological nature the possibilities of creating FG designs of optimal
structure are limited, the study of optimal design structures is of practical importance, as it
allows us to theoretically assess the quality of traditional non-optimal structures.
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Appendix
Let us estimate an error of the employed homogenization approach. This problem has been already
considered in the case of statics (Xing and Chen, 2014) and dynamics (Wang et al., 2006; Sun et al., 2017),
where the problems were solved by the homogenization approach and FEM. The comparison of the
obtained results confirm a physically obvious conclusion: the global characteristics (the energy of the
system associated with the lower part of the vibration spectrum) are determined by homogenization
approach with a high accuracy. However, in our paper, we consider the problem of stability. We show,
following the paper (Andrianov and Piskunov, 1997), that the first eigenvalue of the corresponding
eigenvalue problem defined by homogenization approach is obtained with accuracy of « 2.

Consider the eigenvalue problem:

a
x
«

� �
d2u
dx2

þ pu ¼ 0; (A1)

u ¼ 0 at x ¼ 0; x ¼ 1: (A2)

Using fast and slow variables and taking into account the relation:

d
dx

¼ @

@x
þ «�1 @

@h
(A3)

we obtain a PDE instead of the original ODE. We seek its solution as the series with regard to the
parameter « of both u and p:

u ¼ u0 h ; xð Þ þ «u1 h ; xð Þ þ « 2u2 h ; xð Þ þ . . . ; (A4)

p ¼ p0 þ «p1 þ « 2p2 þ . . . : (A5)

Substituting the expansions in Equations (A4) and (A5) into the original eigenvalue problem in
Equations (A1) and (A2), one gets:

u0 
 u0 xð Þ; u1 
 u1 xð Þ; (A5)

a
@2u2
@h 2 þ a

d2u0
dx2

þ p0u0 ¼ 0; (A6)

@2u3
@h 2 þ 2

@2u2
@x@h

þ d2u1
dx2

þ a�1p1u0 þ a�1p0u1 ¼ 0; (A7)

. . .

ui ¼ 0; i ¼ 0; 1; 2; . . . at x ¼ 0; x ¼ 1: (A8)

Homogenization of Equation (A5) leads to the following result:
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~a
d2u0
dx2

þ p0u0 ¼ 0; ~a ¼
ð1
0
a�1dh

" #�1

:: (A9)

Solution of the eigenvalue problem in Equations (A9) and (A8) is as follows:

p0 ¼ p 2~a; u0 ¼ C sinpx: (A10)

For the first fast corrector term, one gets:

u2 ¼ ~a
ðh
0

ðh
0

a�1dh

0
B@

1
CAdh � 0:5h 2 � C1h

2
64

1
CA
3
75 d2u0

dx2
; C1 ¼ ~a

ð1
0

ðh
0

a�1dh

0
B@

1
CAdh � 0:5:

(A11)

It is important to note that the first fast corrector satisfies the boundary conditions in Equation (A8),
and hence, that a boundary layer is absent.

Substituting Equation (A11) to Equation (A7) yields:

@2u3
@h 2 þ

d2u1
dx2

þ a�1p1u0 þ a�1p0u1 ¼ 2 h þ C1 � ~a
ðh
0

a�1dh

0
B@

1
CA d3u0

dx3
: (A12)

Homogenization of Equation (A12) gives:

d2u1
dx2

þ ~a�1p1u0 þ ~a�1p0u1 ¼ 0: (A13)

Multiplication of Equation (A13) by u0, carrying out the integration and taking into account self-
adjointness of the eigenvalue problem in Equations (A9) and (A8), one obtains:

p1 ¼ 0: (A14)

Therefore, we have shown that indeed the homogenization approach gives possibility to compute the
eigenvalue with accuracy of « 2.
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