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Abstract Dynamics behavior of the micromechani-
cal gyroscope designed for measuring one component
of the angular velocity is studied in the paper. The Car-
dan suspension is applied to connect the sensing plate
with the substrate whose angular velocity is measured.
The gimbal and the platewith sensors are connected via
torsional joints. Vibrating motion of the sensing plate
is excited mainly by a torque resulting from the Cori-
olis effect. The mathematical model equations have
been derived using the Lagrange equation of the second
kind. Both nonlinear effects of the geometrical nature
and the nonlinear characteristics of the torsional joints
are taken into account. The governing equations are
solved with help of the method of multiple scales in
time domain that belongs to the broad class of asymp-
totic methods. The approximate solution of analytical
form has been obtained for non-resonant vibration as
well as for the case of the main and internal resonances
that occur simultaneously. Analytical form of solution
allows for extensive analysis of the behavior of the
system. The desirable state of the gyroscope work is
steady-state vibration in resonance that is discussed in
detail.
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1 Introduction

Gyroscopes are present in a broad range of engineering
systems such as air vehicles, automobiles, and satel-
lites to track their orientation and control their path.
Besides the directional gyroscopes, there are variety
of gyroscopes (e.g., mechanical, optical and vibrating)
that are being used tomeasure the angular velocity. The
critical part of the conventional mechanical gyroscope
is a wheel spinning at a high speed. Therefore, conven-
tional gyroscopes although accurate are bulky and very
expensive and they are applicable mainly in the naviga-
tion systems of large vehicles, such as ships, airplanes,
space crafts, etc.

Micromechanical gyroscopes and angular rate sen-
sors allow for signification miniaturization in contrary
to solid-state gyroscopes, laser ring and fiber optic
gyroscopes.

Progress in micromachining technology embraces
the development of the miniaturized gyroscopes with
improved performance and low power consumption
that allow the integration with electronic circuits. Their
manufacturing cost is also significantly lower [1,2].
Such type of gyroscopes belongs to broad class of
microelectromechanical systems (MEMS). Practically,
any device fabricated using photo-lithography-based
techniques with micrometer scale features that utilizes
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both electrical and mechanical functions could be con-
sidered as MEMS.

The operating principle of vibrating gyroscopes is
based on the transfer of the mechanical energy among
two vibrations modes via the Coriolis effect which
occurs in the presence of a combination of rotational
motions about two orthogonal axes. The drive mode is
mainly generated employing the electrostatic actuation
mechanism.

However, it is widely recognized that miniatur-
ization achieved via fabrication technologies requires
detailed studies from a point of view of nonlinear
dynamical systems inorder to understand and control of
sometimes unexpected behavior of microcomponents,
micromachines and MEMS/NEMS, and in particular
of micromechanical gyroscopes. Reliable modeling of
the micromechanical vibratory gyroscopes allows for
improvement in sensitive elements and circuit design,
and hence, it has an important impact on achieving high
performances of the mentioned micromechanical sys-
tems. In other words the micro- and nanotechnologies
require support of theoretical approaches based on the-
ory of vibrations and nonlinear phenomena. In what
follows, we briefly describe state of the art of the recent
achievement in modeling and analysis on some chosen
MEMS/NEMS and micro-/nanogyroscopes.

Tuner et al. [3] pointed out importance of parametric
resonances in a micromechanical system. Lifshitz and
Cross [4] investigated a response of themicroring gyro-
scope under combined external forcing and parametric
excitation to achieve required parametric amplification.

Gallacher et al. [5] proposed a control scheme for
a MEMS electrostatic resonant gyroscope subjected to
both harmonic forcing and parametric excitation.

Nayfeh and Younis [6] investigated dynamics of
MEMS resonators under superharmonic/subharmonic
excitations.

Kacem et al. [7] improved the performance of
NEMS sensors based on employment of theoreti-
cal approaches of modeling nonlinear dynamics of
nanomechanical beam resonators.

Lestev and Tikhonov [8] analyzed nonlinear dynam-
ical behavior of micromechanical gyroscopes using
the method of averaging. They pointed out that even
though the parameters of the microstructural compo-
nents are chosen in a way to provide a linear response,
it cannot be achieved due to the fabrication errors.
They investigated stable steady-state modes of vibra-

tory micromechanical gyroscopes, and they presented
the corresponding resonance curves.

Nonlinear dynamics and chaos of electrostatically
actuatedMEMS resonators under two-frequency exter-
nal and parametric excitations were analyzed by Zhang
et al. [9]. In particular, they illustrated effects of non-
linear square damping on the frequency response. Res-
onance frequencies and nonlinear dynamic character-
istics were also reported. However, their investiga-
tion concerned relatively simple model consisting of
a mass–spring–damper system.

Martynenko et al. [10] studied nonlinear phenomena
of a vibrating micromechanical gyroscope with a ring
resonator flexibly supported. The Krylov–Bogolubov
averaging method was employed to predict fabrica-
tion errors, unstable branches of resonance curves, and
quenching phenomenon.

Sang Won Yoon et al. [11] modeled vibratory ring
gyroscopes by four vibration models (two flexural and
two translation). The developed model consisted of
the ring structure, the support-string structure, and the
electrodes. It was shown that the developed model
becomes vibration sensitive in the presence of both
non-proportional damping and the sense electrodes
capacitive nonlinearity.

Matheny et al. [12] studied nonlinearmode-coupling
in nanomechanical systems. They demonstrated mea-
surement protocol and design rules for getting accu-
rate in situ characterization of nonlinear properties of
NEMS resonators. In particular, the employment of the
Euler–Bernoulli beammodel was validated through the
carried out laboratory measurements.

Ovchinnikova et al. [13] developed a model of
micromechanical gyroscope using inertia properties
of standing elastic waves providing maximum vibra-
tion amplitude with minimum control. The employed
schemes of stabilization of the excited amplitude
reduced nonlinear transformation characteristics. The
method allowed for computation of the envelope of the
fundamental mode of vibration of the governing two
second-order ODEs yielded by the Bubnov–Galerkin
approach.

Yoon et al. [14] studied amicromechanical vibrating
ring gyroscope under high shocks based on mathemat-
ical analysis supported by the finite element method.
They suggested employment of the developed vibrat-
ing ring gyroscope in navigation systems when both
performance and high shock resistance are crucial in
getting proper measurements.
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Lestev [15] investigated combination resonances of
sensitive elements of micromechanical gyros under
translational and angular motions of the platform.
The governing nonlinear ODEs were derived and the
obtained results were validated experimentally.

Nitzan et al. [16] considered parametric amplifica-
tion of a micromechanical resonating disk gyroscope
taking into account of self-induced parametric excita-
tion and Coriolis forces. The parametric self-induced
amplification was yielded by nonlinear stiffness cou-
pling between degenerate orthogonal vibration modes
in a high-quality-factor micromechanical resonator.

Defoort et al. [17] analyzed occurrence of synchro-
nization between two degenerate resonance modes of a
microdisk resonator gyroscope. The carried out consid-
eration were based on two second-order ODEs includ-
ing a geometric nonlinearity of a cubic type. They
demonstrated how mutual synchronization between
modes was robust over temperature variation.

An impact of a cubic nonlinearity on the operation
of a rate-integrating gyroscope was studied by Nitzan
et al. [18]. It was shown how below the bifurcation
threshold of cubic nonlinearity a splitting of angle-
depending frequency between two resonant gyroscope
modes occurred which impacted angle-dependent bias,
quadrature error and controller efficacy. The method of
compensating for angle-dependent frequency errorwas
proposed and was experimentally validated.

A useful overview of gyroscopic technology includ-
ing mechanical and optical at macro- and microscale
was given by Passaro et al. [19].

In the present work, we conduct an analysis of
dynamics of aMEMS gyroscope. This microdevice is a
torsional resonator. Resonance is the desirable state of
work of this sensor, so the elastic properties should be
appropriately matched. Designing the resonator, only
linear elasticity is taken into account. There arises the
question what is the significance of the nonlinear prop-
erties of resilient resonator elements. Therefore, we
propose the mathematical model describing motion of
theMEMSgyroscope taking into account the nonlinear
effects generated by the elastic properties of the suspen-
sion elements [20]. The main objective of the paper is
to obtain and to examine the resonant responses of the
considered system.

The paper is organized in the following way. Sec-
tion 2 deals with a description of the further stud-
ied micromechanical gyroscope. Equations of motion
are derived in Sect. 3. Section 4 reports the analyt-

ically obtained approximate solutions to the govern-
ing two second-order nonlinear ODEs in the case of
non-resonant vibrations. Resonant vibrations are stud-
ied analytically and numerically in Sect. 5. Section 6
is devoted to investigation of steady-state gyroscope
responses. Concluding remarks are given in Sect. 7.

2 Description of micromechanical gyroscope

Dynamics of the torsional micromechanical gyroscope
used to measure one component of the angular velocity
is the subject of the paper. The Cardan suspension idea
is applied to connect the sensing platewith the substrate
whose angular velocity is measured. A diagram of the
MEMS gyroscope is presented in Fig. 1. The sensing
element “3” connects to the intermediate gyroscope
part, i.e., the gimbal “2” via two torsional joints hav-
ing a common axis called the sense axis. Two torsional
joints link the gimbal with the anchors “1” mounted
on the substrate which can be movable in the general
case. These connectors are also aligned along a com-
mon straight line designating the drive axis. The gimbal
is loaded by the external harmonically changing torque.
The sense anddrive axes aroundwhich the sensingplate
and the gimbal can rotate independently are mutually
orthogonal. In the system, there is the coupling effect.
When the gyroscope is subjected to a rotation about
z-axis caused by the substrate motion the sinusoidal
Coriolis torque at the frequency of drive-mode oscil-
lations is induced in the sense direction. The Coriolis
torque excites the proof-mass to oscillate around the
sense axis. This response, caused by the Coriolis effect

1 y0

2 3 

1 

x0

z0

Fig. 1 Micromechanical gyroscope suspended on a set of two
pivoted and mutually orthogonal pivot axes; 1—anchor, 2—
gimbal, 3—sensing plate
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Fig. 2 The angles of
rotation Φ and Θ: a the
rotation of F1 by Φ about
x0-axis; b the superposition
of two rotations: F1 by Φ

about x0-axis and F2 by Θ

around y1

and proportional to the angular velocity being mea-
sured, is registered by the detection electrodes. In order
to attain the maximum response of the proof-mass, the
desirable work regime of the micromechanical system
is the resonance around both sense and drive axes. This
state is achieved at the designing stage what especially
involves the proper choice of the inertial properties of
theMEMS parts and the elastic features of the torsional
joints. It seems to be advisable to consider the influ-
ence of the nonlinear elastic properties of the torsional
connectors on the micromechanical system operation.
Including into consideration these nonlinearities can
increase the working precision of the gyroscope.

Assuming the gimbal and the sensing plate are
the rigid bodies, we model the torsional gyroscope
as a two degrees-of-freedom (2-DOF) mass–spring–
damper system with one sensing axis, so it is designed
to measure one coordinate of the angular velocity of
the substrate.

When describing the movement of MEMS parts, it
is helpful to introduce three reference frames shown
in Fig. 2. These frames have the common origin at
the point O . Point O is also the center of mass of the
whole gyroscope. In the frame F0 with the Cartesian
coordinate system Ox0y0z0 the anchors and thus also
the substrate whose angular velocity is measured are
motionless. The frame F1 with the coordinate system
Ox1y1z1 is fixed to the gimbal, whereas the frame F in
which it is assumed the coordinate systemOxyz is rigid
connected with the sensing plate. At stable equilibrium
position of the MEMS presented in Fig. 1, the axes of
all these frames overlap with each other. Each of the
introduced frames is non-inertial. The frame F1 which
can oscillate about the drive axis x0 is presented in
Fig. 2a in the position rotated by Φ counterclockwise.

In Fig. 2b, the frame F oscillating around the sense axis
y1 is depicted in the position being a result of the rota-
tion by Θ , also counterclockwise, and the rotation of
the frame F1 associated to the gimbal. The anchors and
the substrate can rotate about a fixed pivot axis. Let us
assume that its absolute angular velocity �z projected
on the axes of the frame F0 is�z = [0, 0,Ωz]T , where
Ωz is to be measured.

The absolute gimbal angular velocity �1 is a super-
position of the substrate rotation and own rotation about
the drive axis. When projecting it onto the axes of the
frame F1, we obtain

�1 = [
Φ̇,Ωz sinΦ,Ωz cosΦ

]T
. (1)

The absolute angular velocity� of the sensing plate
written in the reference frame F and being a result of
the substrate motion, gimbal rotation and own rotation
about y-axis is

� = [−Ωz cosΦ sinΘ + cosΘΦ̇,Ωz sinΦ

+ Θ̇,Ωz cosΦ cosΘ + Φ̇ sinΘ
]T

. (2)

3 Equations of motion

The considered micromechanical system has two
degrees of freedom in its motion relative to the sub-
strate. The rotation angles Φ(t) and Θ(t) are assumed
to be the general coordinates. The point O that is the
mass center both of the sensing plate and the gimbal is
constantly at rest. Due to assumed symmetry, the axes
of reference frames F1 and F are the principal axes of
inertia of the gimbal and the sensing plate, respectively.
Therefore, the inertia tensors of each of the gyroscope
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parts related to their own principal axes have the diag-
onal form independently of the current system config-
uration. Let Ix , Iy and Iz denote moments of inertia
of the gimbal about its principal inertia axes, whereas
Jx , Jy, Jz stand for the principal moments of inertia
of the senor plate with respect to the axes x , y and z.
So, we can write the inertia tensors of both gyroscope
parts as

Î = diag(Ix , Iy, Iz), Ĵ = diag(Jx , Jy, Jz). (3)

From the viewpoint of the absolute observer, the
kinetic energy of the whole system is a sum of two
bilinear forms

T = 1

2

(
�T

1 · Î · �1 + �T · Ĵ · �
)

, (4)

where symbol · denotes the inner product.
Substituting formulas (1)–(3) into Eq. (4), we get

T = 1

2
Ix Φ̇

2 + Ω2
z

2

(
Iz cos

2 Φ + Iy sin
2 Φ

)

+ Jy
2

(
Ωz sinΦ + Θ̇

)2

+ Jx
2

(
Ωz cosΦ sinΘ − Φ̇ cosΘ

)2

+ Jz
2

(
Ωz cosΦ cosΘ + Φ̇ sinΘ

)2
(5)

There are assumed cubic nonlinear properties of soft
type for all torsional joints. Taking into account that the
mass center O of the whole micromechanical system
remains constantly immovable, we canwrite the poten-
tial energy as follows

V = 1

2
k11Φ

2 − 1

4
k12Φ

4 + 1

2
k21Θ

2 − 1

4
k22Θ

4, (6)

where k11, k12 and k21, k22 are elastic coefficients of
the torsional joints, respectively, for the anchors-gimbal
and gimbal-sensing plate connections.

Primary role in damping mechanism play the vis-
cous effects of gas flow which occurs between the
rotating surfaces and the immovable ones. As it was
mentioned, the system is excited by the driving elec-
trostatic torque M0 sin (Pt) applied to the gimbal. The
external loading and damping moments are introduced
into motion equations as the generalized forces.

The equations of motion derived using the Lagrange
equations of the second kind are as follows

1

2
(2Ix + Jx + Jz + (Jx − Jz) cos(2Θ)) Φ̈

+C1Φ̇ + k11Φ − k12Φ
3 + (Jz − Jx ) sin(2Θ)Φ̇Θ̇

+ Ω2
z

4

(
2Iz − 2Iy + Jx − 2Jy + Jz

+(Jz − Jx ) cos(2Θ)) sin(2Φ)

−ΩzΘ̇
(
Jy + (Jx − Jz)

× cos(2Θ)) cosΦ = M0 sin(Pt), (7)

JyΘ̈ + C2Θ̇ + k21Θ − k22Θ
3

+Ω2
z (Jz − Jx ) cosΘ sinΘ cos2 Φ

+ΩzΦ̇
(
Jy + (Jx − Jz) cos(2Θ)

)
cosΦ

− (Jz − Jx ) Φ̇2 cosΘ sinΘ = 0, (8)

where C1 and C2 are the damping coefficients.
Expecting the elements of the system vibrate in very

small ranges values of anglesΦ andΘ , so we carry out
the linear approximation of trigonometric functions of
these angles. It makes the equations of motion much
simpler. It is convenient to transform the governing
equations into non-dimensional form. For this purpose,
we introduce the dimensionless time τ = tω1 and the
following dimensionless parameters:

p = P

ω1
, ωz = Ωz

ω1
, w = ω2

ω1
, c1 = C1

(Ix + Jx )ω1
,

c2 = C2

Jyω1
, α1 = k12

(Ix + Jx )ω2
1

, α2 = k22
Jyω2

1

,

j1 = Iz + Jz − Iy − Jy
Ix + Jx

, j2 = Jz − Jx
Ix + Jx

,

j3 = Jy
Ix + Jx

, j4 = Jz − Jx
Jy

, f0 = M0

(Ix + Jx )ω2
1

,

(9)

where ω1 =
√

k11
Ix+Jx

, ω2 =
√

k21
Jy
.

The governing equations take the following dimen-
sionless form

ϕ̈ +
(
1 + j1ω

2
z

)
ϕ − α1ϕ

3 + (
c1 + 2 j2ϑϑ̇

)
ϕ̇

+ ( j2 − j3) ωzϑ̇ − f0 sin(pτ) = 0, (10)

ϑ̈ +
(
w2 + j4ω

2
z − j4ϕ̇

2
)

ϑ − α2ϑ
3

+ c2ϑ̇ + (1 − j4)ωz ϕ̇ = 0, (11)

where ϕ(τ), ϑ(τ) correspond to the dimensional gen-
eral coordinatesΦ(t) andΘ(t) and are functions of the
non-dimensional time.Hereafter, the dots over symbols
denote derivatives respecting to dimensionless time τ .

Equations (10)–(11) are supplemented with the
proper initial conditions
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ϕ(0) = ϕ0, ϕ̇(0) = ω0, ϑ(0) = ϑ0, ϑ̇(0) = ωϑ0,

(12)

where ϕ0, ωϕ0, ϑ0, ωϑ0 being known numbers
describe the initial kinematic state of the gyroscope.

4 Approximate analytical solution for
non-resonant case

The approximate analytical solution of the initial value
problem (10)–(12) is obtained using multiple scales
method (MSM) [21]. In accordance with MSM, the
systemevolution in time is described using several vari-
ables of time nature. These variables are related to each
other by the so-called small parameter ε. We introduce
three time variables in the following manner: τ0 = τ

is the “fast” time, whereas τ1 = ετ and τ2 = ε2τ

play role of the “slow” times. Automatically, all func-
tions dependent on time become the functions of the
new time variables, and derivatives with respect to the
original time τ are replaced by the following partial
differential operators

d

dτ
= ∂

∂τ0
+ ε

∂

∂τ1
+ ε2

∂

∂τ2
, (13)

d2

dτ 2
= ∂2

∂τ 20
+ 2ε

∂2

∂τ0∂τ1

+ ε2

(
∂2

∂τ 21
+ 2

∂2

∂τ0∂τ2

)

+ O
(
ε4

)
. (14)

The solution of the initial value problem (10)–(12)
is sought in the form of the power series of the small
parameter ε

ϕ (τ ; ε) =
k=3∑

k=1

εkφk (τ0, τ1, τ2) + O(ε4),

ϑ (τ ; ε) =
k=3∑

k=1

εkθk (τ0, τ1, τ2) + O(ε4). (15)

Moreover, several parameters describing the
micromechanical system and its loading are assumed
to be small, what using the small parameter ε can be
written as follows

c1 = c̃1ε
2, c2 = c̃2ε

2, ωz = ω̃zε f0 = f̃0ε
3.

(16)

When making assumptions (15), we take into
account that the substrate angular velocity is much
smaller than the frequencies of the movable gyroscope
elements.

Relations (13)–(16) are then substituted into equa-
tions of motion (10)–(11). As a result, in the equations
the small parameter ε appears in the different pow-
ers. It is required each of equations to be satisfied for
any value of ε. After arranging the components of both
equations according to the powers of the small param-
eter, this requirement is realized by equating to zero
all coefficients standing at the succeeding powers of ε.
Then, the obtained system of equations is solved recur-
sively [22–24].

At every step of the solving process, the secular
terms have to be removed. In this way, arise an ini-
tial value problem which is associated with the basic
equations set. Solution of this problem, which often is
named the modulation problem, present the slow evo-
lution of vibration amplitudes and phases in time. The
essential aspects regarding the recursive solving is pre-
sented inmore detail in Sect. 5 where the resonant solu-
tion is sought.

The approximate solution of initial value problem
(10)–(12) which is obtained using MSM has the fol-
lowing form

ϕ = a1 cos(τ + ψ1) − 1

32
α1a

3
1 cos(3τ + 3ψ1)

+ j2a1a22 cos(τ − 2wτ + ψ1 − 2ψ2)

8(w − 1)

− j2a1a22 cos(τ + 2wτ + ψ1 + 2ψ2)

8(w + 1)

+ ( j3 − j2)wωza2 sin(wτ + ψ2)

w2 − 1
+ f1 sin(pτ)

1 − p2
, (17)

ϑ = a2 cos(τ + ψ2) − j4a21a2 cos(2τ − wτ + 2ψ1 − ψ2)

16(w − 1)

+ j4a21a2 cos(2τ + wτ + 2ψ1 + ψ2)

16(w + 1)

− α2a32 cos(3wτ + 3ψ2)

32w2 − ( j4 − 1)ωza1 sin(τ + ψ1)

w2 − 1
.

(18)

The functions a1(τ ), a2(τ ), ψ1(τ ), ψ2(τ ) are solutions
of the modulation problem and have form

a1 = a10 exp
(
−c1τ

2

)
, (19)

ψ1 = ψ10 − 3a210 (1 − exp (−c1τ)) α1

8c1

+1

2

(
j1 − ( j2 − j3)( j4 − 1)

w2 − 1

)
τω2

z , (20)
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a2 = a20 exp
(
−c2τ

2

)
(21)

ψ2 = ψ20 − a210 (1 − exp (−c1τ)) j4
4c1w

−3a220 (1 − exp (−c2τ)) α2

8c2w

+ ( j3 − j2)w2 + j4((1 + j2 − j3)w2 − 1)

2w(w2 − 1)
τω2

z

(22)

where initial values of the amplitudes and the phases
a10, a20, ψ10, ψ20are known and compatible with the
initial values ϕ0, ωϕ0, ϑ0, ωϑ0 occurring in condi-
tions (12).

It is worth to emphasize that the solution although
approximated have however an analytical form. It
describes the forced vibration of the mechanical gyro-
scope caused by the harmonic torque acting about the
drive axis. Excluding the case when w = 0, the solu-
tion given by formulas (17)–(22) fails when p =1 or
w = 1 because some denominators are then equal to
zero. That are cases of main and internal resonances,
respectively. These two cases determine the zone of the
main and internal resonance, respectively. Therefore,
solution (17)–(22) is useful to describe the gyroscope
behavior in conditions being far from the resonance.
The time histories of the generalized coordinates ϕ and
ϑ given by (17)–(18) together with (19)–(22) are pre-
sented in Fig. 3. The calculations were carried out for
the following fixed values of parameters (several values
of the parameters are taken from the paper [25])

p = 0.021, w = 0.8, f0 = 0.0043662, α1 = 2,

α2 = 2, c1 = 0.0000575531, c2 = 0.0000575531,

ωz = 0.0000575531, j1 = 0, j2 = 0, j3 = 1, j4 = 0,

a10 = 0.009, a20 = 0.009, ψ10 = 0, ψ20 = 0.

In Fig. 3 the beginning of the motion of both gyro-
scope parts is presented. We can observe slow modula-

tion of the gimbal oscillations due to external loading.
In fact, on each of these two graphs are depicted two
curves representing the approximate solution of initial
value problem (10)–(12). One of them present the solu-
tion obtained analytically according to (17)–(22), and
the second the solution obtained numerically. The dif-
ference between these curves is unnoticeable.

The accuracy evaluation of the approximate solution
is estimated using the measures

δ1 = 1

τmax

τmax∫

0

|G1(ϕa, ϑa)| dτ,

δ2 = 1

τmax

τmax∫

0

|G2(ϕa, ϑa)| dτ , (23)

where G1(ϕa, ϑa) and G2(ϕa, ϑa) stand for the differ-
ential operators, i.e., the left sides of motion equations
(10)–(11), ϕa, ϑa are approximate solutions obtained
using MMS or numerically, and τmax is the total time.
Proposed measures (23) evaluate the error of fulfill-
ment of the governing equations of the simulation dura-
tion. The functions ϕa, ϑa , irrespective of the way of
their obtainment, satisfy the motion equations (10)–
(11) only approximately.

For the approximate solution presented in Fig. 3 and
obtained using MSM, the values of error are

δ1 = 6.414247 · 10−7, δ2 = 3.371118 · 10−9. (24)

The values of error of the fulfillment of the govern-
ing equations by the approximate solutions obtained
numerically using NDSolve method implemented in
Mathematica 11.1 are

δ1 = 2.562360 · 10−7, δ2 = 6.434821 · 10−8. (25)

The solutions obtained using MSM satisfy the sec-
ond of themotion equationswith a significantly smaller
error.

Fig. 3 Time histories of the
forced vibration in
non-resonant conditions

123



1826 J. Awrejcewicz et al.

5 Resonant vibration

As it appears from equations (17)–(22), the frequen-
cies of main and internal resonances are equal to each
other. This characteristic feature of considered type of
MEMS gyroscope results from its structure and geom-
etry. Using non-dimensional parameters, we can write
that resonances occur when p ≈ 1 and w ≈ 1. In
view of assumptions (16), the substrate angular veloc-
ity donot affect significantly the resonance frequencies.
Desirable work regime of the micromechanical system
is the simultaneous resonance around both sense and
drive axes. In order to achieve the state of coincidence
of main and internal resonances, the system should be
designed like that the both eigenfrequencies to be equal.

Assuming that the permanent equalizing the eigen-
frequencies at the design stage is unobtainable in the
nonlinear systems, we take into account the following
resonance conditions

p = 1 + σ1, w = 1 + σ2, (26)

where σ1 and σ2 play role of the detuning parameters.
Additionally, we assume that σ1 = σ̃1ε, σ2 = σ̃2ε.

In order to solve the initial value problem near res-
onance, assumptions (26) and (16) are introduced into
governing equations (10)–(11). Approximate solution
is determined using MSM. We introduce three time
variables. The “fast” time τ0 = τ , and the “slow” times
τ1 = ετ and τ2 = ε2τ replace the original time τ .
According to MSM rules, we employ formulas (13)–
(15) into motion equations (10)–(11), yielding appear-
ance of the small parameter ε in various powers. After
arranging the equations with respect to the powers of
the small parameter, we realize the demand the motion
equations to be satisfied for any value of ε. We get a
system of equations which have to be satisfied in order
to guarantee satisfaction to the original equations. They
are as follows:

– the equations of the first-order approximation

∂2φ1

∂τ 20
+ φ1 = 0, (27)

∂2θ1

∂τ 20
+ θ1 = 0, (28)

– the equations of the second-order approximation

∂2φ2

∂τ20

+ φ2 = ω̃z( j3 − j2)
∂θ1

∂τ0
− 2

∂2φ1

∂τ0∂τ1
, (29)

∂2θ2

∂τ20

+ θ2 = −2σ̃2θ1 + ω̃z( j4 − 1)
∂φ1

∂τ0
− 2

∂2θ1

∂τ0∂τ1
,

(30)

– the equations of the third-order approximation

∂2φ3

∂τ20

+ φ3 = f0 sin(τ0 + ετ0σ̃1) − j1ω̃
2
zφ1

+α1φ
3
1 + ( j3 − j2)ω̃z

(
∂θ1

∂τ1
+ ∂θ2

∂τ0

)

− c̃1
∂φ1

∂τ0
− ∂2φ1

∂τ21

− 2 j2θ1
∂θ1

∂τ0

∂φ1

∂τ0

− 2
∂2φ1

∂τ0∂τ2
− 2

∂2φ2

∂τ0∂τ1
, (31)

∂2θ3

∂τ20

+ θ3 = −
(
σ̃ 2
2 + j4ω̃

2
z

)
θ1 + α2θ

3
1

− 2σ̃ 2
2 θ2 + ( j4 − 1)ω̃z

(
∂φ1

∂τ1
+ ∂φ2

∂τ0

)

− c̃2
∂θ1

∂τ0
− ∂2θ1

∂τ21

+ j4θ1

(
∂φ1

∂τ0

)2

− 2
∂2θ1

∂τ0∂τ2
− 2

∂2θ2

∂τ0∂τ1
. (32)

The solution to equations (27)–(28) is as follows

φ1 = B1(τ1, τ2) exp(iτ0) + B̄1(τ1, τ2) exp(−iτ0),

(33)

θ1 = B2(τ1, τ2) exp(iτ0) + B̄2(τ1, τ2) exp(−iτ0),

(34)

where B1(τ1, τ2), B2(τ1, τ2)are unknown complex-
valued functions of slow time scales, and i denotes the
imaginary unit.

The equations system (27)–(32) are solved recur-
sively, i.e., solutions (33)–(34) are substituted into
equations (29)–(30), then their solution into equations
(31)–(32). Linear differential operators of the equations
system (27)–(32) are the same on each level of approx-
imation. Therefore, it is inevitable that among solu-
tions of equations (29)–(32) the secular terms appear.
In vibration case, both generalized coordinates have to
be bounded; hence, all secular terms should be elimi-
nated from each of equations (29)–(32) after introduc-
ing into them the solutions of equations of lower levels
approximation.

After introducing solutions (33)–(34) into equations
(29)–(30) and rejection of the secular terms, one gets

∂2φ2

∂τ 20
+ φ2 = 0, (35)
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∂2θ2

∂τ 20
+ θ2 = 0. (36)

The general solutions of homogeneous equations
(35)–(36) are unknown functions of slow time variables
like in the case of solutions (33)–(34). So, it is possible
to omit these solution without lost the generality. The
particular solutions are obviously equal to zero and do
not induce any secular terms.

Inserting solutions (33)–(34) into equations (31)–
(32) and elimination of the secular terms leads to the
following equations

∂2φ3

∂τ 20
+ φ3 = (α1B

2
1 + 2 j2B

2
2 )B1 exp(3iτ0)

+
(
α1 B̄

2
1 + 2 j2 B̄

2
2

)
B̄1 exp(−3iτ0),

(37)

∂2θ3

∂τ 20
+ θ3 = (α2B

2
2 − j4B

2
1 )B2 exp(3iτ0)

+
(
α2 B̄

2
2 − j4 B̄

2
1

)
B̄2 exp(−3iτ0).

(38)

Without detracting fromgenerality, we omit the gen-
eral solutions of equations (37)–(38). The particular
solutions are

φ3 = −1

8
(α1B

2
1 + 2 j2B

2
2 )B1 exp(3iτ0)

−1

8

(
α1 B̄

2
1 + 2 j2 B̄

2
2

)
B̄1 exp(−3iτ0), (39)

∂2θ3

∂τ 20
+ θ3 = −1

8
(α2B

2
2 − j4B

2
1 )B2 exp(3iτ0)

−1

8
(α2 B̄

2
2 − j4 B̄

2
1 )B̄2 exp(−3iτ0).

(40)

The solutions of the recursive system contain two
unknown complex-valued functions B1(τ1, τ2),

B2(τ1, τ2) and their complex conjugates B̄1(τ1, τ2),

B̄2(τ1, τ2).
Elimination of the secular terms in the process of

solving equation system (31)–(34) results in getting the
so-called solvability conditions

i( j3 − j2)ω̃z B2 − 2i
∂B1

∂τ1
= 0, (41)

− i( j3 − j2)ω̃z B̄2 + 2i
∂ B̄1

∂τ1
= 0, (42)

i( j4 − 1)ω̃z B1 − 2σ̃2B2 − 2i
∂B2

∂τ1
= 0, (43)

− i( j4 − 1)ω̃z B̄1 − 2σ̃2 B̄2 + 2i
∂ B̄2

∂τ1
= 0, (44)

−1

2
i f̃0 exp(iεσ̃1τ0) + 3α1B

2
1 B̄1

+ B1

4

(
−4i c̃1 + ( j2 − j3 − 4 j1 − j2 j4 + j3 j4)ω̃

2
z

)

− 2 j2 B̄1B
2
2 − i

2

(
( j2 − j3)σ̃2ω̃z B2 + 4

∂B1

∂τ2

)
= 0,

(45)

1

2
i f̃0 exp(−iεσ̃1τ0) + 3α1 B̄

2
1 B1 + B̄1

4

×
(
4i c̃1 + ( j2 − j3 − 4 j1 − j2 j4 + j3 j4)ω̃

2
z

)

− 2 j2B1 B̄
2
2 + i

2

(
( j2 − j3)σ̃2ω̃z B̄2 + 4

∂ B̄1

∂τ2

)
= 0,

(46)

(3α2B
2
2 − j4B

2
1 )B̄2 + B2

4

×
(
−4i c̃2 + ( j2 + j3( j4 − 1) − 4 j4 − j2 j4)ω̃

2
z

)

−2i
∂B2

∂τ2
+ 2 j4B1B2 B̄1 − i

2
( j4 − 1)σ̃2ω̃z B1 = 0,

(47)

(3α2 B̄
2
2 − j4 B̄

2
1 )B2 + B̄2

4
(4i c̃2 + ( j2 + j3( j4 − 1)

− 4 j4 − j2 j4)ω̃
2
z

)
+ 2i

∂ B̄2

∂τ2

+ 2 j4B1 B̄2 B̄1 + i

2
( j4 − 1)σ̃2ω̃z B̄1 = 0, (48)

The solvability conditions create the system of eight
partial differential equations of the first order with
unknown functions B1(τ1, τ2), B2(τ1, τ2), B̄1(τ1, τ2),

B̄2(τ1, τ2). It is convenient to represent these functions
using the following exponential representation

B1 = ã1 exp(iψ1), B̄1 = ã1 exp(−iψ1),

B2 = ã2 exp(iψ2), B̄2 = ã2 exp(−iψ2), (49)

where ã1(τ1, τ2), ã1(τ1, τ2), ψ1(τ1, τ2), ψ2(τ1, τ2)

are real-valued functions.
After changing variables in (41)–(48) according to

relationships (49), we get the system of equations con-
taining the first-order partial derivatives of unknown
functions ã1(τ1, τ2), ã1(τ1, τ2), ψ1(τ1, τ2), ψ2

(τ1, τ2). We solve it with respect to these derivatives,
and then insert the solutions into Eq. (13) what make
possible to transform the system of partial differen-
tial equations (41)–(48) onto equivalent system of four
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ordinary differential equations. Applying inversely
assumptions (16), one gets

ȧ1 = − f0
2

cos(σ1τ − ψ1)

− j2 − j3
4

(2 + σ2)ωza2 cos(ψ1 − ψ2) − 1

2
c1a1

+ j2
4
a1a

2
2 sin(2(ψ1 − ψ2)), (50)

ȧ2 = −1

4
( j4 − 1)(σ2 − 2)ωza1 cos(ψ1 − ψ2) − 1

2
c2a2

−1

8
j4a

2
1a2 sin(2(ψ1 − ψ2)), (51)

a1ψ̇1 = −3

8
α1a

3
1 + 4 j1 + ( j2 − j3)( j4 − 1)

8
ω2
z a1

+ j2
4
a1a

2
2 cos(2(ψ1 − ψ2)) − f0

2
sin(σ1τ − ψ1)

+ j2 − j3
4

(2 + σ2)ωza2 sin(ψ1 − ψ2), (52)

a2ψ̇2 = σ2a2 − 3

8
α2a

3
2 + ω2

z

8
( j3 − j2 + (4 + j2 − j3) j4) a2

+ j4
8
a21a2(cos(2(ψ1 − ψ2)) − 2)

− j4 − 1

4
(σ2 − 2)ωza1 sin(ψ1 − ψ2), (53)

where a1 = εã1 , a2 = εã2.
The initial conditions supplementing equations

(50)–(53) are

a1(0) = a10, ψ1(0) = ψ10,

a2(0) = a20, ψ2(0) = ψ20, (54)

where a10, a20, ψ10, ψ20 are that known quantities like
that the initial conditions (11) and (54) are compatible
each to other.

Rejection of the secular terms guarantee not only
that solutions of vibration problem are bounded but
also it gives a way to determine the unknown func-
tions B1(τ1, τ2), B2(τ1, τ2). It should be noticed that
although differential equations (50)–(53) are written
using derivatives with respect to the time τ , they
describe the evolution of the functions a1(τ1, τ2),
a1(τ1, τ2), ψ1(τ1, τ2), ψ2(τ1, τ2) with respect to the
slow times variables τ1 and τ2 because these functions
a priori depend only on the slow times variables.

After solving initial value problem (50)–(54), we
apply inversely formula (49) what allow to express the
complex-valued functions B1(τ1, τ2), B2(τ1, τ2) and
their complex conjugates through the real-valued func-
tions a1(τ1, τ2), a1(τ1, τ2), ψ1(τ1, τ2), ψ2(τ1, τ2)

in solutions of the equations system (27)–(32) . Next,
taking into account Eq. (15) we can write the approxi-
mate solution of original problem (10)–(12) related to

the simultaneously occurring main and internal reso-
nances. The solution has the following analytical form

ϕ = a1 cos(τ + ψ1) − 1

32
α1a

3
1 cos(3τ + 3ψ1)

− 1

16
j2a1a

2
2 cos(3τ + ψ1 + 2ψ2) (55)

ϑ = a2 cos(τ + ψ2) + 1

32
j4a

2
1a2 cos(3τ + 2ψ1 + ψ2)

− 1

32
α2a

3
2 cos(3τ + 3ψ2). (56)

The quantities a1 , a2 and ψ1 , ψ2 introduced into
consideration by exponential representation (49) are
functions of slow time variables and occur respectively
as the amplitudes and the phases of the components of
approximate solution (55)–(56). So, initial value prob-
lem (50)–(54) which is associated with basic equations
set (27)–(32) determine the slow evolution of the vibra-
tion amplitudes and phases in time. For that reason, this
issue is known as modulation problem. Contrary to the
previously discussed case of the non-resonant vibra-
tion, initial value problem (50)–(54) cannot be solved
in the analytical manner.

The time histories of the generalized coordinates in
case of the doubled resonance are presented in Fig. 4.
The values of parameters assumed in this simulation
are as follows:
σ1 = 0.01, σ2 = 0.04167, f0 = 0.0043662, α1 = 1,

α2 = 1, c1 = 0.0000575531, c2 = 0.0000575531,

ωz = 0.0000575531, j1 = 0.04, j2 = 0, j3 = 0.96, j4 = 0,

a10 = 0.008, a20 = 0.008, ψ10 = 0, ψ20 = 0.

In Fig. 4a, the black solid line represent the ampli-
tude a1 whereas the black line depicted in Fig. 4b is
the image of the amplitude a2. Both curves envelop
the graphs of fast changing oscillations. The non-
dimensional value τmax = 20,000 denoting the dura-
tion of simulation correspond to about 1.08 s.

Similarly as in Sect. 4, in Fig. 4 are depicted the
approximate solutions obtained using MSM and cal-
culated numerically. The values of error (23) for the
solutions derived using MSM are as follows

δ1 = 1.400831 · 10−7, δ2 = 8.920221 · 10−9. (57)

For comparison, the values of error for the solutions
obtained by the optimized numerical method inMath-
ematica 11.1 are

δ1 = 2.562360 · 10−7, δ2 = 6.434821 · 10−8. (58)

Both values of error measuring satisfaction of
the governing equations by approximate solution are
smaller in case of MSM solution.
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Fig. 4 Time histories in
case of doubled resonance:
a the generalized coordinate
ϕ and amplitude a1; b the
generalized coordinate ϑ

and amplitude a2

6 Steady-state responses

Initial value problem (50)–(54) arose in process of solv-
ing motion equations (10)–(12) using MSM is a good
basis for studying the steady-state forced vibration of
the micromechanical gyroscope. For this purpose, it
is convenient to introduce modified phases Ψ1(τ ) and
Ψ2(τ ) as follows

ψ1(τ ) = σ1τ −Ψ1(τ ), ψ2(τ ) = σ1τ −Ψ2(τ ) . (59)

Applying expressions (59) transforms modulation
problem (50)–(54) into an autonomous form that is
suitable to analyze steady-state motion of the system.
Oscillations of forced system can achieve the steady
state when all transient processes disappear. The symp-
tom of this state is fixing of the values of the amplitudes
a1, a2 and modified phases ψ1 , ψ2. By zeroing of the
derivatives of amplitudes and modified phases in mod-
ulation equations (50)–(53), we get the conditions of a
steady state

2 f0 cos(Ψ1) + ( j2 − j3)(2 + σ2)ωza2 cos(Ψ1 − Ψ2)

+ a1(2c1 + j2a
2
2 sin(2(Ψ1 − Ψ2))) = 0, (60)

2( j4 − 1)(σ2 − 2)ωza1 cos(Ψ1 − Ψ2)

+ 4a2c2 − j4a
2
1a2 sin(2(Ψ1 − Ψ2)) = 0, (61)

−8σ1a1 − 3α1a
3
1 + a1 ((4 j1 + ( j2 − j3)( j4 − 1)) ω2

z

+ 2 j2a
2
2 cos(2(Ψ1 − Ψ2)) − 4 f0 sin(Ψ1)

− 2( j2 − j3)(2 + σ2)ωza2 sin(Ψ1 − Ψ2) = 0, (62)

−8σ1a2 + 8a2σ2 − 3α2a
3
2

+a2 ( j3 − j2 + (4 + j2 − j3) j4) ω2
z

+ j4a
2
1a2(cos(2(Ψ1 − Ψ2)) − 2)

− 2( j4 − 1)(σ2 − 2)ωza1 sin(Ψ1 − Ψ2) = 0. (63)

The solution of system of nonlinear equations (60)–
(63) determine the values of amplitudes and modified
phases of the gyroscope vibration in case of main and
internal resonances that occur simultaneously.

Let us analyze resonant response of micromechani-
cal gyroscope in the general case, i.e., without any addi-
tional assumptions about its properties. The following
values of parameters are fixed

SET1 = {σ2 = −0.00333, f0 = 0.0000011,

α1 = 1.42, α2 = 2.174, c1 = 0.000010127,

c2 = 0.00001, ωz = 0.000131656, j1 = 0.0769,

j2 = 0, j3 = 0.923, j4 = 0}.
The value of the detuning parameter σ1 is increased

regularly by 0.000015, starting from σ1 = −0.0065.
The resonant response curves are obtained solving
equations (60)–(63) with help the procedure NSolve
offered inMathematica 11.1. The results are presented
in Fig. 5.

The resonant answers of the system exhibit high
coincidence with the numerical solution of the motion
equations. The simulationwas carried out assuming the
same values of parameter. Additionally, it is assumed

σ1 = −0.004, a10 = 0.01, a20 = 0.01,

ψ10 = 0, ψ20 = 0.

Time histories of the generalized coordinates for this
data are given in Fig. 6. Both graphs present the vibra-
tion just before the end of simulation which was real-
ized for τ ∈ [0, τmax], where τmax = 20,000 corre-
sponds to about 1.32s.

The values of error (23) for the approximate solution
obtained using MSM are as follows

δ1 = 1.456467 · 10−9, δ2 = 2.940916 · 10−9, (64)

while the values of the error for the numerical results
obtained using Mathematica Software are

δ1 = 2.289364 · 10−7, δ2 = 2.316752 · 10−7. (65)

Equations (60)–(63) allow for a complete analysis of
the gyroscope steady-state response for various special
case studies.
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Fig. 5 Resonance curves: a
for the gimbal vibration, b
for the sensing element
vibration; set of data: SET1

Fig. 6 Time histories of
generalized coordinates for
the set of data: SET1

Case 1 (α1 = 0, α2 = 0)
Let us consider themicromechanical gyroscope the tor-
sional joints of which have strictly linear elastic char-
acteristic. Inserting α1 = 0, α2 = 0 into equations
(60)–(63), one gets

2 f0 cos(Ψ1) + ( j2 − j3)(2 + σ2)ωza2 cos(Ψ1 − Ψ2)

+ a1(2c1 + j2a
2
2 sin(2(Ψ1 − Ψ2))) = 0, (66)

2( j4 − 1)(σ2 − 2)ωza1 cos(Ψ1 − Ψ2) + 4a2c2

− j4a
2
1a2 sin(2(Ψ1 − Ψ2)) = 0, (67)

−8σ1a1 + a1 ((4 j1 + ( j2 − j3)( j4 − 1)) ω2
z

+ 2 j2a
2
2 cos(2(Ψ1 − Ψ2)) − 4 f0 sin(Ψ1)

− 2( j2 − j3)(2 + σ2)ωza2 sin(Ψ1 − Ψ2) = 0, (68)

−8σ1a2+8a2σ2+a2 ( j3 − j2+(4 + j2 − j3) j4) ω2
z

+ j4a
2
1a2(cos(2(Ψ1 − Ψ2)) − 2)

−2( j4 − 1)(σ2 − 2)ωza1 sin(Ψ1 − Ψ2) = 0. (69)

Assumption about vanishing nonlinear does not
cause any significant simplifications. The modulation
equations are still nonlinear and majority of the non-
linear terms is conditioned by the inertial properties of
the sensing plate.

Case 2 ( α1 = 0, α2 = 0, j2 = 0, j4 = 0 ) Observe
that the steady-state equations become much simpler
when j2 = j4 = 0. These relations are satisfied if the
components Jx and Jz of the diagonal inertia tensor Ĵ

of the sense plate are equal to each other. Modulation
equations take the following form

2 f0 cos(Ψ1) − j3(2 + σ2)ωza2 cos(Ψ1 − Ψ2) + 2a1c1 = 0, (70)
2(σ2 − 2)ωza1 cos(Ψ1 − Ψ2) − 4a2c2 = 0, (71)
−8σ1a1 + 4 j1ω

2
z a1 + j3ω

2
z a1

−4 f0 sin(Ψ1) + 2 j3(2 + σ2)ωza2 sin(Ψ1 − Ψ2) = 0, (72)
−8σ1a2 + a2(8σ2 + j3ω

2
z ) − 2(σ2 − 2)ωza1 sin(Ψ1 − Ψ2) = 0.

(73)

The modified phases can be eliminated from equa-
tions (70)–(73) using trigonometric identities what
allows to express explicitly the amplitude-frequency
dependencies

a22
(
16c22 + (8σ2 − 8σ1 + j3ω2

z )
2
)

4a21 (σ2 − 2)2ω2
z

= 1, (74)

(

4a1 j1ω
2
z − 8a1σ1 + a1 j3ω

2
z + a22 j3(2 + σ2)(8σ2 − 8σ1 + j3ω2

z )

a1(σ2 − 2)

)2

+ 16
(
a21c1(σ2 − 2) − a22c2 j3(2 + σ2)

)2

a21 (σ2 − 2)2
= 16 f 20 . (75)

We get the system of two algebraic equations of the
8-th order with respect to the unknown amplitudes a1
and a2.

The resonance curves obtained in result of solving
system (74)–(75) for the following data of parameters

SET2 = { f0 = 1. × 10−7, α1 = 0, α2 = 0, c1 =
5. × 10−7, c2 = 5. × 10−7, ωz = 3. × 10−6, j1 =
0.00826, j3 = 0.9917} are presented in Fig. 7.
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Fig. 7 Resonance curves; a1—amplitude of the gimbal, a2
amplitude of the sensing plate

The full symmetry of the graphs depicted in Fig. 7
is typical behavior of the considered two-degrees-of-
freedom linear system.

The mentioned symmetry is disturbed when the sys-
tem is not perfectly tuned to the internal resonance, i.e.,
when σ2 �= 0. The angular velocity of the substrate
has also crucial influence on the resonant response.
The influence on the resonant response of the detun-
ing parameter σ2 �= 0, which means that the system
is not perfectly tuned, and with respect to the angular
velocity ωz is presented in Fig. 8.

Comparing several cases presented in Figs. 7 and 8,
we can observe that resonant picks are moving away
from each other when ωz increases. However, the
increase of σ2 disturbs symmetry of the graphs.

Case 3 ( j1 = j2 = j4 = 0, j3 = 1)
In this case, we assume that moments of inertia of the
gimbal are assumed as negligible and that the tensor
of inertia of the sensor element is isotropic. Inserting
the assumptions j1 = j2 = j4 = 0, j3 = 1 into
modulation equations (60)–(63), we get

2 f0 cos(Ψ1) + (2 + σ2)ωza2 cos(Ψ1 − Ψ2) + 2a1c1 = 0,

(76)
2(σ2 − 2)ωza1 cos(Ψ1 − Ψ2) − 4a2c2 = 0, (77)
− 8a1σ1 − 3α1a

3
1 + a1ω

2
z

− 4 f0 sin(Ψ1) + 2(2 + σ2)ωza2 sin(Ψ1 − Ψ2) = 0, (78)
− 8a2σ1 + a2(−3α2a

2
2 + 8σ2 + ω2

z )

− 2(σ2 − 2)ωza1 sin(Ψ1 − Ψ2) = 0. (79)

Considered here assumptions cause vanishing of
trigonometric functions whose argument is difference
of the modified phases multiplied by two. This cir-
cumstance allow to eliminate from (76)–(79) the other
trigonometric functions of the modified phases. In this

manner, the following implicit dependence between the
amplitudes and frequencies in the resonance zone is
obtained

a22
(
16c22 + (−3α2a22 + 8σ2 − 8σ1 + ω2

z )
2
)

4a21 (σ2 − 2)2ω2
z

= 1, (80)
(

−3α1a
3
1 − 8σ1a1 + ω2

z a1 + a22 (2 + σ2)(−3α2a32 + 8σ2 − 8σ1 + ω2
z )

a1(σ2 − 2)

)2

+ 16
(
c1(σ2 − 2)a21 − c2(2 + σ2)a22

)2

a21 (σ2 − 2)2
= 16 f 20 . (81)

Equations (80)–(81) form the algebraic set of 48-th
order with respect to the unknown amplitudes a1 and
a2, where amplitudes appear only in even powers.
These equations allow to perform qualitative analysis
of the resonance steady-state amplitudes versus detun-
ing parameter σ1 for various parameters.

The analysis of the influence of the damping coef-
ficient on the amplitudes is presented in Fig. 9. The
assumed values of system parameters are:

SET3 = { f0 = 4.3662 × 10−7, α1 = 1,

α2 = 1, ωz = 6. × 10−5, σ2 = 0}
The influence of the amplitude f0 on the resonance

curves, for the set of parameters SET3 and c1 = c2 =
4 × 10−5, is presented in Fig. 10.

The nonlinearity parameters α1 and α2 have also
essential impact on the resonant characteristics for the
set of parameters SET3 and c1 = c2 = 2.5 × 10−6, is
presented in Fig. 11.

Thevalues of damping coefficients forwhich the res-
onance curves become unique can be estimated, in the
way of numerical simulations, for the given microsys-
tem and given loading. In the case of data values spec-
ified in SET3, coefficients c1 = c2 = 0.000034 fulfill
this criterion.

Case 4 (ωz = 0)
In the case of immovable substrate the form of modu-
lation equations is simplified to the following

2 f0 cos(Ψ1) + 2a1c1 − j2a1a
2
2 sin(2(Ψ2 − Ψ1))) = 0,

(82)

4a2c2 − j4a2a
2
1 sin(2(Ψ1 − Ψ2)) = 0, (83)

− 8a1σ1 − 3α1a
3
1 + 2 j2a1a

2
2 cos(2(Ψ1 − Ψ2))

− 4 f0 sin(Ψ1) = 0, (84)

− 8a2σ1 + 8a2σ2 − 3α2a
3
2

− 2a21a2 j4 + a21a2 j4 cos(2(Ψ1 − Ψ2)) = 0. (85)

The inertial parameters j1 and j3 do not appear in
equations (82)–(85). The trigonometric identities again
allow to eliminate the functions Ψ1 and Ψ2.
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Fig. 8 Resonance curves for various ωz and σ2 (set of data: SET2)

Fig. 9 Resonance curves for: (1) c1 = c2 = 1 × 10−5, (2) c1 = c2 = 2 × 10−5, (3) c1 = c2 = 3 × 10−5, (4) c1 = c2 = 4 × 10−5

Case 5 (ωz = 0, j2 = 0, j4 = 0 )

Let us assume that the substrate is immovable and addi-
tionally Jx = J z , so j2 = j4 = 0. The last assump-
tion together with ωz = 0 leads to the conclusion that
a2 = 0. When the substrate is at rest, then the sens-
ing plate does not oscillate. The forced vibration of

the gimbal does not excite the sensor what confirms
that the Coriolis torque is the main reason causing the
sense plate to vibrate. Due to the substrate and the sen-
sor plate are at rest, the equation describing the rela-
tionship amplitude–frequency for gimbal is completely
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Fig. 10 Resonance curves for: (1) f0 = 4. × 10−7, (2) f0 = 6. × 10−7, (3) f0 = 8. × 10−7, (4) f0 = 9. × 10−7

Fig. 11 Resonance curves for: (1) α1 = α2 = 1, (2) α1 = α2 = 2, (3) α1 = α2 = 2.5, (4) α1 = α2 = 3

uncoupled and has the following form

a21

(
16c21 + (3α1a

2
1 + 8σ1)

2
)

= 16 f 20 . (86)

The family of resonance curves, obtained using Eq.
(86), for various values of damping coefficient c1 is
presented in Fig. 12. The values of parameters assumed
in this simulation are

SET4 = {σ2 = −0.0394, f0 = 4. × 10−6,

α1 = 10, α2 = 10, c2 = 0.000114,

j2 = 0, j4 = 0}
Case 6 (identification of angular velocity)
The identification problem of substrate angular veloc-
ity requires an unambiguous character of each of the
both resonance response curves. So, determination of
the value of the damping coefficient which guaran-
tee this unambiguity for given micromechanical gyro-
scope is of significant importance. It is also important to

Fig. 12 Resonance curves for the gimbal when substrate is
immovable

reduce the number of the measurement system param-
eters that can have influence on the identification. One
of the earlier discussed cases leads to essential simpli-
fication of the equations of steady state. It is the case
when the gimbal moments of inertia are sufficiently
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Fig. 13 Steady state vibration for the gimbal and the sensing plate

Fig. 14 Resonance curves. The amplitudes of the gimbal and the sensing plate versus σ2 for various values of the damping coefficients;
(1) c1 = c2 = 6 × 10−5, (2) c1 = c2 = 8 × 10−5, (3) c1 = c2 = 12 × 10−5, (4) c1 = c2 = 3 × 10−5, (4) c1 = c2 = 20 × 10−5

slight and the tensor of inertia of the sense plate is
isotropic. These assumptions that simplify the steady
state equations to form (76)–(79) can be written as fol-
lows j1 = j2 = j4 = 0, j3 = 1. Equation (77) of this
system is relatively simple and contains the smallest
number of gyroscope parameters. Let us solve Eq. (77)
for the angular velocity

ωz = 2a2c2
(σ2 − 2)a1 cos(Ψ1 − Ψ2)

. (87)

When the system is perfectly designed, made and
tuned, the detuning parameter σ2 is equal to zero. Thus
it is enough to know the damping coefficient c2 and to
measure the values of amplitudes a1 and a2 in the reso-
nance. In the steady state, the difference of themodified
phases should be set at value π . Assuming all these cir-
cumstances, we can write

ωz = a2c2
a1

. (88)

The following simulation is carried out in order to
apply this identification way. We assume some values
of parameters of gyroscope including the value of the
substrate angular velocity, namely

SET5 = {σ1 = 0, σ2 = 0, f0 = 4.5 × 10−6,

α1 = 1, α2 = 1, c1 = 0.0005, c2 = 0.0005,

ωz = 0.0008, a10 = 0.005, a20 = 0.005,

ψ10 = 0, ψ10 = 0}.
Then, we find the approximate solution of initial

value problem (10)–(12) and determine the both val-
ues of amplitudes, replacing real measurement by the
reading the values from the graphs. The variability over
time of the both generalized coordinates for the steady-
state vibration is presented in Fig. 13. Using graphs, we
determine

a1 ≈ 0.000249, a2 ≈ 0.004 , and hence ωz

≈ 0.0008032.
However, this procedure fails when due to any rea-

son the assumptions concerning the coincidence of both

123



Complexity of resonances exhibited by a nonlinear micromechanical gyroscope 1835

resonances at the same resonant frequency (σ2 = 0) are
not strictly satisfied. The higher value the parameter σ2
takes, the less accurate the angular velocity measure-
ment is. In Fig. 14, there is shown the influence of
parameter σ2 on the vibration amplitude of the both the
gimbal and the sensing plate. This influence is espe-
cially spectacular when the damping is small and the
resonance response curves are ambiguous. However,
even for sufficiently large values of damping coeffi-
cients which make sure the curves are functions of the
detuning parameter σ2, the values of the both ampli-
tudes change significantly with σ2. The numerical sim-
ulation was carried out assuming the following fixed
values of parameters

SET6 = {σ1 = −10−5, f0 = 4.5 × 10−6,

α1 = 1, α2 = 1, ωz = 0.0008}.

7 Concluding remarks

The equations of motion of micromechanical gyro-
scope of torsional type has been derived. The math-
ematical model includes nonlinear characteristics of
the torsional links. According to actual work regime
of this type micromechanical gyroscope, only harmon-
ically changing torque acting about the gimbal axis has
been assumed. The dynamical problem has been solved
using the method of multiple time scales belonging
to wide class of asymptotic methods. The significant
advantage of the asymptoticmethods consist in the ana-
lytical formof the approximate solutions. That gives the
opportunity to both qualitative and quantitative analy-
sis of the behavior of the system for wide range of its
parameters.

The approximate solution of analytical form has
been obtained firstly for non-resonant vibration what
among other allow to detect the resonance condi-
tions. Themain and internal resonances simultaneously
occurring have been the subject of our study. The char-
acteristic feature of this type gyroscope is that the both
resonance frequencies are equal to each other. The
approximate solution has been obtained also for the
resonant vibration. Initial value problem of the modu-
lation strictly associated with the procedure of solving
the governing equations using MSM gives the possi-
bility to analyze the slow evolution of the amplitudes
and phases.

Steady-state resonance oscillations are desired
regime of work of the micromechanical gyroscope, so

this situation has been analyzed in more detail. More-
over, some special cases have been investigated. For
example, we simulated negligible inertia of gimbal
and isotropic tensor of inertia of the sensor. Another
case refers to situation when the torsional joints have
strictly linear elastic characteristic, for both symmetric
and non-symmetric moments of inertia. We have also
shown that if substrate is immovable, the modulation
equations are uncoupled and reduce to one equation
describing vibration of a gimbal. In that case the sens-
ing plate is motionless.

For all cases, the amplitude–frequency relationships
have been derived. Resonance curves have been drawn
illustrating influence of various parameters on their
shape and uniqueness. Also an impact of damping coef-
ficients and amplitude of the external excitation has
been discussed.

The approximate analytical solution has been vali-
dated using the proposed measure of the error of ful-
fillment of the governing equations and also by com-
parison with the numerical simulation.
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