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Abstract In the work there is presented a mathematical model of a rattleback lying on a
horizontal plane, with special attention paid to modelling of the contact forces. Friction
force modelling concerns a certain class of problems, where it is possible to assume fully
developed sliding on the contact zone. The models are based on the integral expressions
assuming the classical Coulomb friction law valid at each point of the contact. In order to
obtain a higher simulation speed, a special class of approximations if integral functions is
used, being some kind of generalization of Padé expansion. The rolling resistance is mod-
elled as a result of special distortion of contact pressure distribution and takes into account
the rolling direction and the elliptic shape of the contact. The work uses previous results of
the authors, but more attention is paid to the rolling resistance model, which is extended and
analysed in more detail. The models are validated experimentally and their various elements
are tested.

Keywords Rolling resistance · Celtic stone · Contact forces

1 Introduction

Modelling and numerical simulation of mechanical systems with frictional contacts in their
general case require discretization of the deformable contacting bodies near the contact zone
or at least discretization of the contact surface [1–3]. For the rolling contact one can use the
well-known CONTACT software [2]. Space discretization and use of finite element methods
lead, however, to high computational costs and long times of numerical simulations that
are not always acceptable. It is the reason of the development of simplified models and
algorithms [3–5].
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There are special situations, where the local deformations of the bodies are negligible
in comparison with their relative velocities in the contact area, and one can assume a fully
developed sliding over the contact. In the case of planar contact one can assume relative mo-
tion of the contacting bodies in the contact zone, equivalent to the planar motion of a rigid
body. Modelling of the resulting friction force and moment then leads to integral expres-
sions over the contact area [6]. In order to obtain higher speeds of numerical simulations,
scientists still searched for reduced and simplified models. Zhuravlev [7] applied Padé ap-
proximants in the construction of expressions for friction force and moment in the case of
fully developed sliding over a circular contact area with Hertzian contact stress distribution
and Coulomb friction law. These results were then developed and the models of mutually
coupled friction forces and rolling resistance were obtained [8], where initially Hertzian
contact stress distribution is distorted in a special way in order to take into account the
rolling resistance [9]. An extension of this approach is presented in the work [10], where the
generalized forms of approximations of the resulting friction force and moment as well as
rolling resistance for elliptic contact shape are presented. Rolling friction is there modelled
as a resistance against motion of the area of deformation over the body [11] and, ignoring
the problem of rotation of the elliptical region, is consistent with the results obtained under
the assumption of the linear hysteresis [12–15]. Karapetyan [16] proposed a two-parametric
model of friction forces for spherical contact between a ball and planar base being a result
of deformations of the contacting bodies. This model joins three different kinds of friction
(Coulomb, Contensou and rolling friction) and can be seen as a development of Zhuravlev
model.

An example of a dynamical system, in which an essential role may be played by the par-
ticular elements of the contact models presented in the work [10], is the rattleback (known
also as wobble stone or Celtic stone)—usually a semi-ellipsoidal top with a special mass
distribution, moving on the plane base and possessing specific dynamical properties. The
first scientific work on rattleback was published at the end of the 19th century [17] and it
has been an object of interest till today [18–34], both from the point of view of dynamics
and of modelling. During modelling and analysis of the Celtic stone, rolling without sliding
is often assumed, leading to non-holonomic constraints [17, 21, 22, 24–26, 29, 31]. Some
authors assume some kind of dissipation, but far from reality [18–20, 23]. More realistic
modelling of friction is applied in the work [27]. Detailed modelling of contact between the
Celtic stone and horizontal base, including rolling resistance and using results of the work
[10], is presented in Ref. [34], where also experimental validation of particular parts of the
model is performed. The same approach is used in modelling and numerical simulations of
a billiard ball rolling and sliding on a table [35, 36].

In the present work the same experimental data is used as in Ref. [34], but deeper in-
sight into the rolling resistance model is achieved—an extended expression for the rolling
resistance additional elements and aspects are investigated.

2 Governing equations of the Celtic stone

The presented in this section modelling is based on the work [5]. A wobble stone having the
form of semi-ellipsoidal rigid body and lying on a horizontal plane π is presented in Fig. 1,
where we use the following notation: GX1X2X3 is for the global (immovable) coordinate
system with X1X2 axes laying on the horizontal plane π ; n is for the unit vector normal to the
surface X1X2;O is for the geometry centre of the ellipsoid forming surface of the rattleback;
C is for the mass centre of the body; Cx1x2x3 is for the local (body-fixed) coordinate system
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Fig. 1 The wobble stone on a
horizontal plane

of axes parallel to the geometric axes of the ellipsoid and origin at the mass centre; A is for
the contact point; k is for the vector defining the relative position of mass centre; r is for the
vector defining the relative position of the contact point; N̂ = N̂n is for the normal reaction
of the horizontal plane of magnitude N̂ ; T̂s is for resultant friction force at the point of
contact A; m is for the mass of the Celtic stone; M̂s is for the friction moment applied to the
body; M̂r is for the rolling resistance moment; mg is for the force of gravity.

The presented system is governed by the following set of differential equations:

m
dv
dt

= −mgn + N̂n + T̂s , (1)

drC

dt
= v, (2)

B
d̃ω

dt
+ ω × (Bω) = (r + k) × (N̂n + T̂s) + M̂s + M̂r , (3)

ψ̇ = ω3 cosϕ − ω1 sinϕ

cos θ
, (4)

θ̇ = ω1 cosϕ + ω3 sinϕ, (5)

ϕ̇ = ω2 + tan θ(ω1 sinϕ − ω3 cosϕ), (6)
[

dv
dt

+ d̃ω

dt
× (r + k) + ω × d̃r

dt
+ ω × (

ω × (r + k)
)] · n = 0, (7)

where the following notation is used: du/dt—absolute time derivative (in GX1X2X3 co-
ordinate system) of vector u; d̃u/dt is for the time derivative of vector u in the movable
(body-fixed) coordinate system; v is for the absolute velocity of the mass centre C; ω is
for the absolute angular velocity of the body; B = [[B1,−B12,−B13], [−B12,B2,−B23],
[−B13,−B23,B3]]T is for the tensor of inertia of the solid at the mass centre C (where Bi

and Bij denote the corresponding moments of inertia with respect to the axes xi and xj ); rC

is for the vector indicating the position of the mass centre C with respect to the immovable
origin G of global coordinate system; ψ , θ , ϕ is for the angles describing the orientation
of the rattleback defined by the following sequence of rotations: about axis x3 by angle ψ ,
about axis x1 by angle θ and about axis x2 by angle ϕ, ω1, ω2, ω3 is for the components of
vector ω along the corresponding axes x1, x2, and x3 of the local coordinate system.

Equations (1)–(2) define the motion of the mass centre C of the Celtic stone in the global
coordinate system. Equation (3) represents the law of variation of the angular momentum
expressed in the local reference frame. Equations (4)–(6) represent kinematic differential
equations expressing relations between components of angular velocity and derivatives of
angles defining orientation of the body. Equation (7) is the twice differentiated algebraic
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condition (rC + r + k) · n = 0 expressing assumption of permanent contact between the
rattleback and plane π . The set of Eqs. (1)–(6) is in fact a set of 13 scalar differential-
algebraic equations of index 1. One can notice here 13 unknown scalar functions of time,
but only 12 derivatives of these functions occur—there is no derivative of the function N̂(t).
Equations (1)–(6) can be solved algebraically with respect to these 13 unknown functions
of time. One can obtain then the set of 12 ordinary differential equations with 12 unknown
functions of time and additional algebraic expression for normal reaction N̂(t).

The solution to Eqs. (1)–(6) also requires the relation between the vector n and indepen-
dent variables ⎧⎨

⎩
n1

n2

n3

⎫⎬
⎭ =

⎧⎨
⎩

− sinϕ sin θ

sin θ

cosϕ cos θ

⎫⎬
⎭ , (8)

where n1, n2 and n3 denote components of vector n along the corresponding axes x1, x2 and
x3, as well as the following relation between the vectors n and r:

r = − Rn√
Rn · n

, (9)

where

R = diag
(
a2

1, a
2
2, a

2
3

)
. (10)

In Eq. (10) a1, a2 and a3 denote the semi-axes of the ellipsoid along the corresponding axes
x1, x2 and x3.

Since in Eq. (7) the local derivative of the vector r appears, one also needs the corre-
sponding derivative of Eq. (9),

˙̃r = −R
(Rn · n) ˙̃n + (Rn · ˙̃n)n

(Rn · n)3/2
, (11)

as well as the differentiated form of Eq. (8). In Eq. (11) ˙̃u stands for the local derivative of
the variable u.

Based on the previous work of the authors [10, 34], the following model of the resultant
contact forces is proposed:

T̂s = −μN̂
vAC√

v2
AC

+ b2
1ω

2
s + ε2

1

, (12)

M̂s = −μN̂
b2ωs√

ω2
s + b2

3v
2
AC

+ ε2
1

n, (13)

M̂r = f N̂
b4vAyex − vAxey√
v2

Ax + b2
5v

2
Ay + ε2

2

, (14)

where μ is for the is coefficient of friction, f is for the rolling resistance coefficient, while bi

(i = 1, . . . ,5) and εi (i = 1,2) are the remaining constant parameters, vAC
= v+ω× (r+k)

is for the is velocity of a point belonging to the rattleback and being in the contact with plane
π , ωs is for the component of the angular velocity ω along the vector n, ex and ey are the unit
vectors of the axes of the planar rectangular coordinate system associated to the elliptical
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Fig. 2 Construction of the
contact area’s coordinate system
Axy

contact area (where x is an axis along the longer axis of the elliptical contact patch), vAx and
vAy are the corresponding components of the velocity vA of the geometric position of the
contact point A, the position of the centre of the contact area on the plane π . The elliptical
contact area with the corresponding coordinate system and its construction is presented in
Fig. 2, where e1 denotes a unit vector of the axis Cx1.

Models (12)–(13) represent special case of approximations developed in [10] and tested
in modelling of the Celtic stone in [34]. They are a minimal but sufficient form of more
general models, allowing one to simulate the rattleback dynamics quickly and realistically.
They are based on the assumption of fully developed sliding on the contact area and small
enough local deformations resulting in relative motion in the vicinity of the contact being
planar motion of rigid bodies. The resultant friction action is reduced to the friction force
and moment acting at the centre of the finite contact area. Their models are based on the
integral expressions under the assumption of the classical Coulomb friction law valid at
each point of the contact zone. In order to obtain higher simulation speed, a special class
of approximations is used, being some kind of generalization of the Padé expansion. In
general, friction forces are coupled with rolling resistance via contact pressure distribution.
A simplified model of pressure distribution is assumed, i.e. the Hertzian model, which is
then modified (distorted) in a special way in order to take into account the rolling resistance.
The parameters bi (i = 1, . . . ,3) in models (12)–(13) have no direct physical meaning but
depend on shape and size of the contact, as well as on the contact pressure distribution
and model of friction. They can be identified based on the experimental data. In the case
of model of friction force and moment (12)–(13), a circularly symmetric contact pressure
distribution is assumed and there is no coupling with the rolling resistance (14). On the other
hand, the rolling resistance model (13) assumes an elliptical shape of the contact patch. This
is a simplified special case of the contact models chosen based on the work [34].

The model of the rolling resistance (14) is an extended version of the full form of model
presented in [10, 34], assuming that only deformations of the table π participate in energy
dissipation during rolling. This is approximately true in the experiment presented in Sect. 3,
where deformations of the Celtic stone can be neglected. The rolling resistance of the model
presented in the previous work depends on the direction of the velocity vA and has main
directions along the corresponding axes of the elliptic contact corresponding to extremal
values of resistance (more precisely the centre of contact pressure distribution lies on an
ellipse) and during rolling along intermediate directions the rule is fulfilled that the rolling
resistance moment is perpendicular to the velocity vA. Rotation of the elliptical region is
ignored in the model. In the present work the model (14) is extended by addition of the
parameter b4 (in Refs. [10, 34] equal to 1), which leads to the situation that the moment of
rolling friction is not perpendicular to the velocity vA (see Fig. 3). The rolling resistance
model M̂r is the result of the shift of the contact pressure distribution centre S from the
contact centre A. The point S lies on the ellipse of semi-axes equal to f and f b4/b5 of
directions corresponding to the directions of the axes of the elliptical contact area. However,
the slendernesses of the two ellipses are not necessary the same. The parameters b4 and b5
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Fig. 3 Ellipses of travel of the contact pressure centre S and end of the rolling resistance vector M̂r along
with the vector vA of the contact centre velocity

have no direct physical meaning but can be interpreted geometrically in the way presented
in Fig. 3.

Application of the contact force models (12)–(14) requires the use of the following rela-
tions between the corresponding unit vectors (see Fig. 2):

ex = e1π

‖e1π‖ , ey = n × ex, (15)

e1π = e1 − (e1 · n)n, (16)

is the unit vector e1 of the axis x1 projected onto the plane GX1X2.
The remaining quantities occurring in Eqs. (12)–(14) are calculated in the following way:

ωs = ω · n, vA = vAC
+ d̃r

dt
, (17)

vAx = vA · ex, vAy = vA · ey . (18)
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Fig. 4 Experimental rig (a) and the Celtic stone used in the experimental investigations (b)

The parameters εi (i = 1,2) was initially introduced in order to eliminate singularities in
the expressions (12)–(14) for vanishing sliding or rolling velocities. Their values was small
enough to smooth set-valued friction and rolling models but not to change too significantly
their properties. However, in this paper the model of rolling resistance is tested for higher
values of the parameter ε2.

3 Numerical simulations and experimental validation

In this work there are used results of experiment presented in work [34]. In Fig. 4 there
are presented experimental setup (a) and the Celtic stone used during experimental investi-
gations (b). The rattleback is built by skew attachment of aluminium rod 2 (equipped with
additional masses 3a and 3b) to the semi-ellipsoidal body 1 made of aluminium alloy EN
AW-2017A. On the stone there are situated three small steel elements 5a–c, isolated ther-
mally from the rest of the body, playing the role of measurement points. The points are
heated before the experiment and then observed by the use of a thermovision video camera.
The measurement points are situated in such a way (the point 5c is placed at the end of
special rod 4) that the position of the Celtic stone can be computed based on their positions
on the plane image observed in the camera located above the stone perpendicularly to the
base—assuming a permanent contact between the body and the table.

The rattleback used in the experimental investigations has the following parameters
(found by direct length and mass measurements and numerical integrations on the cor-
responding volumes): a1 = 110 ± 0.01 mm, a2 = 25 ± 0.01 mm, a3 = 25 ± 0.01 mm,
m = (543.6 ± 0.2) × 10−3 kg, B1 = 247.4 ± 1 kg mm2, B2 = 1358.9 ± 1 kg mm2, B3 =
1374.7 ± 1 kg mm2, B12 = 159.1 ± 1 kg mm2, B13 = 0 ± 1 kg mm2, B23 = 0 ± 1 kg mm2,
k1 = 0 ± 0.1 mm, k2 = 0 ± 0.1 mm, k3 = 4.46 ± 0.1 mm. The vectors defining the posi-
tions of the measurement points rOP1 , rOP2 and rOP3 (with origin at the point O and end
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Fig. 5 The first experimental
solution (grey line) of the wobble
stone used during the
identification process compared
with the corresponding
simulation (black line) using the
model A

at the corresponding measurement point Pi ) possess the following coordinates in the lo-
cal reference frame: rOP11 = −97 ± 0.5 mm, rOP12 = 0 ± 0.5 mm, rOP13 = 4 ± 0.5 mm,
rOP21 = 97 ± 0.5 mm, rOP22 = 0 ± 0.5 mm, rOP23 = 4 ± 0.5 mm, rOP31 = 0 ± 0.5 mm,
rOP32 = 0 ± 0.5 mm, rOP33 = 151 ± 0.5 mm. During the experiment a rubber plate is used
as a base for the rattleback, so one can assume that the rolling and sliding body is rigid in
comparison to the base. Moreover, one assumes a fixed value of the regularization parameter
ε1 = 10−5 m/s.

The remaining system parameters and initial conditions are estimated using a combina-
tion of the Nelder–Mead method and random perturbations of data set by bootstrap restart-
ing. The minimized objective function Fo describes the fitting of the numerical simulation
to the experimental results and is defined as average squared deviation between the coordi-
nates of the measurement points’ projected centrally onto a plane π (i.e. as viewed in the
camera image) obtained from the experiment and numerical simulation. For more details see
Ref. [34]. Three different experimental solutions are used in the identification process (see
Figs. 5, 6, 7).

Eight versions of the model of the contact forces (final values of the parameters and
objective function Fo are presented in Table 1 and Fig. 8) are tested:

1. Model A—the full model with all the parameters undergoing the process of estimation
(with exception of the parameter ε1). Note that b4/b5 = 0.240 (result of identification),
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Fig. 6 The second experimental
solution (grey line) of the wobble
stone used during the
identification process compared
with the corresponding
simulation (black line) using the
model A

while the quotient of the corresponding axes’ lengths for the elliptical contact between
the resting Celtic stone and the base according to the Hertz theory is equal to 0.148. In
Figs. 5–7 there are presented three different experimental solutions used in the identifi-
cation process compared with the corresponding simulation results obtained by the full
model A.

2. Model B—the parameter ε2 is equal to a small value of 10−5 m/s and only play a role of
regularization of the expression for rolling resistance moment. In this case as a result of
identification one have b4/b5 = 0.227.

3. Model C—assuming b4 = 1—resulting in direction of the rolling resistance perpendicu-
lar to the velocity vA of the contact point A on the plane π .

4. Model C1—assuming b4 = 1 and b4/b5 = 0.148 (see description of the model A).
5. Model D—assuming b5 = 1—resulting in other kind of model of direction of the rolling

resistance (chosen rather accidentally).
6. Model D1—assuming b5 = 1 and b4/b5 = 0.148.
7. Model E—assuming b4 = b5 = 1—the rolling resistance does not depend on the direction

of rolling and elliptical shape of the contact is ignored.
8. Model F—assuming b3 = b1 = 0—i.e. no coupling between friction force and moment

(finite size of the contact is ignored in the model of friction forces).
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Fig. 7 The third experimental
solution (grey line) of the wobble
stone used during the
identification process compared
with the corresponding
simulation (black line) using the
model A

Table 1 Values of the objective function Fo and the corresponding model’s parameters obtained during
identification process

A B C C1 D D1 E F

Fo [mm2] 1.25 1.52 1.48 1.73 2.05 2.13 3.55 3.47

μ 0.231 0.231 0.233 0.238 0.234 0.241 0.235 0.189

f [mm] 0.482 0.481 0.485 0.738 0.494 0.725 0.407 0.476

b1 [mm] 4.29 4.30 4.28 3.01 4.50 3.06 4.02 0

b2 [mm] 2.46 2.45 2.45 2.45 2.46 2.43 2.43 2.56

b3 [mm−1] 0.667 0.657 0.700 1.62 0.771 1.58 0.520 0

b4 2.27 2.20 1 1 0.234 0.148 1 2.42

b5 9.46 9.71 4.23 6.76 1 1 1 10.2

ε2 [m/s] 0.0530 10−5 0.0209 0.0310 0.00490 0.00333 0.0756 0.0478

One can observe that the use of full model (12)–(14) is reasonable. The greater value
of the parameter ε2 leads not only to better results but also makes the equations less stiff.
An especially important element of the rolling resistance model is its dependence on the
direction of rolling: the value of the resistance along the corresponding semi-axes of the
elliptical contact as well as during rolling along intermediate directions.
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Fig. 8 Comparison of eight
versions of the contact forces’
model

4 Conclusions

The reported results have been obtained by the use the same experimental data as used in
the previous work of the authors [34]. The extended model of the rolling resistance is used
and new aspects of the rolling friction in the case of an elliptical contact are investigated.
The model of the resultant friction force and moment is used in minimal but sufficient form
(i.e. more details do not lead to noticeable improvement of the results) based on the results
of Ref. [34].

First of all, it has been shown that the rolling resistance is smaller along the shorter semi-
axis of the contact (compare model E with models A–D). It has only been confirmed that
the vector of the rolling resistance moment is perpendicular to the direction of motion of the
deformation region only in a certain approximation. The choice of an accidental model of
direction of rolling resistance, like model D, gives much worse results than the model where
the rolling resistance is always perpendicular to vA (model C). But extension of the model
by addition of the parameter b4 to the set of parameters undergoing a process of identifica-
tion (model B) leads to even better results. Another improvement of the rolling resistance
model introduced in the present work, which allows one to obtain better agreement with
experiment, is that of treatment of the parameter ε2 as an element not only playing a role of
regularization of the model, but also a quantity undergoing the process of identification and
allowed one to take any value (model A). Finally, we have confirmed that an important role
in the modelling of the resultant friction force and moment is played by the coupling ele-
ments between them, i.e. the dependence of the friction force on the angular sliding velocity
as well as the dependence of the friction moment on the linear sliding velocity (compare
model F with models A–D).

The final conclusion is that the model here presented of the contact forces is very ef-
fective. In spite of its simplicity it allows for realistic and reliable numerical simulations
of complex mechanical systems with frictional contacts, i.e. the rattleback having been the
object of investigation presented in this work.
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national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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