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A B S T R A C T

Linear and geometrically nonlinear vibrations of the three-layered functionally graded shallow shells with a
complex form of the base are studied. It is assumed that outer and inner layers are made of functionally graded
materials (FGM) or an isotropic material (metal or ceramic). The first-order shear deformation theory of shallow
shells (FSDT) is employed. Effective material properties of layers are varied along the thickness according to a
power law. To calculate different mechanical characteristics for different types of lamination schemes, analytical
expressions are obtained. The linear problem is solved by combining the Ritz and the R-functions method.
Linearization of the nonlinear problem is carried out by a novel original approach. Namely, the initial problem
is reduced to solving a sequence of linear problems including those vibrations related to linear, special type of
the elasticity problem and the nonlinear system of ordinary differential equations. Validation of the proposed
method and the developed software has been examined on test problems for shallow shells with rectangular
plan form and different boundary conditions. In order to demonstrate possibilities of the proposed approach,
new results for laminated FGM shallow shells of the complex form of the base are presented. Effects of different
material distributions, lamination schemes, curvatures, boundary conditions, and geometrical parameters on
natural frequencies and backbone curves are reported and analyzed.

1. Introduction

Composite and functionally graded materials are extensively used
in many fields of modern industries, especially in spacecrafts and
nuclear plants. Shallow shells are often employed to fabricate structural
elements of modern constructions made of advanced materials. Taking
into account that these elements can be loaded dynamically, a study of
their dynamical behavior is of very significant practical interest.

To mathematically simulate shells made of functionally graded
materials, various shell theories have been developed. In particular, for
shallow shells, the classical theory (CST), first-order shear deformation
theory (FSDT), and higher-order shear deformation theory (HSDT) are
most commonly used [1–4]. Analysis of vibration of laminated and FGM
shallow shells has been carried out by many researchers. An extensive
literature review concerning free linear and nonlinear vibrations of
shells and plates made of traditional and advanced materials can be
found in Refs. [3–8]. On the other hand, one can find papers devoted
to the analysis of vibrations of the FGM shells [9–17]. It should be
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noted that in the general case (complex plan form, mixed boundary
conditions, etc.), construction of an analytical solution to equations
governing the dynamics of FGM plates and shallow shells is not an easy
task. That is why many researchers use numerical or semi-analytical
methods. Swaminathan et al. [8], Thai and Kim [9,10] presented a
comprehensive review of various methods employed to study FGM
plates and shells. A vast number of analytical, semi-analytical, and
numerical methods has been analyzed. Effective modern methods, such
as Ritz method [18–23], differential quadrature method [24,25], and
Haar wavelet method [26,27], have been successively employed to
study functionally graded panels, plates, and shells. One of new methods
employed to study FGM plates and shallow shells is a meshless method.
A review of using this method for FGM plates and shells was presented
by Liew et al. [28]. This approach has been applied in [29–34].

Currently, the combined application of the FGM and pure metallic
and ceramic materials is widely used for the design of many elements of
modern constructions. Many important geometrically nonlinear prob-
lems of inhomogeneous isotropic and FGM plates and shells have
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been solved by Shen [35], F.Alijani and M.Amabili [36–39], and other
researchers. However, here and in other publications [40,41], laminated
FGM plates and shells with simple plan forms have been considered.

The present paper offers an efficient and moderately universal
approach to solve this problem for the laminated functionally graded
shallow shells with complex shapes of their plans and different boundary
conditions. The proposed method is based on the joint application
of the R-functions theory and the variational Ritz method [42–51].
In many published works, the Ritz method has been used to solve
vibration problems of plates and shells. The comprehensive review of the
application of this method to study linear dynamic, static, and buckling
behavior of beams, plates, and shells is presented in Refs. [52,53].

In the paper [48], the authors proposed a method to investigate
free vibrations of single-layer FGM shells with complex plan form.
In the present study, this approach was developed for three-layered
shallow shells like sandwiches. Four types of lamination schemes were
considered: 1-1, 1-2, 2-1, 2-2. Shallow shells of Type 1-1 and Type 1-
2 correspond to sandwich shallow shells with FGM face sheets and an
isotropic (metal or ceramic) core. The shells of Type 2-1 and Type 2-2
correspond to a sandwich shallow shell with the FGM core and ceramics
or metal on top and bottom face sheets. It was assumed that FGM layers
are made of a mixture of metal and ceramics and effective material
properties of layers are varied according to Voigt’s rule. Formulation
of the problem was carried out using the first-order shear deformation
shallow shells theory.

The proposed method was validated by investigating test problems
for shallow shells with a rectangular plan form and different boundary
conditions. The results were obtained for linear and nonlinear vibration
problems for double curved shallow shells with complex form of the
base.

The paper is organized in the following way. Basic relations of lam-
inated functionally graded shallow shells and fundamental equations
of motion are presented in Section 2, where analytical expressions for
force and moment resultant vectors are derived. The method of solution
of the linear and nonlinear vibration problems is described in Sections
3, 4. Numerical results of linear and nonlinear vibration problems of
laminated FGM shallow shells with complex forms of the base are
presented in Section 5. The last Section 6 summarizes the obtained
results.

2. Mathematical formulation

Consider a three-layered functionally graded shallow shell with
uniform thickness h. It is assumed that the FGM layers are made of a
mixture of ceramics and metals. A double curved shallow shell can have
an arbitrary plan form. The effective material properties of layers vary
continuously and smoothly in the thickness direction and obey Voigt’s
law:

𝐸(𝑟) =
(

𝐸(𝑟)
𝑢 − 𝐸(𝑟)

𝑙

)

𝑉 (𝑟)
𝑐 + 𝐸(𝑟)

𝑙 , (1)

𝜈(𝑟) =
(

𝜈(𝑟)𝑢 − 𝜈(𝑟)𝑙
)

𝑉 (𝑟)
𝑐 + 𝜈(𝑟)𝑙 (2)

𝜌(𝑟) =
(

𝜌(𝑟)𝑢 − 𝜌(𝑟)𝑙
)

𝑉 (𝑟)
𝑐 + 𝜌(𝑟)𝑙 , (3)

where 𝐸(𝑟)
𝑢 , 𝜈

(𝑟)
𝑢 , 𝜌

(𝑟)
𝑢 and 𝐸(𝑟)

𝑙 , 𝜈
(𝑟)
𝑙 , 𝜌

(𝑟)
𝑙 are Young’s modulus, Poisson’s

ratio, and mass density of the upper and lower surfaces of the r -
layer, respectively; 𝑉 (𝑟)

𝑐 is the volume fraction of ceramic. Below, the
values 𝑉 (𝑟)

𝑐 are presented for the scheme lamination of Types 1-1 (FGM-
metal-FGM); 2-1 (metal-FGM-ceramic); 1-2 (FGM-ceramic-FGM) and 2-
2 (ceramic-FGM-metal)
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Fig. 1. Example of the shell type 1-1.
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Note that the value 𝑉 (1)
𝑐 is valid for 𝑧 ∈ [−ℎ∕2, ℎ1], 𝑉

(2)
𝑐 is valid for

𝑧 ∈ [ℎ1, ℎ2], and 𝑉 (3)
𝑐 is valid for 𝑧 ∈ [ℎ2, ℎ∕2], (Fig. 1).

It should be emphasized that the values 𝑝1, 𝑝2, 𝑝3 are the power-law
FGM exponents of the corresponding layer. The thickness of the layers
can be varied. The ratio of the thicknesses of layers from the bottom to
the top is denoted by the combination of three numbers. For example,
‘‘1-2-1’’ means that the ratio of the thickness of layers is defined as
ℎ(1) ∶ ℎ(2) ∶ ℎ(3) = 1 ∶ 2 ∶ 1 , where ℎ(1) = ℎ1 + ℎ∕2, ℎ(2) = ℎ2 − ℎ1,
ℎ(3) = ℎ∕2 − ℎ2 (see Fig. 1).

According to the first-order shear deformation theory of shallow
shells, the components of displacement 𝑢1, 𝑢2, 𝑢3 at a point (𝑥, 𝑦, 𝑧) are
expressed as functions of the middle surface displacements 𝑢, 𝑣, and 𝑤
in the 𝑂𝑥,𝑂𝑦, and 𝑂𝑧 directions [1,2,6], i.e. we have

𝑢1 = 𝑢 + 𝑧𝜓𝑥, 𝑢2 = 𝑣 + 𝑧𝜓𝑦, 𝑢3 = 𝑤. (6)

Strain components 𝜀 =
{

𝜀11; 𝜀22; 𝜀12
}𝑇 , 𝜒 =

{

𝜒11; 𝜒22; 𝜒12
}𝑇 at an

arbitrary point of the shallow shell are:

𝜀11 = 𝜀𝐿11 + 𝜀
𝑁
11, 𝜀22 = 𝜀𝐿22 + 𝜀

𝑁
22, 𝜀12 = 𝜀𝐿12 + 𝜀

𝑁
12, (7)

𝜀𝐿11 = 𝑢,𝑥 +𝑤∕𝑅𝑥 𝜀𝐿22 = 𝑣,𝑦 +𝑤∕𝑅𝑦 𝜀𝐿12 = 𝑢,𝑦 + 𝑣,𝑥, (8)

𝜀𝑁11 =
1
2
(

𝑤,𝑥
)2𝜀𝑁22 =

1
2
(

𝑤,𝑦
)2, 𝜀𝑁12 = 𝑤,𝑦𝑤,𝑥, (9)

𝜀13 = 𝑤,𝑥 + 𝜓𝑥, 𝜀23 = 𝑤,𝑦 + 𝜓𝑦, (10)
𝜒11 = 𝜓𝑥,𝑥, 𝜒22 = 𝜓𝑦,𝑦 𝜒12 = 𝜓𝑥,𝑦 + 𝜓𝑦,𝑥, (11)

where 𝜓𝑥, 𝜓𝑦 are the independent rotations of the transverse normal to
middle surface about the 𝑂𝑦 and 𝑂𝑥 axes, respectively. In formulas (8)–
(11), the subscripts following the commas denote partial differentiation
with respect to the corresponding coordinates.

In-plane force resultant vector 𝑁 =
(

𝑁11, 𝑁22, 𝑁12
)𝑇 , bending and

twisting moments resultant vector 𝑀 =
(

𝑀11,𝑀22,𝑀12
)𝑇 , and trans-

verse shear force resultant 𝑄 =
(

𝑄𝑥, 𝑄𝑦
)𝑇 are calculated by integrating

along the 𝑂𝑧-axis and defined as follows

[𝑁] = [𝐴] {𝜀} + [𝐵] {𝜒} , [𝑀] = [𝐵] {𝜀} + [𝐷] {𝜒 } . (12)

Elements 𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗 of the matrices A, B and D of (12) are calcu-
lated by the following formulas

𝐴𝑖𝑗 =
3
∑

𝑟=1
∫

𝑧𝑟+1

𝑧𝑟
𝑄(𝑟)
𝑖𝑗 𝑑𝑧, 𝐵𝑖𝑗 =

3
∑

𝑟=1
∫

𝑧𝑟+1

𝑧𝑟
𝑄(𝑟)
𝑖𝑗 𝑧𝑑𝑧,
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𝐷𝑖𝑗 =
3
∑

𝑟=1
∫

𝑧𝑟+1

𝑧𝑟
𝑄(𝑟)
𝑖𝑗 𝑧

2𝑑𝑧, (13)

where: 𝑧1 = −ℎ∕2, 𝑧2 = ℎ1, 𝑧3 = ℎ2, 𝑧4 = ℎ∕2. Values
𝑄(𝑟)
𝑖𝑗 (𝑖, 𝑗 = 1, 2, 6) are defined by the following expression:

𝑄(𝑟)
11 = 𝑄(𝑟)

22 = 𝐸(𝑟)

1 −
(

𝜈(𝑟)
)2
, 𝑄(𝑟)

12 = 𝜈(𝑟)𝐸(𝑟)

1 −
(

𝜈(𝑟)
)2
, 𝑄(𝑟)

66 = 𝐸(𝑟)

2
(

1 + 𝜈(𝑟)
) .

Transverse shear force resultants 𝑄𝑥, 𝑄𝑦 are estimated from the
following formulas

𝑄𝑥 = 𝐾2
𝑠𝐴33𝜀13, 𝑄𝑦 = 𝐾2

𝑠𝐴33𝜀23,

where 𝐾2
𝑠 denotes the shear correction factor. In this paper, it is taken

as 5∕6.
Let us consider materials with temperature independent of Poisson’s

ratio, and the same value for ceramics and metal (𝜈𝑚 = 𝜈𝑐). In this case,
the coefficients 𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗 can be calculated in a direct way. Note that
analytical expressions for these coefficients, in the case of Types 1-2
and 2-2, have been already derived in Ref. [47]. Namely, in the present
paper, we obtained analogous formulas for the Types 1-1 and 2-1.

Type 1-1:

𝐴11 = 𝜈0

(

𝐸𝑐𝑚

(

𝑎𝑠1
𝑝1 + 1

− 𝑎𝑠2
𝑝3 + 1

)

+ 𝐸𝑚 (ℎ − 𝑎𝑠21) + 𝐸𝑐𝑎𝑠21
)

𝐵11 = 𝜈0𝐸𝑐𝑚

(

𝑎𝑠1
𝑝1 + 2

(

ℎ1 −
ℎ

2
(

𝑝1 + 1
)

)

− 𝑎𝑠2
𝑝3 + 2

(

ℎ2 +
ℎ

2
(

𝑝3 + 1
)

)

+
ℎ22 − ℎ

2
1

2

)

,

𝐷11 = 𝜈0

(

𝐸𝑐𝑚

(

𝑎𝑠1

(

(𝑎𝑠1)2

𝑝1 + 3
− 𝑎𝑠1
𝑝1 + 2

ℎ − ℎ2

4
(

𝑝1 + 1
)

)

−

− 𝑎𝑠2

(

(𝑎𝑠2)2

𝑝3 + 3
− 𝑎𝑠2
𝑝3 + 2

ℎ + ℎ2

4
(

𝑝3 + 1
)

)

+
ℎ32 − ℎ

3
1

3

)

+
𝐸𝑚
12
ℎ3

)

Type 2-1:

𝐴11 = 𝜈0

(

𝐸𝑐𝑚

(

ℎ1 +
𝑎𝑠21
𝑝2 + 1

)

+ ℎ
2
(

𝐸𝑐 + 𝐸𝑚
)

)

,

𝐵11 = 𝜈0𝐸𝑐𝑚

(

𝑎𝑠21
𝑝2 + 2

(

ℎ1 +
ℎ2

𝑝2 + 1

)

+ 1
2

(

ℎ21 −
ℎ2

4

))

,

𝐷11 = 𝜈0

(

𝐸𝑐𝑚

(

ℎ31
3

+ 𝑎𝑠21

(

ℎ22
𝑝2 + 1

+ 2𝑎𝑠21
𝑝2 + 2

ℎ2 +
(𝑎𝑠21)2

𝑝2 + 3

))

+

(

𝐸𝑚 + 𝐸𝑐
)

24
ℎ3

)

where

𝑎𝑠1 =
(ℎ
2
+ ℎ1

)

, 𝑎𝑠2 = ℎ2 −
ℎ
2
, 𝑎𝑠21 = ℎ2 − ℎ1,

𝑏𝑠1 = 1
2𝑎𝑠1

, 𝑏𝑠2 = 1
2𝑎𝑠2

, 𝜈0 =
1

(

1 − 𝜈2
) , 𝐸𝑐𝑚 = 𝐸𝑐 − 𝐸𝑚.

Observe that for all types of lamination schemes, the values
𝐴12, 𝐴66, .𝐵12, 𝐵66, 𝐷12, 𝐷66 are defined as follows

𝑅12 = 𝜈𝑅11, 𝑅22 = 𝑅11, 𝑅66 =
1 − 𝜈
2

𝑅11,

where R is a common designation of A, B, D.
The governing differential equations of equilibrium for free vibration

of a shear deformable shallow shell can be expressed as [1,18]

𝜕𝑁11
𝜕𝑥

+
𝜕𝑁12
𝜕𝑦

−
𝑄𝑥
𝑅𝑥

= 𝐼0
𝜕2𝑢
𝜕𝑡2

+ 𝐼1
𝜕2𝜓𝑥
𝜕𝑡2

,

𝜕𝑁22
𝜕𝑦

+
𝜕𝑁12
𝜕𝑥

−
𝑄𝑦
𝑅𝑦

= 𝐼0
𝜕2𝑣
𝜕𝑡2

+ 𝐼1
𝜕2𝜓𝑦
𝜕𝑡2

,

𝜕𝑄𝑥
𝜕𝑥

+
𝜕𝑄𝑦
𝜕𝑦

+
𝑁11
𝑅𝑥

+
𝑁22
𝑅𝑦

+𝑁11
𝜕2𝑤
𝜕𝑥2

+ 2𝑁12
𝜕2𝑤
𝜕𝑥𝜕𝑦

+𝑁22
𝜕2𝑤
𝜕𝑦2

= 𝐼0
𝜕2𝑤
𝜕𝑡2

,

𝜕𝑀11
𝜕𝑥

+
𝜕𝑀12
𝜕𝑦

−𝑄𝑥 = 𝐼2
𝜕2𝜓𝑥
𝜕𝑡2

+ 𝐼1
𝜕2𝑢
𝜕𝑡2

, (14)

𝜕𝑀22
𝜕𝑦

+
𝜕𝑀12
𝜕𝑥

−𝑄𝑦 = 𝐼2
𝜕2𝜓𝑦
𝜕𝑡2

+ 𝐼1
𝜕2𝑣
𝜕𝑡2

,

where

(

𝐼0, 𝐼1, 𝐼2
)

=
3
∑

𝑟=1
∫

𝑧𝑟+1

𝑧𝑟

(

𝜌(𝑟)
) (

1, 𝑧, 𝑧2
)

𝑑𝑧 (15)

and 𝜌(𝑟) stands for a mass density of the rth layer.
Analytical expressions for these coefficients for shells with 𝜈𝑚 = 𝜈𝑐

are presented below:
Type 1-1:

𝐼0 = 𝜌𝑐𝑚

(

𝑎𝑠1
𝑝1 + 1

− 𝑎𝑠2
𝑝3 + 1

)

+ 𝜌𝑚 (ℎ − 𝑎𝑠21) + 𝜌𝑐𝑎𝑠21, 𝜌𝑐𝑚 = 𝜌𝑐 − 𝜌𝑚,

𝐼1 = 𝜌𝑐𝑚

(

𝑎𝑠1
𝑝1 + 2

(

ℎ1 −
ℎ

2
(

𝑝1 + 1
)

)

− 𝑎𝑠2
𝑝3 + 2

(

ℎ2 +
ℎ

2
(

𝑝3 + 1
)

)

+
ℎ22 − ℎ

2
1

2

)

,

𝐼2 = 𝜌𝑐𝑚

(

𝑎𝑠1

(

(𝑎𝑠1)2

𝑝1 + 3
− 𝑎𝑠1
𝑝1 + 2

ℎ − ℎ2

4
(

𝑝1 + 1
)

)

−

− 𝑎𝑠2

(

(𝑎𝑠2)2

𝑝3 + 3
− 𝑎𝑠2
𝑝3 + 2

ℎ + ℎ2

4
(

𝑝3 + 1
)

)

+
ℎ32 − ℎ

3
1

3

)

+
𝜌𝑚
12
ℎ3

Type 2-1:

𝐼0 =
(

𝜌𝑐𝑚

(

ℎ1 +
𝑎𝑠21
𝑝2 + 1

)

+ ℎ
2
(

𝜌𝑐 + 𝜌𝑚
)

)

,

𝐼1 = 𝜌𝑐𝑚

(

𝑎𝑠21
𝑝2 + 2

(

ℎ1 +
ℎ2

𝑝2 + 1

)

+ 1
2

(

ℎ21 −
ℎ2

4

))

𝐼2 = 𝜌𝑐𝑚

(

ℎ31
3

+ 𝑎𝑠21

(

ℎ21
𝑝2 + 1

+ 2𝑎𝑠21
𝑝2 + 2

ℎ1 +
𝑎𝑠212
𝑝2 + 3

))

+
𝜌𝑚 + 𝜌𝑐

24
ℎ3

3. Solution of linear vibration problem

The total strain energy U and kinetic energy T are given by

𝑈 = 1
2 ∬𝛺

(

𝑁𝐿
11𝜀

𝐿
11 +𝑁

𝐿
22𝜀

𝐿
22 +𝑁

𝐿
1212𝜀

𝐿
12 +𝑀

𝐿
11𝜒11 +𝑀

𝐿
22𝜒22

+ 𝑀𝐿
12𝜒12 +𝑄𝑥𝜀13 +𝑄𝑦𝜀23

)

𝑑𝑥𝑑𝑦, (16)

𝑇 = 1
2 ∬𝛺

𝐼0
(

𝑢̇2 + 𝑣̇2 + 𝑤̇2) + 2𝐼1
(

𝑢̇𝜓̇𝑥 + 𝑣̇𝜓̇𝑦
)

𝐼2
(

𝜓̇2
𝑥 + 𝜓̇2

𝑦

)

𝑑𝑥𝑑𝑦. (17)

In turn, the total energy functional for a laminated FGM shallow shell
is as follows

𝐽 = 𝑇 − 𝑈 (18)

Assuming that the shell vibrates periodically, the vector of unknown
functions can be presented as
⃖⃖⃗𝑈 (𝑢(𝑥, 𝑦, 𝑡), 𝑣 (𝑥, 𝑦, 𝑡) , 𝑤 (𝑥, 𝑦, 𝑡) , 𝜓𝑥 (𝑥, 𝑦, 𝑡) , 𝜓𝑦(𝑥, 𝑦, 𝑡)) =
= ⃖⃖⃗𝑈 (𝑢 (𝑥, 𝑦) , 𝑣(𝑥, 𝑦), 𝑤 (𝑥, 𝑦) , 𝜓𝑥 (𝑥, 𝑦) , 𝜓𝑦(𝑥, 𝑦)) sin 𝜆𝑡,

(19)

where 𝜆 is the vibration frequency. Using (18), (19) and Hamilton’s
principle, we get the variational statement of the problem

𝛿𝐽 = 0, (20)
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where

𝐽 = 𝑈 (𝑢, 𝑣,𝑤, 𝜓𝑥, 𝜓𝑦) − 𝜆2𝑇
(

𝑢, 𝑣,𝑤, 𝜓𝑥, 𝜓𝑦
)

. (21)

The variation (20) of the functional (21) is carried out on the set of
functions that satisfy the given boundary conditions.

The expressions for U and T in formula (21) depend on (x,y), and
the kinetic energy takes the following form

𝑇 = 1
2 ∬𝛺

𝐼0
(

𝑢2 + 𝑣2 +𝑤2) + 2𝐼1
(

𝑢𝜓𝑥 + 𝑣𝜓𝑦
)

+ 𝐼2
(

𝜓2
𝑥 + 𝜓2

𝑦

)

𝑑𝑥𝑑𝑦.

In this study, the minimization of functional (21) is performed by
using the Ritz method, which is a powerful tool in the analysis of
vibration of shells and plates. The accuracy and stability of the Ritz
method depend essentially on the choice of admissible functions. Note,
that the admissible functions should satisfy the following conditions:

1. They should be continuous, differentiable up to the degree needed,
and should stand for a complete system.

2. They have to satisfy at least the geometric boundary conditions.
Suppose that admissible functions

{

𝑢𝑖
}

,
{

𝑣𝑖
}

,
{

𝑤𝑖
}

,
{

𝜓𝑥𝑖
}

,
{

𝜓𝑦𝑖
}

were constructed. Then, according to the Ritz method, unknown func-
tions 𝑢 (𝑥, 𝑦) , 𝑣 (𝑥, 𝑦) , 𝑤 (𝑥, 𝑦) , 𝜓𝑥 (𝑥, 𝑦) , 𝜓𝑦 (𝑥, 𝑦) are presented as fol-
lows

𝑢 =
𝑁1
∑

𝑖=1
𝑎𝑖𝑢𝑖, 𝑣 =

𝑁2
∑

𝑖=𝑁1+1
𝑎𝑖𝑣𝑖, 𝑤 =

𝑁3
∑

𝑖=𝑁2+1
𝑎𝑖𝑤𝑖,

𝜓𝑥 =
𝑁4
∑

𝑖=𝑁3+1
𝑎𝑖𝜓𝑥𝑖, 𝜓𝑦 =

𝑁5
∑

𝑖=𝑁4+1
𝑎𝑖𝜓𝑦𝑖. (22)

Coefficients of this expansion
{

𝑎𝑖
}

, 𝑖 = 1,… , 𝑁5 in (22) are yielded
by the Ritz system
𝜕𝐼
𝜕𝑎𝑖

= 0, 𝑖 = 1,… , 𝑁5.

In order to construct a system of admissible functions satisfying the
main (kinematic) boundary conditions, it is usually sufficient to derive
an equation of either the boundary of the considered region or a part of
the boundary of this region. For example, if a shell is clamped, then the
boundary conditions have the following form

𝑢 = 0, 𝑣 = 0, 𝑤 = 0, 𝜓𝑥 = 0, 𝜓𝑦 = 0.

The corresponding admissible functions may be chosen as:

𝑢𝑖 = 𝜔 (𝑥, 𝑦)𝜑(1)
𝑖 , 𝑣𝑖 = 𝜔 (𝑥, 𝑦)𝜑(2)

𝑖 , 𝑤𝑖 = 𝜔 (𝑥, 𝑦)𝜑(3)
𝑖 ,

𝜓𝑥𝑖 = 𝜔 (𝑥, 𝑦)𝜑(4)
𝑖 , 𝜓𝑦𝑖 = 𝜔 (𝑥, 𝑦)𝜑(5)

𝑖 ,

where
{

𝜑(𝑘)
𝑖

}

, 𝑘 = 1,… , 5 stand for a complete system (power, Cheby-
shev’s or trigonometric polynomials, splines or others), 𝜔 (𝑥, 𝑦) = 0 is
the equation of the domain border. In the case of a complex shape,
the equation of the boundary 𝜔 (𝑥, 𝑦) = 0 can be constructed by the
R-functions theory [43,45,48–51], which is used in present work.

4. Solution of the nonlinear problem

In order to solve the nonlinear problem, let us implement the
approach proposed in Ref. [45,47–49]. It is assumed that inertia forces
in the middle surface of a shell are ignored in solving the nonlinear
problem. In what follows, we introduce unknown functions in the form
of expansion with respect to the eigenfunctions 𝑤(𝑒)

1 (𝑥, 𝑦), 𝑢(𝑒)1 (𝑥, 𝑦),
𝑣(𝑒)1 (𝑥, 𝑦), 𝜓 (𝑒)

𝑥1 (𝑥, 𝑦), 𝜓
(𝑒)
𝑦1 (𝑥, 𝑦). They correspond to the fundamental vi-

bration form:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢(𝑥, 𝑦, 𝑡) = 𝑦1(𝑡)𝑢
(𝑒)
1 (𝑥, 𝑦) + 𝑦21(𝑡)𝑢2(𝑥, 𝑦),

𝑣(𝑥, 𝑦, 𝑡) = 𝑦1(𝑡)𝑣
(𝑒)
1 (𝑥, 𝑦) + 𝑦21(𝑡)𝑣2(𝑥, 𝑦),

𝑤(𝑥, 𝑦, 𝑡) = 𝑦1(𝑡)𝑤
(𝑒)
1 (𝑥, 𝑦),

𝜓𝑥(𝑥, 𝑦, 𝑡) = 𝑦1(𝑡)𝜓
(𝑒)
𝑥1 (𝑥, 𝑦) + 𝑦

2
1(𝑡)𝜓𝑥2(𝑥, 𝑦),

𝜓𝑦(𝑥, 𝑦, 𝑡) = 𝑦1(𝑡)𝜓
(𝑒)
𝑦1 (𝑥, 𝑦) + 𝑦

2
1(𝑡)𝜓𝑦2(𝑥, 𝑦),

(23)

The coefficient of this expansion, i.e. the function 𝑦 (𝑡) , depends on
time. The functions 𝑢2, 𝑣2, 𝜓𝑥2, 𝜓𝑦2 have to satisfy the following system
of differential equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐿11𝑢2 + 𝐿12𝑣2 + 𝐿14𝜓𝑥2 + 𝐿15𝜓𝑦2 = 𝑁𝐿1𝑤
(𝑒)
1 (𝑥, 𝑦),

𝐿21𝑢2 + 𝐿22𝑣2 + 𝐿24𝜓𝑥2 + 𝐿25𝜓𝑦2 = 𝑁𝐿2𝑤
(𝑒)
1 (𝑥, 𝑦),

𝐿41𝑢2 + 𝐿42𝑣2 + 𝐿44𝜓𝑥2 + 𝐿45𝜓𝑦2 = 𝑁𝐿4𝑤
(𝑒)
1 (𝑥, 𝑦),

𝐿51𝑢2 + 𝐿52𝑣2 + 𝐿54𝜓𝑥2 + 𝐿55𝜓𝑦2 = 𝑁𝐿5𝑤
(𝑒)
1 (𝑥, 𝑦),

(24)

where

𝑁𝐿1(𝑤) = −𝐿11(𝑤)
𝜕𝑤
𝜕𝑥

− 𝐿12(𝑤)
𝜕𝑤
𝜕𝑦
,

𝑁𝐿2(𝑤) = −𝐿12(𝑤)
𝜕𝑤
𝜕𝑥

− 𝐿22(𝑤)
𝜕𝑤
𝜕𝑦
,

𝑁𝐿4(𝑤) = −𝐿41(𝑤)
𝜕𝑤
𝜕𝑥

− 𝐿42(𝑤)
𝜕𝑤
𝜕𝑦
,

𝑁𝐿5(𝑤) = −𝐿51(𝑤)
𝜕𝑤
𝜕𝑥

− 𝐿52(𝑤)
𝜕𝑤
𝜕𝑦
.

(25)

Linear operators 𝐿𝑖𝑗 (𝑖, 𝑗 = 1,… , 5), occurred in Eq. (24), are defined
by relations

𝐿11 = 𝐴11

(

𝜕2

𝜕𝑥2
+ 1 − 𝜈

2
𝜕2

𝜕𝑦2

)

, 𝐿12 = 𝐿21 =
1 + 𝜈
2

𝐴11
𝜕2

𝜕𝑥𝜕𝑦
,

𝐿14 = 𝐿41 = 𝐵11

(

𝜕2

𝜕𝑥2
+ 1 − 𝜈

2
𝜕2

𝜕𝑦2

)

,

𝐿15 = 𝐿51 = 𝐿24 = 𝐿42 =
1 + 𝜈
2

𝐵11
𝜕2

𝜕𝑥𝜕𝑦
,

𝐿22 = 𝐴11

(

𝜕2

𝜕𝑦2
+ 1 − 𝜈

2
𝜕2

𝜕𝑥2

)

, 𝐿25 = 𝐿52 = 𝐵11

(

𝜕2

𝜕𝑦2
+ 1 − 𝜈

2
𝜕2

𝜕𝑥2

)

,

𝐿44 = 𝐷11

(

𝜕2

𝜕𝑥2
+ 1 − 𝜈

2
𝜕2

𝜕𝑦2

)

− 1 − 𝜈
2

𝐾2
𝑠𝐴11,

𝐿45 = 𝐿54 =
1 + 𝜈
2

𝐷11
𝜕2

𝜕𝑥𝜕𝑦
,

𝐿55 = 𝐷11

(

𝜕2

𝜕𝑦2
+ 1 − 𝜈

2
𝜕2

𝜕𝑥2

)

− 1 − 𝜈
2

𝐾2
𝑠𝐴11.

The system (24) is supplemented by corresponding boundary con-
ditions. The solution to this problem is carried out by means of the
variational Ritz method and the R-functions method (RFM) [42,45,47–
51]. The following algorithm holds: choose 𝑢2(𝑥, 𝑦), 𝑣2(𝑥, 𝑦), 𝜓𝑥2(𝑥, 𝑦),
𝜓𝑦2(𝑥, 𝑦), substitute expressions (23) in the equation of motion (14),
and apply the Bubnov–Galerkin procedure. The following second-order
nonlinear differential equation is obtained

𝑦̈(𝑡) + 𝜔2
𝐿𝑦1(𝑡) + 𝑦

2
1(𝑡)𝛽 + 𝑦

3
1(𝑡)𝛾 = 0. (26)

It should be mentioned that values for coefficients of Eq. (26) have
been obtained in an analytical form. They are expressed through the
double integrals as follows

𝛽 = −1

𝑚1
‖

‖

‖

𝑤(𝑒)
1
‖

‖

‖

2 ∬𝛺

(

𝐿31𝑢2 + 𝐿32𝑣2 + 𝐿34𝜓𝑥2 + 𝐿35𝜓𝑦2 +

+𝑁𝐿1
11

𝜕2𝑤(𝑒)
1

𝜕𝑥2
+𝑁𝐿1

22

𝜕2𝑤(𝑒)
1

𝜕𝑦2
+ 2𝑁𝐿1

12

𝜕2𝑤(𝑒)
1

𝜕𝑥𝜕𝑦

)

𝑤(𝑒)
1 𝑑𝑥𝑑𝑦,

𝛾 = 𝛿∬𝛺

(

𝑁𝐿33𝑤
(𝑒)
1 +𝑁(𝐿2)

11 𝑤,(𝑒)𝑥𝑥 +𝑁
(𝐿2)
22 𝑤,(𝑒)𝑦𝑦 + 2𝑁(𝐿2)

12 𝑤,(𝑒)𝑥𝑦
)

𝑤(𝑒)
1 𝑑𝑥𝑑𝑦.

Here

𝛿 = − 1

𝐼0
‖

‖

‖

𝑤(𝑒)
1
‖

‖

‖

2
𝐿31 = 𝐴11(𝑘1 + 𝜈𝑘2)

𝜕
𝜕𝑥
, 𝐿32 = 𝐴11(𝜈𝑘1 + 𝑘2)

𝜕
𝜕𝑦
,

𝐿34 =
( 1 − 𝜈

2
𝐴11𝐾

2
𝑠 + 𝐵11

(

𝑘1 + 𝜈𝑘2
)

) 𝜕
𝜕𝑥
,

𝐿35 =
(

𝐴11𝐾
2
𝑠 + 𝐵11

(

𝜈𝑘1 + 𝑘2
)) 𝜕
𝜕𝑦
,
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𝑁𝐿33(𝑤) = −1
2
𝐴11

((

𝑤,2𝑥 + 𝜈𝑤,
2
𝑦

)

𝑤,𝑥𝑥 +
(

𝜈𝑤,2𝑥 +𝑤,
2
𝑦

)

𝑤,𝑦𝑦

+2 (1 − 𝜈)𝑤,𝑥𝑤,𝑦𝑤,𝑥𝑦
)

,

and 𝑁𝐿1
𝑖𝑗 (𝑖, 𝑗 = 1, 2) are defined by formula (12).

Finally, 𝑁(𝐿2)
𝑖𝑗 (𝑖, 𝑗 = 1, 2) are defined as follows:

{

𝑁(𝐿2)
}

=
{

𝑁(𝐿2)
11 ; 𝑁(𝐿2)

22 ; 𝑁(𝐿2)
12

}𝑇
= [𝐴]

{

𝜀𝐿2
}𝑇 ,

{

𝜀𝐿2
}

=
{

𝜕𝑢2
𝜕𝑥

;
𝜕𝑣2
𝜕𝑦

;
𝜕𝑢2
𝜕𝑦

+
𝜕𝑣2
𝜕𝑥

}

.

The solution to Eq. (26) was found numerically using the classical
4th-order Runge–Kutta method.

It should be mentioned that the proposed algorithm takes only one
mode into account. If we use a few modes of the linear vibrations,
then the initial problem is reduced to the system of nonlinear ordinary
differential equations. To obtain this system, it is necessary to solve the
auxiliary problems as it has been shown in Ref. [48]. Obviously, it is
better to use larger numbers of eigenfunctions, but this significantly
complicates the algorithm and its numerical implementation. The ob-
tained numerical results regarding the analysis of the shell nonlinear
vibrations can be viewed as an accurate approximation of the desired
solution.

5. Numerical results

Below we present a few case studies and numerical results obtained
by the proposed approach and developed software. In order to verify
the accuracy of the present results, we consider the solution of several
test problems.

5.1. Validation of the presented results (linear vibration)

Problem 1. Natural frequencies of laminated FGM shallow shells of
double curvature and a square base were calculated for a wide variety
of cases. Different Types (1-1; 1-2; 2-1; 2-2), schemes of lamination, and
various boundary conditions were employed. As an example, we present
the solution for cylindrical shells with fixed geometrical parameters:
ℎ∕𝑎 = 0.1; 𝑏∕𝑎 = 1; 𝑎∕𝑅𝑥 = 0.2. The material constituents 𝑀1 and
𝑀2 are assumed to be aluminum and alumina [2,3,5,28]. The material
properties of the FGM mixture used in the study are:

𝐴𝑙 ∶ 𝐸𝑐 = 70 GPA, 𝜈𝑐 = 0.3, 𝜌𝑐 = 270 kg∕m3,

𝐴𝑙2𝑂3 ∶ 𝐸𝑐 = 380 GPA, 𝜈𝑐 = 0.3, 𝜌𝑐 = 3800 kg∕m3.

The boundary conditions are defined as follows:

CCCC — the shell is clamped on sides 𝑥 = ± 𝑎
2 , 𝑦 = ± 𝑏

2 ;

SSSS — the shell is simply supported on sides 𝑥 = ± 𝑎
2 , 𝑦 = ± 𝑏

2 ;

SFSF — the shell is free on sides 𝑥 = ± 𝑎
2 and simply supported on sides

𝑦 = ± 𝑏
2 ;

SCSC — the shell is simply supported on sides 𝑥 = ± 𝑎
2 and clamped on

sides 𝑦 = ± 𝑏
2 .

Values of the nondimensional fundamental frequency parameters,
defined by formula 𝛺(1)

𝐿 = 𝜆1ℎ
√

𝜌𝑐∕𝐸𝑐 , of the cylindrical shells of Type
2-2 and for the thickness scheme 1 − 1 − 1 are presented in Table 1.

The above results were obtained using 28 admissible functions to ap-
proximate each of the functions 𝑢, 𝑣, 𝜓𝑥, 𝜓𝑦 and 36 admissible functions
to approximate the deflection w. Due to the doubly-symmetric nature of
the shell, the integration is performed only above one-quarter domain at
numerical implementation of the developed method. It can be observed
that the presented results differ from the results reported in [41] by not
more than 0.5%. We compared the values of the fundamental frequency
for plates, spherical and parabolic shallow shells with data presented in
Ref. [41] and obtained an excellent agreement as well.

Table 1
Comparison of nondimensional fundamental frequency 𝛺(1)

𝐿 = 𝜆1ℎ
√

𝜌𝑐∕𝐸𝑐 of
cylindrical shallow shells with square plan form and various boundary condi-
tions (thickness scheme 1-1-1).

Type of the shell p Method Cylindrical panel
𝑘1 = 0.2, 𝑘2=0

SFSF SSSS CCCC SCSC

2-2 0.6 (41) 0.6242 1.2939 2.2574 1.8195
RFM 0.6247 1.2954 2.2685 1.8268

5 (41) 0.6001 1.2404 2.1561 1.7404
RFM 0.6007 1.2420 2.1675 1.7481

20 (41) 0.6007 1.2396 2.1497 1.7370
RFM 0.6012 1.2414 2.1616 1.7450

5.2. Free linear vibration of the functionally graded shells with complex
shape of the plan

Problem 2. In order to contribute to new results and to illustrate the
versatility and efficiency of the proposed method and the developed
software, let us consider the shallow shell with the shape of the plan as
presented in Fig. 2 and with the following geometrical parameters

𝑘1 = 𝑅𝑥∕2𝑎 = 0.2, 𝑘2 = 𝑅𝑦∕2𝑎 = (0; 0.2; −0.2),

𝑏∕𝑎 = 1, 𝑎1∕2𝑎 = 0.25, 𝑏1∕2𝑎 = 0.35, ℎ∕2𝑎 = 0.1.

Consider two types of boundary conditions: clamped and sim-
ply supported on the entire border. Then, the solution structure for
shells with completely clamped borders can be taken in the following
way [43,45,47]

𝑤 = 𝜔𝛷1, 𝑢 = 𝜔𝛷2, 𝑣 = 𝜔𝛷3, 𝜓𝑥 = 𝜔𝛷4, 𝜓𝑦 = 𝜔𝛷5.

For simply supported boundary conditions, we propose to take
the solution structure satisfying kinematic boundary conditions in the
following form

𝑤 = 𝜔(𝑤)𝛷1, 𝑢 = 𝜔(𝑢)𝛷2, 𝑣 = 𝜔(𝑣)𝛷3, 𝜓𝑥 = 𝜔(𝜓𝑥)𝛷4, 𝜓𝑦 = 𝜔
(

𝜓𝑦
)

𝛷5,

where 𝛷𝑖 ∈ 𝐶2 (𝛺 ∪ 𝜕𝛺) , 𝑖 = 1, 2,… , 5 are indefinite components of the
structure [42–50], presented as an expansion in a series of a complete
system (power polynomials, trigonometric polynomials, splines etc.),
𝜔 = 0 is the equation of the whole border of the shell plan form. The
functions 𝜔(𝑢), 𝜔(𝑣), 𝜔(𝑤), 𝜔(𝜓𝑥), 𝜔

(

𝜓𝑦
)

are constructed by the R-functions
theory in such a way that they vanish on those parts of the boundary,
where the functions 𝑢, 𝑣, 𝑤, 𝜓𝑥, 𝜓𝑦 are zero.

The constructed analytical expressions for these functions are pre-
sented using the R-operations ∧0,∨0 (see [43,44,50] for more details)

𝜔 =
(

𝑓1∧0𝑓2
)

∧0
(

𝑓3∨0𝑓4
)

. (27)

Functions 𝑓𝑖, 𝑖 = 1,… , 4 in relation (27) are defined as follows

𝑓1 =
(

𝑎2 − 𝑥2
)

∕2𝑎 ≥ 0, 𝑓2 =
(

𝑏2 − 𝑦2
)

∕2𝑏 ≥ 0,

𝑓3 =
(

𝑐2 − 𝑥2
)

∕2𝑐 ≥ 0, 𝑓4 =
(

𝑑2 − 𝑦2
)

∕2𝑑 ≥ 0.

Below we listed the expressions for functions 𝜔(𝑢), 𝜔(𝑣), 𝜔(𝑤), 𝜔(𝜓𝑥),
𝜔
(

𝜓𝑦
)

for clamped and simply supported boundary conditions.
Clamped edge: 𝜔(𝑢) = 𝜔(𝑣) = 𝜔(𝑤) = 𝜔(𝜓𝑥) = 𝜔

(

𝜓𝑦
)

= 𝜔.
Simply supported edge:

𝜔(𝑤) = 𝜔, 𝜔(𝑢) = 𝜔(𝜓𝑥) =
(

𝑓3∨0𝑓4
)

∨0
(

𝑓5∨0𝑓6
)

∨0
(

𝑓7∨0𝑓8
)

∨0𝑓2,

𝜔(𝑣) = 𝜔
(

𝜓𝑦
)

=
(

𝑓3∨0𝑓4
)

∨0
(

𝑓9∨0𝑓10
)

∨0
(

𝑓11∨0𝑓12
)

∨0𝑓1,

𝑓5 =
(

𝑟21 − (𝑥 − 𝑐)2 −
(

𝑦 −
(

𝑏 − 𝑟1
))2

)

∕2𝑟1 ≥ 0,

𝑓6 =
(

𝑟21 − (𝑥 + 𝑐)2 −
(

𝑦 −
(

𝑏 − 𝑟1
))2

)

∕2𝑟1 ≥ 0,
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Fig. 2. Shape of the plan of the laminated FGM shallow shell.

Table 2
Nondimensional fundamental frequency 𝛺(1)

𝐿 102 = 𝜆1𝑎2ℎ
√

𝜌𝑐∕𝐸𝑐 for shells with
clamped boundary conditions (Fig. 2).

Type Shell type 2-1-2 1-1-1 2-2-1 1-2-1 1-8-1

1-1 Pl 8.426 8.761 9.019 9.289 10.54
Cy 8.563 8.901 9.157 9.430 10.67
Sp 8.768 9.109 9.364 9.640 10.88
Par 8.627 8.967 9.223 9.495 10.73

1-2 Pl 10.52 10.24 9.867 9.741 8.106
Cy 10.62 10.33 9.953 9.820 8.174
Sp 10.75 10.46 10.08 9.939 8.277
Par 10.66 10.37 9.990 9.856 8.206

2-2 Pl 8.022 8.109 7.959 8.268 8.654
Cy 8.147 8.233 8.070 8.390 8.771
Sp 8.335 8.419 8.239 8.573 8.947
Par 8.213 8.298 8.131 8.454 8.832

𝑓7 =
(

𝑟21 − (𝑥 − 𝑐)2 −
(

𝑦 +
(

𝑏 − 𝑟1
))2

)

∕2𝑟1 ≥ 0,

𝑓8 =
(

𝑟21 − (𝑥 + 𝑐)2 −
(

𝑦 +
(

𝑏 − 𝑟1
))2

)

∕2𝑟1 ≥ 0,

𝑓9 =
(

𝑟22 −
(

𝑥 −
(

𝑎 − 𝑟2
))2 − (𝑦 − 𝑑)2

)

∕2𝑟2 ≥ 0,

𝑓10 =
(

𝑟22 −
(

𝑥 +
(

𝑎 − 𝑟2
))2 − (𝑦 − 𝑑)2

)

∕2𝑟2 ≥ 0,

𝑓11 =
(

𝑟22 −
(

𝑥 −
(

𝑎 − 𝑟2
))2 − (𝑦 + 𝑑)2

)

∕2𝑟2 ≥ 0,

𝑓12 =
(

𝑟22 −
(

𝑥 +
(

𝑎 − 𝑟2
))2 − (𝑦 + 𝑑)2

)

∕2𝑟2 ≥ 0,

𝑟1 = (𝑏 − 𝑑) ∕2, 𝑟2 = (𝑎 − 𝑐) ∕2.

In Tables 2 and 3, fundamental frequency parameters 𝛺(1)
𝐿 =

𝜆1𝑎2ℎ
√

𝜌𝑐∕𝐸𝑐 for clamped (Table 2) and simply supported (Table 3)
plates (Pl), cylindrical (Cy), spherical (Sp), and hyperbolic paraboloidal
shells (Par) are presented for Types 1-1; 1-2; 2-2 and different thickness
schemes. For all layers, power exponents were taken as 𝑝 = 1, 𝑝1 = 𝑝2 =
𝑝3 = 𝑝.

Note that the greatest value of nondimensional fundamental frequen-
cies was obtained for spherical shells and the smallest value for plates.
These values essentially depend on the type of the shell and the scheme
of thickness. The behaviors of the shells of Type 1-1 and Type 2-2 are
similar and the frequencies parameter takes the maximum value for the
thickness scheme 1-8-1. For the plate and shallow shells of Type 1-2, the
maximum value of the frequency parameter is reached for the scheme
2-1-2, and the minimum frequency is obtained for the thickness scheme
1-8-1.

Table 3
Nondimensional fundamental frequency 𝛺(1)

𝐿 102 = 𝜆1𝑎2ℎ
√

𝜌𝑐∕𝐸𝑐 for shells with
simply supported boundary conditions (Fig. 2).

Type Shell type 2-1-2 1-1-1 2-2-1 1-2-1 1-8-1

1-1 Pl 6.805 7.071 7.273 7.487 8.464
Cy 6.895 7.163 7.363 7.579 8.553
Sp 7.098 7.370 7.568 7.788 8.757
Par 6.926 7.194 7.395 7.611 8.583

1-2 Pl 8.415 8.192 7.886 7.786 6.479
Cy 8.471 8.244 7.942 7.834 6.521
Sp 8.606 8.371 8.071 7.951 6.623
Par 8.490 8.262 7.957 7.850 6.535

2-2 Pl 6.479 6.545 6.411 6.667 6.972
Cy 6.556 6.621 6.479 6.742 6.742
Sp 6.741 6.805 6.644 6.922 7.208
Par 6.593 6.658 6.513 6.777 7.067

The effect of the power-law exponent 𝑝 = 𝑝1, 𝑝2, 𝑝3 on the fundamen-
tal frequency parameter𝛺(1)

𝐿 = 𝜆1𝑎2ℎ
√

𝜌𝑐∕𝐸𝑐 for the clamped cylindrical
shell of Type 1-2 and different thickness schemes is shown in Fig. 3.
The curve 1-8-1* corresponds to the cylindrical shell with curvatures
𝑘1 = 0.5; 𝑘2 = 0.

Let us fix the thickness scheme 1−2−1 and analyze the effect of the
boundary conditions on the behavior of the dimensionless frequency
parameters 𝛺(1)

𝐿 . As follows from Fig. 4, the value of fundamental
frequency parameters essentially depends on the shell type and the
boundary conditions. Obviously, the fundamental frequency parameters
decrease with the increase in the power-law exponent for all considered
cases. However, for shells of Type 1-1 and Type 1-2, the decrease is more
significant than for shells of Type 2-2.

5.3. Nonlinear vibrations

The proposed approach was also used to investigate nonlinear
vibration of the shells. In order to check the proposed method and
software, let us analyze free nonlinear vibration of the simply-supported
spherical shallow shell with a square plan form. Suppose that geomet-
rical parameters of the shell are: 𝑘1 = 𝑅𝑥∕2𝑎 = 0.1, 𝑘2 = 𝑅𝑦∕2𝑎 = 0.1,
𝑏∕𝑎 = 1.

For an isotropic shell, this problem has been studied in paper [54]
and for the FGM shell, a similar problem has been investigated in
paper [14]. Consider two values of the thickness: ℎ∕2𝑎 = 0.01; ℎ∕2𝑎 =
0.1.

As it has been shown by Kobayashi and Leissa [54] for isotropic
shells, as the thickness increases, the ‘‘soft spring’’ response becomes
weak and does not appear in the thick shell, in which the thickness
ratio is larger than 0.1. Applying the proposed method, we obtained the
same behavior of the shell (see Fig. 5, 𝑝 = 0).

For the FGM shell made of a mixture of ceramics and metals
(Al∕Al2O3), the effect of the amplitude on the frequency, studied for
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Fig. 3. Effect of the power-law exponent on the fundamental frequency of
clamped cylindrical shells of Type 1-2 with different thickness schemes and
curvatures 𝑘1 = 0.2; 𝑘2 =0.

Fig. 4. Nondimensional fundamental frequencies of clamped (cl) and simply
supported (ss) spherical shells with the same scheme of thickness 1-2-1 and
different type: 1-1, 1-2, 2-2.

Fig. 5. Effect of the amplitude on the frequency for various thicknesses of the
spherical FGM shallow shell (Al∕Al2O3).

Fig. 6. Effect of amplitude on the frequency of the simply-supported spherical
laminated FGM shallow shell (Al∕Al2O3, 1 − 8 − 1, 𝑝 = 1.𝑘1 = 𝑘2 = 0.1).

various thicknesses, is analogous to the isotropic case (see Fig. 5, p=1).
However, in the case of the FGM shell, the soft spring response becomes
stronger. It can be explained as follows. For small amplitudes, the initial
stiffness of the given FGM shell is primarily membrane. As the amplitude
increases, the role of bending becomes more important.

Fig. 6 shows the variation of the frequency ratio as a function of
the amplitude-thickness ratio for laminated FGM shallow shells with a
square plan form. The general thickness of the shell is varied; the scheme
of layers thickness is taken as 1-8-1. Different Types (1-1, 1-2, 2-2) of
the shells are considered. The power exponent for all layers is taken the
same, p=1.

Note that qualitative behavior backbone curves for shells of Types
1-1 is similar to the previous case. There are no differences between
the ratios of linear to nonlinear frequencies for Type 1-2 shells for
both thickness ratios 0.01 and 0.1 and for the amplitude less than 2.5.
However, for Type 2-2 shells, behavior of the reference curves depends
essentially on the thickness. If the thickness ratio is 0.01, then the
ratio of linear and nonlinear frequencies remains constant when the
amplitude ratio increases, but if the thickness ratio is 0.1, then the
backbone curve has a hardening type of nonlinearity. Therefore, we
can conclude that the behavior of backbone curves of laminated FGM
shallow shells depends on many factors: thickness, curvature, type of
the core, ratio of layers thickness, boundary conditions, geometry of the
plan, and physical properties of the constituent materials. It means that
in each specific case, it is necessary to carry out a computer experiment.

The proposed approach was also used to investigate nonlinear
vibration of shells with complex plan form (Fig. 2). The dependence
between the maximum deflection and the ratio of the nonlinear fre-
quency to the linear one for different types of shells of and fixed
thickness scheme 1 − 8 − 1 and for the fixed values of power exponent
(

𝑝 = 0.5, 𝑝1 = 𝑝2 = 𝑝3 = 𝑝
)

was obtained. Figs. 7 and 8 show the variation
of the nonlinear frequency amplitude relationships (backbone curves)
for clamped cylindrical (Fig. 7) and spherical (Fig. 8) shallow shells of
Types 1-1; 1-2; 2-2. The hardening type of nonlinearity is observed for
both shells and their different types.

The results presented in Figs. 7 and 8 are similar and. As shown by
the computational experiment, backbone curves for simply supported
shells are also close to those shown in Figs. 7 and 8.

In order to demonstrate the difference between the behavior of
nonlinear frequencies for cylindrical and spherical shells, let us consider
the variation of the nonlinear frequencies of the maximum amplitude
of vibration for simply supported shells. Fig. 9 shows the relation of
the maximum amplitude of vibration and the fundamental nonlinear
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Fig. 7. Backbone curves for clamped cylindrical shells (1-8-1, p=0.5).

Fig. 8. Backbone curves for clamped spherical shells (1-8-1, 𝑝 = 0.5).

frequency for SS-simply-supported cylindrical and spherical shells of
different types.

As follows from Fig. 9, the curvature of shells influences the nonlin-
ear frequencies slightly, while the type of the shell yields significant
changes. Shells of the Type 1-1 have the largest values of nonlinear
frequencies, and shells of the Type 1-2 have the lowest values of
frequencies from all cases considered in this study.

6. Concluding remarks

In this study, we have proposed a method of investigation of free
linear and geometrically nonlinear vibrations of laminated functionally
graded shallow shells with a complex shape of the plan. Three-layered
shells with different types of layers have been considered: the middle
layer fabricated from FGM and external layers made from metal or
ceramics, and the converse external layers made of FGM, but the core
made from metal or ceramic. Taking into account that the properties of
materials are varied along thickness, their analytical expressions have
been obtained provided that Poisson’s ratio is the same for ceramics
and metal. The proposed method consists of a solution of the linear
vibration problem and special types of elasticity problems. In the study,
the problems have been solved by the variational Ritz method and the R-
functions theory. In order to solve the nonlinear problem, Galerkin and

Fig. 9. Backbone curves for simply-supported spherical and cylindrical shells
with the lamination scheme (1-8-1, 𝑝 = 0.5).

Runge–Kutta methods have been applied. A comparison of the results
obtained for double-curved shallow shells the with square plan form has
been used to validate the developed software and the proposed method.
For shells with a complex plan form, new solution structures have
been built for simply supported boundary condition. Novel numerical
results have been obtained for cylindrical, spherical, and hyperbolic
paraboloidal shallow shells with complex plan forms, different boundary
conditions, and different types of layers. The effect of the gradient-index
and thickness schemes has been studied for linear and geometrically
nonlinear vibrations of shells with complex shape of the plan, and
engineering-oriented results have been presented and discussed.
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