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Abstract Mathematical models of multi-layer
orthotropic shells were reconsidered based on the Tim-
oshenko hypothesis. A new mathematical model with
ε-regularisation was proposed, and the theorem regard-
ing the existence of a generalised solution to the model
was formulated and proved. The algorithms of numer-
ical investigation of models studied with the aid of
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the variational-difference method were developed. The
associated stability problem was also addressed. A
comparison of the results yielded by the considered
models was carried out and discussed for numerous
factors and parameters.
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1 Introduction

The first papers devoted to the investigation of vibra-
tions of piecewise non-homogeneous (with respect to
thickness) multi-layer/composite plates and shells with
the account of the geometric nonlinearity appeared in
the sixties of the twentieth century. In these works,
numerical computations of three-layer structural mem-
bers with lightly stiffened internal layer (filler) have
been used to show that inclusion of transverse shear
and normal forces as well as deformations in the filler
is required during modelling. Usually, owing to the
complexity of nonlinear PDEs governing the dynam-
ics of multi-layer plates and shells made from either
orthotropic or anisotropic composite materials, the
solutions to PDEs have been constructed by taking into
account only small nonlinear vibrations and the first-
order approximation.

The first pioneering results related to the investiga-
tion of three-layer plates and shells have been reported
by [1–8], and other. In references [1,2], three-layer
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orthotropic rectangular plates subjected to normal loads
have been studied. Within the study, the governing
PDEs have been derived and the dependency of non-
linear vibrations on the amplitude and frequency has
been obtained in the first approximation.

Yu [5] found the approximate solution to the prob-
lem of nonlinear axially symmetric vibrations of a
three-layer closed circular cylindrical shell with a light
non-compressed filler and the membrane external lay-
ers. Kholod [7,8] has utilised the same deformation
hypotheses regarding the filler while solving the prob-
lem of nonlinear transverse vibrations of a three-layer
cylindrical simply supported panel symmetric with
respect to its height, having a stiff filler and carrying
loads by external layers.

The influence of deformations of the transverse
shear on nonlinear vibrations of composite plates and
shells has been studied in a vast number of refer-
ences such as [6,9–12]. In one of these works [6], it
was pointed out that the influence of the transverse
shear cannot be omitted while investigating nonlinear
vibrations and stability of freely supported multi-layer
plates, and it plays a crucial role in studying clamped
multi-layer plates.

Kogan and Yurchenko [12] studied the influence of
geometrical and mechanical parameters (relative plate
thickness h/b, slenderness l = a/b, stiffness of the
filler against the shear factor, bending stiffness of the
carrying load layers, parameter e responsible for exter-
nal damping of vibrations, the number of half-waves
m and n) as well as of the type of boundary condi-
tions on the character of free/forced nonlinear vibra-
tions and the shape of the amplitude–frequency bone
curves for a three-layer rectangular plate with a non-
symmetric (with respect to thickness) structure with a
stiff, transversally isotropic filler transmitting the trans-
verse shear and two isotropic load-carrying layers.

In general, factors such as a multi-layer mechanical
structure, the presence of layers with different physical
and geometrical characteristics, interlayer contact con-
ditions, well-posed statements of the multi-layer strain
as well as proper implementation of boundary condi-
tions requiremore advancedmodelling due to phenom-
ena that are more complex than those exhibited by sim-
ple, reduced-order models.

On the other hand, mathematical models derived
in the form of coupled nonlinear PDEs require the
employment of more rigorous mathematical tools to
reduce infinite dimensional problems to finite dimen-

sional ones. In other words, it is necessary to reduce
PDEs to truncated systems of nonlinear ODEs, putting
emphasis on adequate modelling of the rich nonlinear
structural behaviour.

Particular features of numerous directions of the the-
ory development and the construction of mathemati-
cal models of multi-layer plates and shells have been
described in references [13,14]. In general, one can dis-
tinguish two main approaches to investigating nonlin-
ear vibrations of multi-layer plates and shells. Namely,
one can employ: (i) a hypothesis of a straight, non-
deformed normal (to all layers), and reduce the problem
to computing a quasi-homogeneous plate/shell with
reduced elastic parameters [15–22]; (ii) non-classical
2D theories based on integral hypotheses for the entire
packet of layers, taking into account deformations and
stresses of the transverse shear in all layers [5,6,23–
28].

Ugrimov [29] presented the layer-wise generalised
theory of multi-layer shells based on the expansion of
the displacement vector components of each layer into
power series of the transverse coordinate. The results
were validated by the analysis of the strain-stress states
of one- and three-layer structures.

Fernandes [30] proposed a so-called mixed formu-
lation to study elastic multi-layer plates for which the
continuity of transverse shear stress is satisfied in a
natural way. The introduced model was validated by
bilayer and sandwich plates.

Basar and Eckstein [31] developed a finite multi-
layer shell element formulation with the account of
large inelastic strains and finite rotations. The derived
model was enforced into amulti-layer shell kinematics,
putting emphasis on the proper modelling of stresses
across the thickness. Also, a few examples validating
the introduced theory and computational algorithms
were reported.

Recently, Amabili and his co-workers have con-
structed a series of geometric nonlinear theories of the
third order for the shells of general forms. For this pur-
pose, they have employed five, seven, or eight param-
eters [34–36]. Since the terms of a higher order with
respect to the transverse coordinate are also taken into
account, the theory is feasible also for thick shells.
The developed theory allows for investigating large-
amplitude vibration excited by periodic load and the
obtained results coincide with those yielded by other
theories. Owing to complexity of the analysed prob-
lems, the investigations have been carried out with
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different numerical methods, i.e. the finite difference
method, the finite element method, and the Galerkin
methods.

Gutiérrez Rivera et al. [37] developed a new 12-
parameter finite element method of the shell in order
to analyse large deformations of composite shell struc-
tures by using the third-order model.

In reference [38], the finite element method has
been successfully used to study laminated compos-
ite skewed hyper shell roof, taking the account of an
oblique impact with friction boundary elements.

Tornabene et al. [39] studied amechanical behaviour
of damaged laminated composite plates and shells by
employing the higher-order shear deformation theories
and using the accurate and stable generalised differen-
tial quadrature method (GDQ).

Large vibrations of three- and multi-layer plates,
taking into account the initial imperfection, have been
studied in references [12,24–26]. In particular, in ref-
erences [24,25] the parabolic form of distribution of
deformation of the transverse shear along the thickness
of the whole layer has been investigated. Five input dif-
ferential equations have been reduced to one nonlinear
second-order equationwith square and cubic nonlinear-
ity. Then, the equation has been solved using the multi-
scale approach. It has been also proved that in the case
of either strong or weak nonlinearity, the behaviour of
the plate essentially depends on the initially introduced
imperfections [25].

More recently, Wang et al. [32] studied spherical
cloaking by using multi-layer ordinary dielectric mate-
rials and optimised the total scattering cross section of
a spherical multi-layer shell with a metallic core.

Jiang et al. [33] implemented a reduced-order model
to evaluate the dynamics response of multi-layer plates
under impulsive loads. The introduced approach aimed
at either absorbing or transmitting the energy in trans-
verse directions is based on the reverberation matrix
method matched with the theory of generalised rays.
The dynamic response of multi-layer plates was quan-
tified using the generalised ray theory and the inverse
Fourier transformation.

The authors of the present paper have been investi-
gating the problems of statics and dynamics of multi-
layer structural members for many years. In particu-
lar, the multi-layer flexible Euler–Bernoulli and Tim-
oshenko beams were investigated in reference [40],
whereas multi-layer beams with a clearance have been
studied in references [41,42]. Also, the non-classical

mathematical models of coupled problems of thermoe-
lasticity were derived and studied for multi-layer shells
with initial imperfections in [43].

This paper extends the former investigations. It is
organised in the followingway. Section 2 comprises the
description of fundamental hypotheses and relations
as well as the derivation of the governing equations.
Section 3 presents the modification of the Timoshenko
model and the ε-regularisation model. It includes rig-
orous mathematical considerations including formula-
tion of the Theorem 1 and its proof. Numerical investi-
gations of stability of the multi-layer orthotropic shells
within the earlier introduced improved theories are car-
ried out in Sect. 4. Section 5 reports a comparison of
the stability curves of the multi-layer symmetric shells
based on the “load deflection” relations yielded by
the four studied different shell mathematical models.
Finally, Sect. 6 summarises the carried-out research.

2 Fundamental hypotheses

Amulti-layer shallow shell being a part of the 3D space
R3 is considered. The rectangular coordinate system
of the space R3 is introduced as follows. An arbi-
trary surface of the shell, called a reference surface
and defined as x3 = 0, is chosen; the axes 0x1,0x2
are directed along the main curvatures of this surface,
whereas the axis 0x3 is directed towards the reference
surface curvature axis. In the given system of coordi-
nates, the shell is defined in the followingmanner:� =
{(x1, x2, x3)/ (x1, x2) ∈ [0, a]× [0, b] , δ0 − � ≤ z ≤
δn+m − �}, where the space [0, a] × [0, b] stands for
the rectangular shell planform; δn+m − δ0 = 2h0—
constant shell thickness; x3 = δ0 − �—lower shell
surface; x3 = δn+m − �—upper shell surface; �—
shell thickness measured from the upper surface to the
reference surface x3 = 0.

To develop mathematical models (MM2) based on
the Timoshenko hypothesis, the following assumptions
regarding the shell construction, material properties,
layers and exploitation conditions are introduced.

1. The thickness of the i-th shell layer is denoted by
δi , i = 0, . . . , n + m the; m stands for the num-
ber of layers up to the layer consisting the surface
x3 = 0; n is the number of the remaining layers.
The interval x3 ∈ (δ0 − �, δn+m − �) is divided
into subintervals with respect to x3 within one layer
(δi − �, δi+1 − �) .

123



2096 V. A. Krysko et al.

2. It is assumed that the shell is fully shallow, i.e. the
coefficients of the first squared form of the refer-
ence surface are taken as Ai ≈ 1. The main curva-
tures and the twist curvature of x3 = 0 are constant
(the Gauss curvature is neglected). Furthermore, it
is assumed that the total thickness of layers is small
compared to the curvature radii, i.e. 1+ Ki j x3 ≈ 1.

3. It is assumed that normal stresses σ33 = 0 are small
compared to the stresses in the state equations.

4. It is assumed that the shell is under a stationary
temperature field. The temperature distribution is
yielded by a solution to the Fourier heat transfer
equation. If T0 stands for the input shell temperature
and T (x1, x2, x3) is the temperature at the time
instant t , then the function� = T (x1, x2, x3)−T0
defines the grad� as a vector of heat flow.

5. The considered piecewise homogeneous shell is
composed of an arbitrary number of layers of the
same thickness, but different stiffness. The layers
are arbitrarily located with respect to the reference
surface x3 = 0. If the layers are orthotropic, then
in each of them, there is one plane of elastic sym-
metry which is parallel to the plane tangent to the
reference surface, and the two remaining planes are
perpendicular to the axes Ox1, Ox2.

6. The deformable shell state is considered based on
the assumption that deflections of the points of the
reference surface can be of the same order as the
shell thickness [44].

7. The components of the displacement vector of the
surfaces x3 = 0 are denoted by u1 = u1 (x1, x2),
u2 = u2 (x1, x2); u3 = u3 (x1, x2) stands for
the shell deflection; uz

1 = u1 (x1, x2, x3), uz
2 =

u2 (x1, x2, x3) are displacements of an arbitrary
shell point, and uz

3 = u3 (x1, x2, x3) is the shell
deflection at an arbitrary point.

8. The external shell surfaces are subjected to the load
vector of the form: q+ = q; q̄ = 0, i.e. the shell
behaviour caused only by the action of the trans-
verse force is studied.

9. Since only thin flexible shells are considered, fol-
lowingmonograph [9], the deformations in an arbi-
trary shell layer have the following form

lz
11 = ∂uz

1

∂x1
+ 1

2

(
∂uz

3

∂x1

)2

− K1uz
3,

lz
22 = ∂uz

2

∂x2
+ 1

2

(
∂uz

3

∂x2

)2

− K2uz
3

lz
12 = ∂uz

1

∂x2
+ ∂uz

2

∂x1
+ ∂uz

3

∂x1
· ∂uz

3

∂x2
,

lz
13 = ∂uz

1

∂x3
+ ∂uz

3

∂x1
,

lz
23 = ∂uz

2

∂x3
+ ∂uz

3

∂x2
,

lz
33 = ∂uz

3

∂x3
(1)

10. One can transit from 3D to 2D theory of shells by
taking into account the hypothesis of the second
approximation, i.e. the Timoshenko-type hypothe-
sis (Fig. 1).

It is assumed that tangential displacements uz
1, uz

2,
uz
3 are distributed along the shell thickness in a way

described by the following linear form

uz
1 = u1 + x3γ1, uz

2 = u2 + x3γ2, uz
3 = u3, (2)

where γ1 = γ1 (x1, x2), γ2 = γ2 (x1, x2) denote angles
of the normal rotation with respect to the surface x3 =
0 generated by deformations in the planes x20x3 and
x20x3, respectively. Then, equation (1)with the account
of equation (2) yields

lz
11 = ∂u1

∂x1
+ 1

2

(
∂u3

∂x1

)2

− K1u3 + x3
∂γ1

∂x1
;

lz
22 = ∂u2

∂x2
+ 1

2

(
∂u3

∂x2

)2

− K2u3 + x3
∂γ2

∂x2

lz
12 = ∂u1

∂x2
+ ∂u2

∂x1
+ ∂u3

∂x1
· ∂u3

∂x2
+ x3

(
∂γ2

∂x2
+ ∂γ1

∂x1

)
;

lz
13 = γ1 + ∂u3

∂x1
; lz

23 = γ2 + ∂u3

∂x2
.

Now, if one denotes by ε11, ε22, ε12 the tangential
deformations of the middle surface as follows

ε11 = ∂u1

∂x1
+ 1

2

(
∂u3

∂x1

)2

− K1u3,

ε22 = ∂u2

∂x2
+ 1

2

(
∂u3

∂x2

)2

− K2u3,

ε12 = ∂u1

∂x2
+ ∂u2

∂x1
+ ∂u3

∂x1
· ∂u3

∂x2
(3a)

by

H11 = ∂γ1

∂x1
, H22 = ∂γ2

∂x2
, H12 = ∂γ1

∂x2
+ ∂γ2

∂x1
(3b)

the bending deformations, and by

ε13 = γ1 + ∂u3

∂x1
, ε23 = γ2 + ∂u3

∂x2
(3c)
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Fig. 1 Schematic representation of a multi-layer shell

the shear deformations, then the expressions for defor-
mation of each layer can be presented in the form of
the linear series development with respect to x3, i.e.
one obtains

lz
11 = ε11 + x3H11, lz

22 = ε22 + x3H22,

lz
12 = ε12 + x3H12,

lz
13 = ε13, lz

23 = ε23, x3 ∈ (δi − �, δi+1 − �) .

(4)

The Duhamel–Neuman principle [45] employed to
each orthotropic (i-th) layer results in the following
formulas
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

li
11 = 1

Ei
1
σ i
11 − νi

12
Ei
1
σ i
22 − νi

13
Ei
1
σ i
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11�,

li
22 = −νi

21
Ei
2

σ i
11 + 1

Ei
2
σ i
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23
Ei
2
σ i
33 + αi

22�,

li
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31
Ei
3

σ i
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32
Ei
3
σ i
22 + 1

Ei
3
σ i
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33�,

li
12 = σ i

12
Gi
12

, li
13 = σ i

13
Gi
13
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23 = σ i

23
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23

,

(5)

and hence

σ i
22 = Ei

2

(
νi
12 + νi

13ν
i
32

)
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i
21

)
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3
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i
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)
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σ i
12 = Gi

12li
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23li
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12ν
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12ν
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(7)

The coefficients of the linear extension αi i in (5) are
coupled with the coefficients of the temperature exten-
sion βi i (i = 1, . . . , 3) in (6) by the following formulas
[46]
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(
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)
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33. (8)

The first three equations of (6), taking into account (8),
yield

σ i
11 = Ei

1
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23ν
i
32
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11�
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123



2098 V. A. Krysko et al.

σ i
33 = Ei

3

(
νi
13 + νi

12ν
i
23

) (
li
11 − αi

11�
)

�̄i

+ Ei
3

(
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23 + νi

21ν
i
13

) (
li
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)
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+ Ei
3

(
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i
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) (
li
33 − αi

33�
)

�̄i
, (9)

where: Ei
1, Ei

2, Ei
3 are the elasticity moduli; νi

12, νi
13,

νi
32, ν

i
31, ν

i
23—Poisson’s coefficients; Gi

12, Gi
13, Gi

23—
shear moduli of the i-th layer. For the chosen form of
orthotropy of the material layers, the following rela-
tions hold [5]:

Ei
1ν

i
21= Ei

2ν
i
12, Ei

2ν
i
32 = Ei

3ν
i
23, Ei

3ν
i
13 = Ei

1ν
i
31.

(10)

It means that Ei
1 = Ei

3ν
i
13

νi
31

= Ei
2ν

i
32ν

i
13

νi
23ν

i
31

= Ei
1ν

i
21ν

i
32ν

i
13

νi
12ν

i
23ν

i
31

, i.e.

νi
12ν

i
23ν

i
31 = νi

21ν
i
32ν

i
13. (11)

Now, one can take into account the static hypothesis
σ i
33 = 0, find a formula for deformations εi

33, and sub-
stitute it into the first two relations of (6) using (8), (11).
Then, in each shell layer, stress tensor components take
the following form:

σ i
11 = Ei

1

1 − νi
12ν

i
21

(
li
11+νi

12li
22−

(
αi
11 + νi

12α
i
22

)
�

)
,

σ i
22 = Ei

2
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12ν

i
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(
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21li

11+li
22−

(
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21α

i
11 + αi

22

)
�

)
,

σ i
12 = Gi

12li
12; σ i

13 = Gi
13li

13; σ i
23 = Gi

23li
23. (12)

Introducing the notation

ϕi
1 = Ei

1

1 − νi
12ν

1
21

, ϕi
2 = Ei

2

1 − νi
12ν

1
21

, (13)

and taking into account (4), one can recast the stress
formula to the following form suitable for further con-
siderations:

σ i
11 = ϕi

1ε11 + ϕi
1ν

i
12ε22 + x3

(
ϕi
1H11 + ϕi

1ν
i
12H22

)

−ϕi
1

(
αi
11 + νi

12α
1
22

)
�,

σ i
22 = ϕi

2ν
i
21ε11 + ϕi

2ε22 + x3
(
ϕi
2ν

i
21H11 + ϕi

2H22

)

−ϕi
2

(
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21α

i
11 + α1
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)
�,

σ i
12 = Gi

12ε12 + x3Gi
12H12, σ i

13 = Gi
13ε13,

σ i
23 = Gi

23ε23. (14)

The equilibrium equations and the boundary condi-
tions are obtained using the principle of virtual dis-
placements [47]. This implies δV = δA, where V
stands for the potential energy of the shell deforma-
tion, and A is the work done by the external forces.
One gets

δV =
∫∫∫

�

(
σ z
11δlz

11 + σ z
22δlz

22 + σ z
12δlz

12 + σ z
13δlz

13

+ σ z
23δlz

23

)
d�.

To obtain 2D equations of the shell equilibrium, the
series (4) and the rule for computing of the triple inte-
grals are used. For each layer, the interval with respect
to x3 ∈ (δ0 − �, δntm − �) is divided into intervals
with respect to x3, i.e.

δV =
∫∫

S

⎛
⎜⎝

n+m∑
i=0

δi+1−�∫
δi −�

(
σ i
11 (δε11 + x3δH11)

+ σ i
22 (δε22 + x3δH22) + σ i

12 (δε12 + zδH12)

+ σ i
13δε13 + σ i

23δε23

)
dx3

)
dS.

Then, the notation n +m −1 = k, δi −� = ai , δi+1 −
Δ = ai+1 can be used and, based on the analogy to the
one-layer shell, one denotes by T11, T22, T12 the internal
stresses; by Q1, Q2—transverse forces; byM11, M22—
bending moments, and byM12—torsional moment:

T11 =
k∑

i=0

ai+1∫
ai

σ i
11dx3, T22 =

k∑
i=0

ai+1∫
ai

σ i
22dx3,

T12 =
k∑

i=0

ai+1∫
ai

σ i
12dx3,

Q1 =
k∑

i=0

ai+1∫
ai

σ 1
13dx3, Q2 =

k∑
i=0

ai+1∫
ai

σ 1
23dx3,

M11 =
k∑

i=0

ai+1∫
ai

σ 1
11 · x3dx3,

M22 =
k∑

i=0

ai+1∫
ai

σ 1
22 · x3dx3,

M12 =
k∑

i=0

ai+1∫
ai

σ 1
12 · x3dx3, (15)
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and hence

δV =
∫∫

S

(T11δε11 + T22δε22 + T12δε12) dS

+
∫∫

S

(M11δH11 +M22δH22 + M12δH12) dS

+
∫∫

S

(Q1δε13 + Q2δε23) dS. (16)

The stress function stands for F (x1, x2) and (14) is
substituted into (15), where: ∂2F

∂x21
= T22; ∂2F

∂x22
= T11,

∂2F
∂x1∂x2

= −T12. One gets

T11 = C11ε11 + C12ε12 + K11H11 + K12H22

− (P11 + P12) ,

T22 = C21ε11 + C22ε22 + K21H11 + K22H22

− (P21 + P22) ,

T12 = C16ε12 + K66H12, Q1 = A44ε13,

Q2 = A55ε23,

M11 = K11ε11 + K12ε12 + D11H11 + D21H22

− (K P11 + K P12) ,

M22 = K21ε11 + K22ε12 + D21H11 + D22H22

− (K P21 + K P22) ,

M12 = K66ε12 + D66H12. (17)

The coefficients of the series (17) take the following
form:

C j j =
k∑

i=0

ai+1∫
ai

ϕi
jdx3, C jl =

k∑
i=0

ai+1∫
ai

ϕi
j · vi

jldx3,

C16 =
k∑

i=0

ai+1∫
ai

Gi
12dx3, K66 =

k∑
i=0

ai+1∫
ai

Gi
12 · x3dx3,

K j j =
k∑

i=0

ai+1∫
ai

ϕi
j · x3dx3,

K jl =
k∑

i=0

ai+1∫
ai

ϕi
j · νi

jl · x3dx3,

D j j =
k∑

i=0

ai+1∫
ai

ϕi
j · x23dx3,

D jl =
k∑

i=0

ai+1∫
ai

ϕi
j · νi

jl · x23dx3,

D66 =
k∑

i=0

ai+1∫
ai

Gi
12 · x23dx3,

Pj j =
k∑

i=0

ai+1∫
ai

ϕi
j · αi

j j · �dx3,

Pjl =
k∑

i=0

ai+1∫
ai

ϕi
j · νi

jl · αi
ll · �dx3,

K Pj j =
k∑

i=0

ai+1∫
ai

ϕi
j · ·αi

j j · � · x3dx3,

K Pjl =
k∑

i=0

ai+1∫
ai

ϕi
j · ·νi

jl · αi
ll · � · x3 · dx3,

A44 =
k∑

i=0

ai+1∫
ai

Gi
13dx3,

A55 =
k∑

i=0

ai+1∫
ai

Gi
23dx3, j = 1, 2, l = 1, 2 (18)

and, owing to (10), ϕi
1 · V i

12 = ϕi
2 · V i

21. It means that
C12 = C21, K12 = K21, D12 = D21. Furthermore,
formulas (18) imply that if the packet of layers is sym-
metrical, then the coefficients K j j , K jl , K Pj j , K Pjl

are equal to zero. Then, relations (17), solvable with
respect to deformations, are used:

ε11 = C22

�
T11 − C12

�
T22 + K21C12 − K11C22

�
H11

+ K22C12 − K12C22

�
H22 + C22

�
(P11 + P12)

+ C12

�
(P21 + P22)

= a11T11 − a12T22 + b12
∂γ1

∂x1
+ b22

∂γ2

∂x2
+ D P11,

ε22 = −C21

�
T11 + C11

�
T22 + K11C21 − K21C11

�
H11

+ K12C21 − K22C11

�
H22 + C11

�
(P21 + P22)

− C21

�
(P11 + P12)

= − a21T11+a22T22+b11
∂γ1

∂x1
+b21

∂γ2

∂x2
+ D P22,

ε12 = 1

C66
(T12 − K66H12)
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= a16T12 − b31

(
∂γ1

∂x2
+ ∂γ2

∂x1

)
,

� = C11C22 − C12C21. (19)

The obtained values of εi j in (19) are substituted into
(17) to get

M11 = K11C22−K12C21

�
T11+ K12C11 − K11C12

�
T22

+
(

K11
K21C12 − K11C22

�

+ K12
K11C21 − K21C11

�
+ D11

)
H11

+
(

K11
K22C12 − K12C22

�

+ K12
K12C21 − K22C11

�
+ D12

)
H22

+ K11 · D P11 + K12 · D P22

− (K P11 + K P12) = B11T11 + B12T22

+ A1111
∂γ1

∂x1
+ A1122

∂γ2

∂x2
+ M P11,

M22 = K21C22−K22C21

�
T11+ K22C11−K21C12

�
T22

+
(

K21
K21C12 − K11C22

�

+ K22
K11C21 − K21C11

�
+ D21

)
H11

+
(

K21
K22C12 − K12C22

�

+ K22
K12C21 − K22C11

�
+ D22

)
H22

+ K21 · D P11 + K22 · D P22

− (K P21 + K P22) = B21T11 + B22T22

+ A2211
∂γ1

∂x1
+ A2222

∂γ2

∂x2
+ M P22,

M12 = K66

C16
T12 +

(
D66 − K 2

66

C16

)

H12 = B31T12 + A1212H12. (20)

To derive equations in the mixed form, the first term of
(16) can be recast to its following equivalent form:
∫∫
�

(T11δε11 + T22δε22 + T12δε12) dS

= δ

∫∫
�

(T11ε11 + T22ε22+ T12ε12) dS

−
∫∫
�

(ε11δT11 + ε22δT22 + ε12δT12) dS.

εi j from (3a) is substituted into to thefirst integral on the
right-hand side of (16), whereas the remaining integrals
take into account expressions from (19). Furthermore,
Mi j is taken from (20) and Hi j and εi3—from (3c).

As a result, the variational principle takes the fol-
lowing form

∫∫
�

(
M11

∂δγ1

∂x1
+M22

∂δγ2

∂x2
+M12

(
∂δγ1

∂x2
+ ∂δγ2

∂x1

)

+ Q1

(
δγ1 + ∂δu3

∂x1

)
+ Q2

(
δγ2 + ∂δu3

∂x2

))
dS

−
∫∫
(S)

(
ε11

∂2δF

∂x22
+ ε22

∂2δF

∂x21
+ ε12

(
− ∂2δF

∂x1∂x2

)

− δ

∫∫
(S)

(
K1

∂2δF

∂x22
+ K2

∂2δF

∂x21

)
u3dS

+ 1

2
δ

∫∫
(S)

(
∂2F

∂x22

(
∂u3

∂x1

)2

− 2
∂2F

∂x1∂x2

∂u3

∂x1

∂u3

∂x2
+ ∂2F

∂x21

(
∂u3

∂x2

)2
)
dS

+ δ

∫∫
(S)

(
∂2F

∂x22

∂u1

∂x1
+ ∂2F

∂x21

∂u2

∂x2

− ∂2F

∂x1∂x2

∂u1

∂x2
− ∂2F

∂x1∂x2

∂u2

∂x1

)
d S

=
∫∫
(S)

qδu3dS. (21)

Carrying out integration by parts in (21), the fol-
lowing variational equation, which yields a system
of differential equations and boundary conditions, is
obtained:

−
∫∫
(S)

(
∂ Q1

∂x1
+ ∂ Q2

∂x2
+ ∇2

k F + L (u3, F)

)
δu3dS

−
∫∫
(S)

(
∂

∂x1
M11 + ∂

∂x2
M12 − Q1

)
δγ1dS

−
∫∫
(S)

(
∂

∂x2
M22 + ∂

∂x1
M12 − Q2

)
δγ2dS
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−
∫∫
(S)

(
∂ε11

∂x22
+ ∂2ε22

∂x21
− ∂2ε12

∂x1∂x2

+∇2
k u3 + 1

2
L (u3, u3)

)
δFdS

+
a∫

0

M22δγ2|by=0 dx1 +
a∫

0

M12δγ1|by=0 dx1

+
a∫

0

Q2δu3|by=0 dx1

+
a∫

0

∂2F

∂x21
δu2

∣∣∣∣∣
b

y=0

dx1 −
a∫

0

∂2F

∂x1∂x2
δu1

∣∣∣∣
b

y=0
dx1

+
b∫

0

M11δγ1|ax=0 dx2

+
b∫

0

M12δγ2|ax=0 dx2 +
b∫

0

Q1δu3|ax=0 dx2

+
b∫

0

∂2F

∂x22
δu1

∣∣∣∣∣
a

x=0

dx2

−
b∫

0

∂2F

∂x1∂x2
δu2

∣∣∣∣
a

x=0
dx2 =

∫∫
(S)

qδu3dS. (22)

Above, the following well-known differential oper-
ators were introduced:

∇2
k (·) = K1

∂2 (·)
∂x22

+ K2
∂2 (·)
∂x21

,

L ((·) , (·)) = ∂2 (·)
∂x21

· ∂2 (·)
∂x22

+ ∂2 (·)
∂x22

· ∂2 (·)
∂x21

− 2
∂2 (·)

∂x1∂x2
· ∂2 (·)
∂x1∂x2

.

Formula (22) allows one to include relevant bound-
ary condition, such as

(a) u3 = 0, γ1 = 0, γ2 = 0, F = 0,
∂ F

∂n
= 0,

(b) u3 = 0, M11 = 0, γ2 = 0, F = 0,
∂ F

∂n
= 0. (23)

The system of equations governing the MM2 math-
ematical model of the flexible multi-layer shells was
constructed for the packet of layers with the help of the
Timoshenko-type hypotheses, and it looks as follows

L1 (u3, F, γ1, γ2) ≡ L (u3, F) − ∇2
k F

− ∂

∂x1

(
A44

(
γ1 + ∂u3

∂x1

))

− ∂

∂x2

(
A55

(
γ2 + ∂u3

∂x2

))
= q;

L2 (u3, F, γ1, γ2) ≡ ∂

∂x1

(
A1122

∂γ2

∂x2

)

− ∂

∂x1

(
A1111

∂γ1

∂x1

)

− ∂

∂x2

(
A1212

(
∂γ1

∂x2
+ ∂γ2

∂x1

))
+

+A44

(
γ1 + ∂u3

∂x1

)
− ∂

∂x1

(
B11

∂2F

∂x22

)

− ∂

∂x1

(
B12

∂2F

∂x21

)
+ ∂

∂x2

(
B31

∂2F

∂x1∂x2

)

= ∂

∂x1
(M P11)

L3 (u3, F, γ1, γ2) ≡ − ∂

∂x2

(
A2211

∂γ1

∂x1

)

− ∂

∂x2

(
A2222

∂γ2

∂x2

)

− ∂

∂x1

(
A1212

(
∂γ1

∂x2
+ ∂γ2

∂x1

))
+

− ∂

∂x2

(
B21

∂2F

∂x22

)
− ∂

∂x2

(
B22

∂2F

∂x21

)

+ ∂

∂x1

(
B31

∂2F

∂x1∂x2

)
= ∂

∂x2
(M P22)

L4 (u3, F, γ1, γ2) ≡ −1

2
L (u3, u3) − ∇2

k u3

− ∂2

∂x22

(
a1111

∂2F

∂x22
− a1122

∂2F

∂x21

)

− ∂2

∂x21

(
a2222

∂2F

∂x21
− a2211

∂2F

∂x22

)

− ∂2

∂x1∂x2

(
a16

∂2F

∂x1∂x2

)
−

− ∂2

∂x22

(
b12

∂γ1

∂x1
+ b22

∂γ2

∂x2

)

− ∂2

∂x21

(
b11

∂γ1

∂x1
+ b21

∂γ2

∂x2

)
−

− ∂2

∂x1∂x2

(
b31

(
∂γ1

∂x2
+ ∂γ2

∂x1

))
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= ∂2

∂x22
(D P11) + ∂2

∂x21
(D P22) . (24)

In the case of a symmetric packet, the coefficients
Bi j , bi j , B31, b31 are equal to zero.

3 Modification of the Timoshenko MM2 and the
ε-regularisation MM3

TheTimoshenkomathematicalmodelMM1consists of
differential equations of the 10th order and 5 boundary
conditions. In othermathematical models (for instance,
the Kirchhoff–Love model of the first approximation,
the Pelekh–Sheremetev–Reddy–Levinsonmodel of the
third approximation), a biharmonic operator is present
in the equation considering deflection. The operator
improves stability and convergence of the numerical
algorithm in geometrically nonlinear problems as com-
pared to the mathematical Timoshenko model of the
second-order approximation. However, construction of
the computational schemes for these models does not
belong to easy tasks and is more difficult than in the
case of MM1. This observation is the motivation to
employ the ε-regularisation [48] to establish one more
variant of the improvedmathematicalmodel, called fur-
ther MM3, which can be treated as a bridge between
the Kirchhoff-Love (MM1) and Timoshenko (MM2)
models.

In one of its variants, MM3 is a system of differ-
ential equations, in which the first equation includes

the term ε�2u3 = ε

(
∂4u3
∂x41

+ 2 ∂2u3
∂x22

∂2u3
∂x21

+ ∂4u3
∂x42

)
. The

term �u3 − 1−u2
ρ

· ∂u3
∂n

∣∣∣
∂�

= 0 is added, where: �2—

biharmonic operator, �—Laplace operator, ρ—radius
of curvature of the contour ∂�, ν =const > 0 [49].

In addition to the problem (23), (24), one can define
the problem of the form

L1 (u3, F, γ1, γ2) + ε�2u3 = q,

L2 (u3, F, γ1, γ2) = q1,

L3 (u3, F, γ1, γ2) = q2,

L4 (u3, F, γ1, γ2) = qF , (25)

with the boundary conditions

u3 = γ1 = γ2 = F = ∂ F

∂n

∣∣∣∣
∂�

= 0,

�u3 − 1 − u2

ρ

∂u3

∂n

∣∣∣∣
∂�

= 0. (26)

At first, the “helping problem” was considered, where
the biharmonic operator was replaced with an arbi-
trary positive definite operator T with the natural-type
boundary conditions, the energetic space of which is

embedded into W 2
2 (�) ∩

o

W 1
2 (�). The fact that the

operator T can be chosen arbitrarily allows for “con-
struction” of the properties of a total algebraic system
aimed at increasing the computational efficiency of the
employed algorithm.

Introduction of the “helping problem” yielded a
strong convergence of some series of the approximate
solutions W n

ε to the exact solution W 0, which is impor-
tant while constructing the practical realisation of the
computational algorithm. The similar approach can be
employed to the searched functions γ1, γ2, F if one sub-
stitutes the terms L2 (γ1), L3 (γ2), L4 (F) in the system
(23, 24) by the following ones: ε1T1γ1, ε2T2γ2, ε3T3F ,
respectively, where for arbitrary i = 1, 2, 3, εi > 0, Ti

serve as positive operators with natural boundary con-
ditions, the energetic space of which is compact and

embedded into W 2
2 (�) ∩

o

W 1
2 (�). Obviously, choos-

ing the operators T, Ti properly, one can achieve any
required convergence of the sequence of approxima-
tions of the solutions tending to the exact value without
adding any additional constraints on the input data of
the considered problems.

The numerical implementation of the MM can be
illustrated and discussed on the example of nonlinear
differential equations governing dynamical behaviour
of a flexible shallow multi-layer shell, each layer of
which is made from a non-homogeneous orthotropic
material within the Timoshenko kinematic model.
To get a reliable approximate solution, the Bubnov–
Galerkin method (BGM) and the finite difference
method (FDM) can be employed.

The input problem is formulated in the following
way. The aim is to find a solution to the system (27)
in the space � understood as a bounded part of the
Euclidean space E2(x1, x2) (a point in E2) with the
boundary ∂� satisfying the condition of the Sobolev
embedding theorem [11]:

L1 (u3) = −L (u3, F) − ∇2
K F

− ∂

∂x1

(
A44

(
γ1 + ∂u3

∂x1

))

− ∂

∂x1

(
A44

(
γ1 + ∂u3

∂x1

))
= q
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L2 (γ1) = − ∂

∂x1

(
A1122

∂γ2

∂x2

)

− ∂

∂x1

(
A1111

∂γ1

∂x1

)
− ∂

∂x2

(
A1212

(
∂γ1

∂x2
+ ∂γ2

∂x1

))

+A44

(
γ1 + ∂u3

∂x1

)
= 0,

L3 (γ2) = − ∂

∂x2

(
A2211

∂γ1

∂x1

)
− ∂

∂x2

(
A2222

∂γ2

∂x2

)

− ∂

∂x1

(
A1212

(
∂γ1

∂x2
+ ∂γ2

∂x 1

))

+A55

(
γ2 + ∂u3

∂x2

)
= 0,

L4 (F) = −1

2
L (u3, u3) − ∇2

K u3

− ∂2

∂x22

(
a1111

∂2F

∂x22
− a1122

∂2F

∂x21

)

− ∂2

∂x21

(
a2222

∂2F

∂x21
− a2211

∂2F

∂x22

)

− ∂2

∂x1∂x2

(
a16

∂2F

∂x1∂x2

)
= 0, (27)

and satisfying the following boundary conditions

u3 = γ1 = γ2 = F = ∂ F

∂n

∣∣∣∣
∂�

= 0, (28)

where: A44 (x1, x2), A55 (x1, x2), A1122 (x1, x2),
A2211 (x1, x2), A1111 (x1, x2), A2222 (x1, x2), A1212

(x1, x2), a1111 (x1, x2), a1122 (x1, x2), a2211 (x1, x2),
a2222 (x1, x2), a16 (x1, x2) are known functions of stiff-
ness [5], satisfying the following conditions

0 < α1≤ A44(55) ≤β1; 0 < α1 ≤ Aii j j (Aiiii ) ≤ β1;
0 < α2 ≤ aii j j (aiiii ) ≤ β2; 0 < α2 ≤ a16 ≤ β2;
0 < ᾱ1 ≤ A1212 ≤ β1; α1C1 < Aiiii − Aii j j < β1;
α2 < 2

(
aiiii − aii j j

)
< β2;

0 < C1 < 1; i = 1, 2; j = 2, 1;
0 < C1 − ᾱ1

α1
< C2 < 1. (29)

A vector u = (u3, γ1, γ2, F) ∈ H1 is called the
generalised solution to the mentioned problem, and the
following integral relations are satisfied:

(L1 (u3, γ1, γ2, F) , v1) = (g, v1) ;
(L2 (u3, γ1, γ2, F) , v2) = 0;
(L3 (u3, γ1, γ2, F) , v3) = 0;
(L4 (u3, γ1, γ2, F) , v2) = 0;

∀v = (v1, v2, v3, v4) ∈ H1. (30)

Besides the considered problem (25), (26), the fol-
lowing “helping problem” is introduced:⎧⎪⎪⎨
⎪⎪⎩

L1 (u3, γ1, γ2, F) + ε�2u3 = g,

L2 (u3, γ1, γ2, F) = 0,
L3 (u3, γ1, γ2, F) = 0,
L4 (u3, γ1, γ2, F) = 0,

(31)

including the boundary conditions

u3 = γ1 = γ2 = F = ∂ F

∂n

∣∣∣∣
∂�

= 0,

�u3 − 1 − u2

ρ

∂u3

∂n

∣∣∣∣
∂�

= 0, (32)

where: �2—biharmonic operator, �—Laplace opera-
tor, ρ—radius of the contour ∂� curvature, ν=const >
0 [43].

By the general solution, one should understand a
vector uε = (

u3ε, γxε, γyε, Fε

) ∈ H2 satisfying the
following integral identities:

(R (uε) , v) ≡ (L1 (u3ε) , v1) + (L2 (γxε) , v2)

+ (
L3

(
γyε

)
, v3

)

+ (L3 (Fε) , v4) + ε

∫∫
�

(
�u3ε�v1 + 2 (1 − u2)

×
(

∂2u3ε

∂x1∂x2

∂2v1

∂x1∂x2
− 1

2

∂2u3ε

∂x21

∂2v1

∂x21
− 1

2

∂2u3ε

∂x22

∂2v1

∂x22

))
d�;

∀v = (v1, v2, v3, v4) ∈ H1,

(B (uε) , u2) =
∫∫
�

(
− ∂2u3ε

∂x22

∂2Fε

∂x21
+ 2

∂u3ε

∂x1∂x2

∂2Fε

∂x1∂x2

− ∂2u3ε

∂x21
× ∂2Fε

∂x22

)
v1d�

+ 2
∫∫
�

(
∂2u3ε

∂x21

∂2u3ε

∂x22
−

(
∂2u3ε

∂x1∂x2

)2
)

v4d�, (33)

(A (uε) , v) ≡ (R (uε) , v) − (B (uε) , v) − (g, v1) . (34)

Following [44], it is not difficult to show that the
functional (33) induces a nonlinear weakly-continuous
operator B: H2 → H2, and the functional (34) defines
the linear monotonous half-continuous operator A:
H2 → H2.

Theorem 1 If g (x1, x2) , A44 (A55) (x1, x2) , Aii j j

(x1, x2) , Aiiii (x1, x2) , aii j j (x1, x2) , aiiii (x1, x2) ,

A1212 (x1, x2) ,a16 (x1, x2) , K1 (x1, x2) , K2 (x1, x2) ∈
L2 (�) and

(1) 0 < α3 ≤ K1 ≤ β3; 0 < α4 ≤ K2 ≤ β4;
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2104 V. A. Krysko et al.

(2) α1 − β2
3ε1 > 0;α1 − β4ε2 > 0; ᾱ − ε2β

2
4 H > 0;

ᾱ − ε1β
2
3 H > 0; ᾱ = min {α1C2, ᾱ1} ;

α2 = 1

2

H

min {ε1, ε2} > 0, (35)

then for an arbitrary ε > 0 :
(1) there is at least one vector u0

ε =
(

u0
3ε, γ

0
xε, γ

0
yε, F0

ε

)
satisfying the identity (33);

(2) an approximate solution to the problems (31), (32)
can be found using the BGM in the following form

un
3ε =

n∑
i=1

aiχi (x1, x2); γ n
xε =

n∑
j=1

b jχ1i (x1, x2);

γ n
yε =

n∑
k=1

Ckχ1k (x1, x2); Fn
ε =

n∑
l=1

dlχkl (x1, x2),

(36)

where {χi } , {χ2i } , {χ1i } are basis systems in W 2
2 (�)∩

o

W 1
2 (�) ,

o

W 2
2 (�) ,

o

W 1
2 (�), respectively.

Moreover:

un
3ε → u0

3ε strong in
o

W 1
2 (�) and weak in

W 2
2 (�) ∩

o

W 1
2 (�) ,

γ n
xε → γ 0

xε weak in
o

W 1
2 (�) ,

γ n
yε → γ 0

yε weak in
o

W 1
2 (�) ,

Fn
ε → F0

ε weak in
o

W 2
2 (�) .

The theorem conditions imply that the operator A
exhibits the property of coercivity. Then, owing to the
Bauer’s theorem [48], the system can be solved to define
the coefficients of the series (36).

The coercivity of the operator A and orthogonality
of the operator B allow one to write the following a
priori estimate for a set of the approximate solutions
(36):∣∣√εun

3ε

∣∣ o

W 2
2 (�)

≤ C0; ∣∣γ n
xε

∣∣ o

W 1
2 (�)

≤ C0;
∣∣∣γ n

yε

∣∣∣ o

W 1
2 (�)

≤ C0; ∣∣Fn
ε

∣∣ o

W 2
2 (�)

≤ C0; C0 > 0.

(37)

The above inequalities and continuity of the func-
tional (34) as well as weak discontinuity of the func-
tional (33) (see [50]) imply Theorem 1. One has:

u3ε → u0
3 strong in

o

W 1
2 (�) and weak in

W 2
2 (�) ∩

o

W 1
2 (�) ,

γxε → γ 0
x weak in

o

W 1
2 (�) ,

γyε → γ 0
y weak in

o

W 1
2 (�) ,

Fε → F0 weak in
o

W 2
2 (�) .

Indeed, the following estimations hold

∣∣√εu3ε
∣∣2
W 2

2 (�)
≤ C0, |γxε|2o

W 1
2 (�)

≤ C0,

∣∣γyε

∣∣ o

W 1
2 (�)

≤ C0, |Fε|2o

W 2
2 (�)

≤ C0. (38)

The inequalities (38) are yielded by (37) through
the limiting transition regarding n, which allows one to
choose a certain subsequence {uε}=

{
u3ε, γxε, γyε, Fε

}
.

The subsequence is weakly convergent in H2 and,
together with the Sobolev embedding theorem, guar-
antees the possibility of a limit transition with respect
to ε → 0 in the integral identity (37) and yields the
integral identity (33) after closing the set {χ1} ∈ H2

within the norm of the space H1.
The space � can be divided into non-intersecting

parts �1, . . . , �p, such that � = ∪P
i=1 �i . By h the

maximumdiameter of the partitioned spaces is denoted.

The spaces of the finite measure
o

W 2
2h (�),

o

W 1
2h (�),

2
W2h (�) of the spaces

o

W 2
2 (�),

o

W 1
2 (�), W 2

2 (�),
respectively, are constructed in the following way. The
associated axes should be subspaces of the type of
the finite elements, i.e. their basic functions should
possess “small” carriers composed of a few partial

spaces. The notation H1h =
o

W 1
2h ×

o

W 1
2h ×

o

W 1
2h ×

o

W 2
2h ;

H2h = W 2
2h ∩

o

W 1
2h ×

o

W 1
2h ×

o

W 1
2h ×

o

W 2
2h is employed.

It is assumed that the sequence of the spaces H1h , H2h ,
obtained for different h, is full in H1 and H2, i.e. an
arbitrary element from H1 and H2 can be (for suffi-
ciently small h) approximated with arbitrary accuracy
in the norm of the space H1, H2 by elements from
H1h , H2h . The variational-difference problem (31),
(32) can be formulated as follows. First, the vector

uh
ε =

(
uh
3ε, γ

h
xε, γ

h
yε, Fh

ε

)
∈ H2h satisfying the fol-

lowing integral identity:
(

R
(

uh
ε

)
, vh

)
≡

(
L1

(
uh
3ε

)
, vh

1

)
+

(
L2

(
γ h

xε

)
, vh

2

)

+
(

L3

(
γ h

yε

)
, vh

3

)
+

(
L4

(
Fh

ε

)
, vh

4

)
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+ ε

∫∫
�

(
�uh

3ε · �vh
1 + 2 (1 − ν)

(
∂2uh

3ε

∂x1∂x2

∂2vh
1

∂x1∂x2

− 1

2

∂2uh
3ε

∂x21

∂2vh
1

∂x22
− 1

2

∂2uh
3ε

∂x22

∂2vh
1

∂x21

))
d�,

∀vh =
(
vh
1 , vh

2 , vh
3 , vh

4

)
∈ H1h (39)

is found.
The following two functional are considered:

(
B

(
uh

ε

)
, vh

)
=

∫∫
�

(
−∂2uh

3ε

∂x22

∂2Fh
ε

∂x21

+ 2
∂2uh

3ε

∂x1∂x2

∂2Fh
ε

∂x1∂x2
− ∂2uh

3ε

∂x21

∂2Fh
ε

∂x22

)
vh
1 d�

+ 2
∫∫
�

⎛
⎝∂2uh

3ε

∂x21

∂2W h
ε

∂x22
−

(
∂2uh

3ε

∂x1∂x2

)2
⎞
⎠ vh

4 d�,

(40)(
A

(
uh

ε

)
, vh

)
=

(
R

(
uh

ε

)
, vh

)

−
(

B
(

uh
ε

)
, vh

)
−

(
g, vh

1

)
. (41)

The difference scheme is constructed by imposing a
mesh on the general solution (33) in a way similar to
the already discussed. To keep the properties of orthog-
onality of the operator B

(
uh

ε

)
, the nonlinear operators

L (u3, F) and L (u3, u3) are approximated as follows

L (·, ·) = (·)ȳ y (·)W x̄x + (·)x̄ x (·)ȳ y

−1

2

(
(·)xy (·)xy +(·)x̄ y (·)x̄ y +(·)x ȳ (·)x ȳ +Fx̄ ȳu3x̄ ȳ

) ;
L (·, ·) = (·)ȳ y (·)x̄ x

−1

4

(
(u3)

2
xy + (·)2x̄ y + (u3)

2
x ȳ + (·)2x̄ ȳ

)
.

Stability of the obtained system of equations is
implied by the coercivity of the operator A

(
uh

ε

)
and

orthogonality of the operator B
(
uh

ε

)
, i.e. the follow-

ing estimations hold under applicability conditions of
Theorem 1:∣∣∣√εuh

3ε

∣∣∣
W 2

2 (�)
≤ C0;

∣∣∣γ h
xε

∣∣∣
W 1

2 (�)
≤ C0;

∣∣∣γ h
yε

∣∣∣ o

W 1
2 (�)

≤ C0;
∣∣∣Fh

ε

∣∣∣
W 2

2 (�)
≤ C0. (42)

Owing to (42), the set of points
{
uh

ε

}
is weakly com-

pact in H2, i.e. its arbitrary subset allows for extraction
of a subset weakly convergent in H2 for h → 0.

Theorem 2 Any of the mentioned limits stands for a
general solution to the problems (31), (32). In order to
prove this, one can transit to a limit for h → 0 in the
identity (39).

It is clear that conditions of the Theorem 1 can be
always satisfied when the plate Kx = Ky = 0 is
considered. Furthermore, the analogous results hold
also for other boundary conditions, for instance, when
the type of the boundary conditions changes along a
contour [51] (for instance, this is guaranteed for an
appropriate transition of boundary conditions for the
Timoshenko-type model).

Remark Modifications of the Timoshenko mathemat-
ical model of the second approximation (MM2) are
possible. The MM2 is created by means of employ-
ment of the kinematic hypothesis regarding tangen-
tial displacements, which yields f (x3) ≡ 1 as a
result of using the shell theory. However, one can
impose an additional static hypothesis onto the tan-
gential stresses σ13, σ23 and take into account their
variations along the thickness of each packet of the
layers in the form of a squared parabola, i.e. when
f (x3) = 1

(2h0−�)�
(x3 + �) (2h0 − � − x3). Such a

mathematical model will be further called MM4.

4 Numerical investigation of stability of a
multi-layer orthotropic shallow shell in the
frame of various improved theories

The static stability problem is investigated similarly as
described in [52], where the problem of stability was
considered in terms of “load-deflection” coordinates
measured at the shell centre q [u3 (0.5; 0.5)].

The so far introduced mathematical models have
been solved using the variational-difference method.
The advantages of this over other possible approaches
are briefly addressed below.

1. Minimal preliminarywork (for instance, in contrast
to FEM) is required to preparemodels for computer
simulations.

2. Universality in terms of using various boundary
conditions.

3. Possibility of development of a unique/one pro-
gram devoted to investigate stability of multi-layer
shells taking into account different MM.

4. Coincidence of approximations of derivatives of
an arbitrary order in the given points of the space
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boundaries with the approximation in the internal
points under imposing a mesh on the integral form
of the equations of the shell equilibrium.

The following notation for the Sobolev spaces [53]
is employed:

W m
2 (�) = {

u/Dαu ∈ L2 (�),∀α |α| ≤ m
}
,

o
W 1

2 (�) =
{

u/u ∈ W 1
2 (�), u|∂� = 0

}
,

o
W 2

2 (�) =
{

u/u ∈ W 2
2 (�), u|∂� = ∂u

∂n
= 0

}
,

H1 = o
W 1

2 × o
W 1

2 × o
W 1

2 × o
W 2

2,

H2 = W 1
2 ∩ o

W 1
2 × o

W 1
2 × o

W 1
2 × o

W 2
2,

H3 = o
W 2

2 × o
W 1

2 × o
W 1

2 × o
W 2

2

(·, ·)M—scalar product, |·|M—norm in theHibert space
M . The norms in H1, H2, H3 are introduced in the
following way:

|·|2H2
= |·|2

W 2
2 (�)

+ |·|2o

W 1
2 (�)

+ |·|2o

W 1
2 (�)

+ |·|2o

W 2
2 (�)

,

|·|2H1
= |·|2o

W 1
2 (�)

+ |·|2o

W 1
2 (�)

+ |·|2o

W 1
2 (�)

+ |·|2o

W 2
2 (�)

,

|·|2H3
= |·|2

W 2
2 (�)

+ |·|2o

W 1
2 (�)

+ |·|2o

W 1
2 (�)

+ |·|2o

W 2
2 (�)

.

1◦. The variational-difference scheme for the Timo-
shenko second-order approximation model (MM2).

The vector u = (u3, γ1, γ2, F) ∈ H1 serves as a
generalised solution to the problems (23), (24) where
the identity:

R (u, v) ≡ (L1 (u3) , ϕ) + (L2 (γ1) , ψ) + (L3 (γ2) , ζ )

+ (L4 (F) , ξ) = (q, v) (43)

is satisfied for an arbitrary vector v = (ϕ, ψ, ζ, ξ) ∈
H1.

The functional R (u, v) can be recast to its counter-
part form:

1

2

∫∫
(S)

(
∂2F

∂x22

∂u3

∂x1

∂ϕ

∂x1

−
(

∂2F

∂x1∂x2

∂u3

∂x1

∂ϕ

∂y2
+ ∂2F

∂x1∂x2

∂u3

∂x2

∂ϕ

∂x1

)

+∂2F

∂x21

∂u33

∂x2

∂ϕ

∂x2

)
dS

−
∫∫
(S)

(
K1

∂2F

∂x22
+ K2

∂2F

∂x21

)
ϕdS

+
∫∫
(S)

A44

(
γ1 + ∂u3

∂x1

)
∂ϕ

∂x1
dS

+
∫∫
(S)

A55

(
γ2 + ∂u3

∂x2

)
∂ϕ

∂x2
dS

+
∫∫
(S)

(
A1111

∂γ1

∂x2
+ A1122

∂γ2

∂x2

+ B11
∂2F

∂x22
+ B12

∂2F

∂x21

)
∂ψ

∂x1
dS

+
∫∫
(S)

(
A1212

(
∂γ1

∂x2
+ ∂γ2

∂x1

)
− B31

∂2F

∂x1∂x2

)
∂ψ

∂x2
dS

+
∫∫
(S)

A44

(
γ1 + ∂u3

∂x1

)
ψdS

+
∫∫
(S)

(
A2211

∂γ1

∂x1
+ A2222

∂γ2

∂x2

+ B22
∂2F

∂x21
+ B21

∂2F

∂x22

)
∂ζ

∂x2

+
∫∫
(S)

(
A1212

(
∂γ1

∂x2
+ ∂γ2

∂x1

)
− B31

∂2F

∂x1∂x2

)
∂ζ

∂x1

+
∫∫
(S)

A55

(
γ2 + ∂u3

∂x2

)
ζdS

+1

2

∫∫
(S)

((
∂u3

∂x1

)2
∂2ξ

∂x22
− 2

∂u3

∂x1

∂u3

∂x2

∂2ξ

∂x1∂x2

+
(

∂u3

∂x2

)2
∂2ξ

∂x21

)
dS

−
∫∫
(S)

(
K1u3

∂2ξ

∂x22
+ K2u3

∂2ξ

∂x21

)
dS

−
∫∫
(S)

(
a1111

∂2F

∂x22
− a1122

∂2F

∂x21
+ b12

∂γ1

∂x1

+ b22
∂γ2

∂x2

)
∂2ξ

∂x22
dS

−
∫∫
(S)

(
a2222

∂2F

∂x21
− a2211

∂2F

∂x22
+ b11

∂γ1

∂x1

+ b21
∂γ2

∂x2

)
∂2ξ

∂x21
dS

+
∫∫
(S)

(
a16

∂2F

∂x1∂x2
+ b31

∂γ1

∂x2
+ b31

∂γ2

∂x1

)
∂2ξ

∂x1∂x2
dS
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=
∫∫
(S)

qψdS +
∫∫
(S)

q1ψdS

+
∫∫
(S)

q2ζd S +
∫∫
(S)

qFξdS, (44)

where

q1 = ∂

∂x1
(M P11) ;

q2 = ∂

∂x2
(M P22) ;

qF = ∂2

∂x22
(D P11) + ∂2

∂x21
(D P22) .

The integral identity (43) imposed on the rectangular
mesh ω̄ is approximated by the following total identity
[54]:

h1h2

⎧⎨
⎩
1

4

⎛
⎝N2−1∑

j=0

(
N1−1∑
i=0

F2̄2u31ϕ1 +
N1∑

i=0

F2̄2u31̄ϕ1̄

)⎞
⎠

−1

8

⎛
⎝N1−1∑

i=0

N2−1∑
j=0

F12u31ϕ2+ +
N1−1∑
i=0

N2∑
j=0

F12̄u31ϕ2̄

+
N1∑

i=0

N2−1∑
j=0

F1̄2u31̄ϕ2+
N1∑

i=0

N2∑
j=0

F12u31̄ϕ2̄

⎞
⎠

−1

8

⎛
⎝N1−1∑

i=0

N2−1∑
j=0

F12u32ϕ1

+
N1−1∑
i=0

N2∑
j=0

F12̄u32̄ϕ1 +
N1∑

i=0

N2−1∑
j=0

F1̄2u32ϕ1̄

+
N1∑

i=0

N2∑
j=0

F12u32̄ϕ1̄

⎞
⎠

+1

4

⎛
⎝N1−1∑

i=0

N2−1∑
j=0

F1̄1u32ϕ2 +
N2∑
j=0

F1̄1u32̄ϕ2̄

⎞
⎠

⎞
⎠

−
N1−1∑
i=0

N2−1∑
j=0

(
K1F2̄2 + K2F1̄1

)
ϕi j

+A44

N2−1∑
j=0

1

2

(
N1−1∑
i=0

(
γ1i j + u31

)
ϕ1

+
N1∑

i=0

(
γ1i j + u3–̄1

)
ϕ1̄

)

+A55

N1−1∑
i=0

1

2

⎛
⎝N2−1∑

j=0

(
γ2i j + u32

)
ϕ2

+
N2∑
j=0

(
γ2i j + W2̄

)
ϕ2̄

⎞
⎠

+
N2−1∑
j=0

1

2

(
N1−1∑
i=0

(
A1111 (γ1)1 + A1122 (γ2)20

+B11F2̄2 + B12
(
F1̄

)
1

)
ψ1

+
N1∑

i=1

(
A1111 (γ1)1̄ + A1122 (γ2)20

+ B11F2̄2 + B12 (F1)1̄
)
ψ1̄

)

+
N1−1∑
i=0

1

2

⎛
⎝N2−1∑

j=1

(
A1212 (γ1)2 + A1212 (γ2)10

− B31
(
F10

)
2

)
ψ2

+
N2∑
j=0

(
A1212 (γ1)2̄ + A1212 (γ2)10 − B31

(
F10

)
2̄

)
ψ2̄

+A44

N1−1∑
i=0

N2−1∑
j=0

(
γ1i j + u310

)
ψi j

+
N1−1∑
i=0

1

2

⎛
⎝N2−1∑

j=0

A2211 (γ1)10 + A2222 (γ2)2

+ B21
(
F2̄

)
2 + B22F1̄1

)
ζy

+
N2∑
j=1

(
A2211 (γ1)10 + A2222 (γ2)2̄

+ B21 (F2)2̄ + B22F1̄1

)
ζ2̄

)

+
N2−1∑
j=0

1

2

(
N1−1∑
i=0

(
A1212 (γ1)20 + A1212 (γ2)1

−B31
(
F20

)
1

)
ζ1

+
N1∑

i=1

(
A1212 (γ1)20

+ A1212 (γ2)1̄ − B31
(
F20

)
1̄

)
ζ1̄

+A55

N1−1∑
i=0

N2−1∑
j=0

(
(γ2)i j + u320

)
ζi j

+1

2

⎧⎨
⎩
1

2

⎛
⎝N1−1∑

i=0

N2∑
j=1

u31 · u31 (ξ2)2̄ +
N1∑

i=1

N2∑
j=1

u31̄ · u31̄ (ξ2)2̄

⎞
⎠

+1

2

⎛
⎝ N1∑

i=1

N2−1∑
j=0

u32×u32 (ζ1)1̄ +
N1∑

i=1

N2∑
j=1

u32̄ · u32̄ (ξ1)1̄

⎞
⎠

−1

4

⎛
⎝N1−1∑

i=0

N2−1∑
j=0

u31u32 (ζ2)1 +
N1−1∑
i=0

N2∑
j=1

u31u32̄

(
ξ2̄

)
1

+
N1∑

i=1

N2−1∑
j=0

u21̄u32 (ξ2)1̄ +
N1∑

i=1

N2∑
j=1

u3–̄1u32̄

(
ξ2̄

)
1̄

⎞
⎠

−1

4

⎛
⎝N1−1∑

i=0

N2−1∑
j=0

u32u31 (ξ2)1
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+
N1−1∑
i=0

N2∑
j=1

u32̄u31
(
ξ2̄

)
1 +

N1∑
i=1

N2−1∑
j=0

u32u31̄ (ξ2)1̄

+
N1∑

i=1

N2∑
j=1

u32̄u31̄

(
ξ2̄

)
1̄

⎫⎬
⎭

−K1

N1−1∑
i=0

1

2

⎛
⎝N2−1∑

j=0

u3i j
(
ξ2̄

)
2 +

N2∑
j=1

u3i j (ξ2)2̄

⎞
⎠

−K2

N21−1∑
j=0

1

2

(
N1−1∑
i=0

u3i j
(
ξ1̄

)
1 +

N1∑
i=1

u34 j (ξ1)1̄

)

−
N1−1∑
i=0

1

2

⎛
⎝N2−1∑

j=0

(
a1111

(
F2̄

)
2

− a1122F1̄1 + b12 (γ1)10 + b22 (γ2)2
) (

ξ2̄
)
2

+
N2∑
j=0

(
a1111 (F2)2̄ − a1122F1̄1

+ b12 (γ1)10 + b22 (γ2)2̄ (ξ2)2̄
)

−
N2−1∑
j=0

1

2

(
N1−1∑
i=0

(
a2222

(
F1̄

)
1 + a2211F2̄2

+ b11 (γ1)1 + b21 (γ2)20
) (

ξ1̄
)
1

+
N2∑

i=1

(
a2222 (F1)1̄ − a2211F2̄2 + b11 (γ1)1̄

+ b21 (γ2)20
)
(ξ1)1̄

+1

4

⎛
⎝N1−1∑

i=0

N2−1∑
j=0

(
a16F12 + b31 (γ1)2 + b31 (γ2)1

)
(ξ1)2

+
N1−1∑
i=0

N2∑
j=1

(
a16F12̄ + b31 (γ1)2̄ + b31 (γ2)1

)
(ξ1)2̄

+
N1∑

i=1

N2−1∑
j=0

(
a16F1̄2

+ b31 (γ1)2 + b31 (γ2)1̄
) (

ξ1̄
)
2

+
N1∑

i=1

N2∑
j=1

(
a16F12 + b31 (γ1)2̄ + b31 (γ2)1̄

) (
ξ1̄

)
2

=
N1−1∑
i=0

N2−1∑
j=0

(
qi j ϕi j + (q1)i j ψi j

+ (q2)i j ζi j + (qF )i j ξi j
)

(45)

The difference analogue of the integration by parts [53,
54] is employed:

h
N−1∑
i=0

f (x1i )
vi+1 − vi

h

= −h
N−1∑
i=1

f (x1i ) − f (x1i−1)

h
v (x1i ) + f · v|x1=N

x1=0 ,

h
N−1∑
i=1

f (x1i )
vi − vi−1

h

= −h
N−1∑
i=0

f (x1i+1) − f (x1i )

h
v (x1i ) + f · v|x1=N

x1=0 ,

and the difference relations regarding differentiation of
the mesh functions are as follows

(u (x1i ) v (x1i ))1

= u1 (x1i ) v (x1i ) + u (x1i+1) v1̄ (x1i+1) ,

(u (x1i ) v (x1i ))1̄

= u1̄ (x1i ) v (x1i ) + u (x1i−1) v1 (x1i−1) .

Then, the shell equations and natural boundary con-
ditions formulated in the difference form can bewritten
as

h1h2

⎧⎨
⎩

N1−1∑
i=1

N2−1∑
j=1

(− (
u31̄1F2̄2

− 1

2

(
u312F12 + u31̄2F1̄2 + u312̄F12̄

+ u312F12

) − (
K1F2̄2 + K2u31̄1

))
ϕi j

+A44

N2−1∑
j=0

1

2

(
−

N1∑
i=1

(
(γ1)1̄ + u311̄

))
ϕi j

−
N1−1∑
i=0

(
(γ1)1 + u1̄1

)
ϕi j + 1

h1
(γ1 + u31) u3i j

∣∣N
0

+ 1

h1

(
γ1 + u31̄

)
u3i j

∣∣N
0

)

+
N2−1∑
j=0

1

2

(
−

N1∑
i=1

(
A1111 (γ1)11̄

+A1122 (γ2)201̄ + B11F2̄21̄ + B12F1̄11̄

)
ψi j

−
N1−1∑
i=0

(
A1111 (γ1)1̄1 + A1122 (γ2)201

+B11F2̄21 + B12F11̄1

)
ψi j + 1

h1

(
A1111 (γ1)1 + A1122 (γ2)20 + B11F2̄2

+B12F1̄1

)
ψi j

∣∣N
0 + 1

h1

(
A1111 (γ1)1̄

+A1122 (γ2)20 + B11F2̄2 + B12F1̄1

)
ψi j

∣∣N
0

)
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+
N1−1∑
i=0

1

2

⎛
⎝−

N2∑
j=1

(
A1212 (γ1)22̄

+A1212 (γ2)102̄ + B31F1011̄

)
ψi j

−
N2−1∑
j=0

(
A1212 (γ1)2̄2 + A1212 (γ2)102 − B31F102̄2

)

×ψi j + 1

h2

(
A1212 (γ1)2 + A1212 (γ2)10 − B31F102

)

+ ψi j
∣∣N
0 + 1

h2
(A1212(γ1)2̄ + A1212 (γ2)10

−B31F102̄) ψi j
∣∣N
0

)
+ A44

N1−1∑
i=0

N2−1∑
j=0

(
γ2i j + u310

)
ψi j

+
N1−1∑
i=0

1

2

⎛
⎝−

N1∑
j=1

(
A2211 (γ1)102̄ + A2222 (γ2)22̄

+B21F2̄22̄ + B22F1̄12̄

)
ζi j −

N2−1∑
j=0

(A2211 (γ1)102

+A2222 (γ2)2̄2 + B21F2̄22 + B22F1̄12)ζi j

+ 1

h2

(
A2211 (γ1)10 + A2222 (γ2)2 + B21F2̄2

+B22F1̄1

)∣∣∣N

0
ζi j + 1

h2

(
A2211 (γ1)10

+ A2222 (γ2)2̄ + B21F2̄2 + B22F1̄1

)∣∣N
0 ζi j

+
N2−1∑
j=0

1

2

(
−

N1∑
i=1

(
A1212 (γ1)201̄

+A1212 (γ2)11̄ − B31F2011̄

)

−
N1−1∑
i=0

(
A1212 (γ1)201 + A1212 (γ2)1̄1

− B31F201̄1

)
+ 1

h1

(
A1212 (γ1)20 + A1212 (γ2)1

+ B31F201

)
ζi j

∣∣N
0

1

h1

(
A1212 (γ1)20

+ A1212 (γ2)1̄ − B31F201̄

)
ζi j

∣∣N
0

)

+ A55

N1−1∑
i=0

N2−1∑
j=0

(
(γ2)i j + u320

)
ζi j −

N1−1∑
i=1

N2−1∑
j=1

×
(

u31̄1u32̄2 − 1

4

(
u2
312 + u2

31̄2
+ u2

312̄
+ u2

312

))
ξi j

+ (K1

×
N1−1∑
i=0

N2−1∑
j=1

u32̄2 + K2

N2−1∑
j=0

N1−1∑
j=1

u1̄1

⎞
⎠ ξi j

=
N1−1∑
i=0

1

2

⎛
⎝N2−1∑

j=0

(
a1111F2̄22̄2 − a1122F1̄12̄2

+ b12 (γ1)102̄2 + b22 (γ2)2̄220
)
ξi j

+
N2∑
j=1

(
a1111F2̄22̄2 − a1122F1̄222̄ + b12 (γ1)1022̄

+ b22 (γ2)2̄22̄
)
ξi j − 1

h2

(
a1111F2̄22̄ − a1122F1̄12̄

+ b12 (γ1)102̄ + b22 (γ2)22̄
)

ξi j
∣∣N
0

− 1

h2

(
a1111F2̄22̄ − a1122F1̄12 + b12 (γ2)102

+ b22 (γ2)2̄2
)

ξi j
∣∣N
0 + 1

h2

(
a1111F2̄2

− a1111F1̄1 + b12 (γ1)10 + b22 (γ2)2
) (

F2̄

)
i j

∣∣∣N

0

+ 1

h2

(
a1111F2̄2 − a1122F1̄1

+ b12 (γ1)10 + b22 (γ2)2̄
)

(F2)i j

∣∣N
0

)

−
N2−1∑
j=0

1

2

(
N1−1∑
i=0

(
a2222F1̄11̄1 − a2211F2̄21̄1

+ b11 (γ1)1̄11 + b21 (γ2)201̄1
)
ξi j

+
N1∑

i=1

(
a2222F1̄11̄1 − a2211F22̄11̄ + b11 (γ1)1̄11̄

+ b21 (γ2)2011̄
)
ξi j

− 1

h1

(
a2222F1̄11̄ − a2211F2̄21̄ + b11 (γ1)11̄

+ b21 (γ2)201̄

)
ξi j

∣∣N
0 − 1

h1

(
a2222F11̄1̄ − a2211F2̄21

+ b11 (γ1)1̄1 + b21 (γ2)201

)
ξi j

∣∣N
0 + 1

h1

(
a2222F1̄1

− a2211F2̄2 + b11 (γ1)1 + b21 (γ2)20
) (

ξ1̄
)

i j

∣∣∣N

0

+ 1

h1

(
a2222F1̄1 − a2211F2̄2

− b11 (γ1)1̄ + b21 (γ2)20
)

(F1)i j

∣∣N
0

)

+
N2−1∑
j=1

1

2

(
N1∑

i=1

(
a16F2̄211̄ + b31 (γ1)2̄21̄

+ b31 (γ2)2011̄
)

Fi j − 1

h1

(
a16F2̄21 + b31 (γ1)2̄2

+ b31 (γ2)201

)
Fi j

∣∣N
0

)
+

N2−1∑
j=1

1

2

(
N1−1∑
i=0

(
a16F2̄21̄1

+ b31 (γ1)2̄21 + b31 (γ2)1̄120

)
Fi j

− 1

h1

(
a16F2̄21̄+ b31 (γ1)2̄2 + b31 (γ2)201̄

)
Fi j

∣∣N
0

)

+
N1−1∑
i=0

(
−1

4

(
a16F12̄2 + b31 (γ1)2̄2
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+ b31 (γ2)12̄
)

(F1)i j

∣∣ j=N2
)

+
N1−1∑
i=0

(
−1

4

(
a16F12̄2 + b31 (γ12)2̄2 + b31 (γ2)12

)

× (F1)i j

∣∣
j=0

)
+

N1∑
i=1

(
−1

4

(
a16F122 + b31 (γ1)2̄2

+ b31 (γ2)12
) (

F1̄

)
i j

∣∣∣ j=N2
)

+
N1∑

i=1

(
−1

4

(
a16F122

+ b31 (γ1)2̄2 + b31 (γ2)1̄2
) (

F1̄

)
i j

∣∣∣
j=0

)

−
N1∑

i=1

1

2h2

(
a16F2011̄

+ b31 (γ1)201̄ + b31 (γ2)12̄
) (

Fi j
)∣∣N2
0

+ 1

2h1h2

(
a16F201 + b31 (γ1)20 + b31 (γ2)1

)

× Fi j |N1
0 |N2

0

−
N1−1∑
i=0

1

2h2

(
a16F201̄1 + b31 (γ1)201

+ b31 (γ2)1̄1
)

Fi j
∣∣N2
0 + 1

2h1h2
× (

a16F201̄

+ b31 (γ1)20 b31 (γ2)1̄
)
Fi j |N1

0 |N2
0

)
. (46)

Here, the termsof approximationof nonlinear operators
corresponding to the limiting values of the variable x1
and x2 were not shown owing to their complexity and
due to fact that the aim of this work is not to study
all boundary conditions. Furthermore, the construction
of MM with the boundary conditions (23a) and (23b)
does not need nonlinear operators to be defined on the
boundary.

The following important steps of constructing a
computational scheme should be emphasised. It should
be mentioned that the total identity (46) does not allow

to get mesh approximation of the derivatives ∂3γ1

∂x31
and

∂3γ2

∂x32
while approaching the boundary layer for the

boundary condition of clamping in the case of a non-
symmetric packet of layers.

In order to solve the problem, the additional condi-
tions regarding smoothness of the functions γ1 (x1, x2)
and γ2 (x1, x2) should be imposed. Namely, the values
of (γ1)−1, j and (γ2)i,−1 in the contour-out points are
yielded by difference approximation of two differential
equations of the equilibrium with respect to γ1 and γ2
after their additional differentiation.

Using the notations employed in programming of
MM2, the following non-dimensional formulas are
obtained

∂3γ1

∂x31
= 1

Gx3

(
−Gx5

∂3γ1

∂x1∂x22
− Gx4

∂3γy

∂x21∂x2

+ F1

(
∂γ1

∂x1
+ ∂2u3

∂x21

)
− Gx2

∂4F

∂x41
− Gx1

∂4F

∂x21∂x22

)
;

∂3γ1

∂x32
= 1

Gy3

(
−Gy5

∂3γ2

∂x21∂x2
− Gy4

∂3γ1

∂x1∂x22

+ F2

(
∂γ2

∂x2
+ ∂2u3

∂x22

)
− Gy1

∂4F

∂x42
− Gy2

∂4F

∂x21∂x22

)
,

(47)

where
F1 = A44 · λ22, F2 = A55 · λ21, Gx3 = A1111

1

x
,

Gx4 = A1122 + A1212, Gx5 = A1212, Gx2 = B12
1

x2
,

Gx1 = B11 − B31, Gy3 = A2222 · λ2,

Gy4 = A2211 + A1212, Gy5 = A1212,

Gy2 = B22, Gy1 = B21 − B31.

The difference form of (47) takes the form

(γ1)1̄110 = 1

Gx3
(−Gx5 (γ1)102̄2 − Gx4 (γ2)1̄120

+ F1
(
(γ1)10 + u31̄1

) − Gx2F1̄11̄1 − Gx1 · F1̄12̄2

)
,

(γ2)2̄220 = 1

Gy3
(−Gy5 (γ2)1̄120 − Gy4 (γ1)102̄2

+ F2
(
(γ2)20 +u32̄2

) − Gy1F2̄22̄2 − Gy2 · F1̄12̄2

)
,

(γ1)1̄110
∣∣
i=1, j≥1

= (γ1)3 j − 2 (γ1)2 j + 2 (γ1)0 j − (γ1)−1, j

2h1h2
,

(γ2)2̄220
∣∣
i≥1, j=1

= (γ2)i3 − 2 (γ2)i2 + 2 (γ2)i0 − (γ2)i,−1

2h1h2
. (48)

Formulas (48) are substituted into the fourth equi-
librium equation of MM2:

− 1

2
L (u3, u3) − ∇2

K u3 − W3
∂4F

∂x41
− W2

∂4F

∂x42

+ W1
∂4F

∂x21∂x22
− W6

∂3γ1

∂x31
− W5

∂3γ2

∂x32
− W4

∂3γ1

∂x1∂x22

− W7
∂3γ2

∂x21∂x2
= 0,
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where

W1 = a1122 + a2211, W2 = a1111 · λ2,

W3 = a2222
1

λ2
, W4 = b12 + b31, W5 = b22 · λ2,

W6 = b11
1

λ2
, W7 = b31 + b21 + a16.

The similar-like approach aimed at constructing the dif-
ference scheme guarantees approximation of the prob-
lem with an error of O

(
h2

)
in the internal space and

of O (h) on its boundary.
In the obtained nonlinear algebraic equations, the

denominator is removed by multiplying each equation
by hα1

1 · hα2
2 , where α1 + α2 = α stands for the largest

power of the step of the space partition appeared in
the nominators of all equations. Then, the values of the
searched functions are placed on the left-hand side of
equations regarding the central node, i.e. the system is
transformed to its counterpart form that to be solved
directly by the Jacoby method:

ui j

(
F1h2

2 + F2h2
1

)
= h2

1h2
2(L̃ (u3, F)

+ K1l2 (F) + K2l1 (F) + l̄1 (u3)

+ l̄2 (u3) + F1 · ϕ1 (γ1)

+ F2 · ϕ2 (γ2) + q̄i j + ψ̃1 (u3));
(γ1)i j

(
2Gx3

h2

h1
+ 2Gx5

h1

h2
+ F1h1h2

)

= h1h2
(
Gx3l̄1 (γ1) + Gx5l̄2 (γ1)+

+ Gx4l3 (γ2) + F1 · ϕ1 (u3)

+ Gx2l7 (F) + Gx1l10 (F) + ψ̃2 (γ1));
(γ2)i j

(
2Gy3

h1

h2
+ 2Gy5

h2

h1
+ F2h1h2

)

= h1h2
(
Gy3l̄2 (γ2) + Gy5l̄1 (γ2)+

+ Gy4l3 (γ2) + F2 · ϕ2 (u3)

+ Gy2l9 (F) + Gy1l8 (F) + ψ̃3 (γ2));

Fi j

(
W3

(
h2

h1

)2

+ W2

(
h1

h2

)2

+ W1

)

= h2
1h2

1

(
1

2
L̃ (u3, u3) + Kxl2 (u3) +

+ Kyl1 (u3) + W3l̄4 (F) + W2l̄5 (F)

+ W1l̄6 (F) + W5l3 (γ2) + W6l7 (γ1) +
+ W7l9 (γ2) + W4l10 (γ1) + ψ̃4 (F)

)
, (49)

where

l1 (·) = (·)1̄1 ; l2 (·) = (·)2̄2 ; l3 (·) = (·)1010 ;
l4 (·) = (·)1̄11̄1 ; l5 (·) = (·)2̄22̄2 ; l6 (·) = (·)1̄12̄2 ;
l7 (·) = (·)1̄110 ; l8 (·) = (·)2̄220 ; l9 (·) = (·)1̄120 ;
l10 (·) = (·)102̄2 ;ϕ1 (·) = (·)10 ;ϕ2 (·) = (·)20
and l̄i stands for the difference operator without val-
ues of the corresponding functions in the node (i, j);
ψ̃i (·)—difference analogue of the right-hand sides of
the equations (24), L̃ (·)—difference analogues of non-
linear operators.

The differential equations are given in non-
dimensional forms. The relation between dimensional
and non-dimensional (with bars) quantities is as fol-
lows:

x̄1 = x1/a, x2 = x2/b, x3 = x3/2h0,

u3 = u3/2h0, λ1 = 1/2h0,

λ2 = 1/2h0, λ = a/b,

K̄1 = K1 · a2/2h0, K̄2 = K2 · b2/2h0

γ̄1 = λ1 · γ1, γ̄2 = λ21 · γ2,

F̄ = F/
(
(2h0)

3 ϕ10

)
,

q̄ = q · a2 · b2/
(
(2h0)

4 ϕ10

)
,

ϕ10 = E0
1/

(
1 − ν012ν

0
21

)
, (50)

where E0
1 , ν

0
12, ν

0
21 stand for the quantities of a certain

fixed layer, and

ε̄11 = λ21ε11; ε̄22 = λ22ε22; ε̄12 = λ1λ2ε12;
ε̄13 = λ1ε13; ε̄23 = λ2ε23;
H̄11 = H11 · a2/2h0; H̄22 = H22 · b2/2h0;
H̄12 = H12 · ab/2h0;
σ̄11 = σ11 · λ1λ2/ϕ10; σ̄13 = σ13 · λ1/ϕ10;
σ̄23 = σ23 · λ2/ϕ10;
T̄11 = T11 · a2/

(
(2h0)

3 ϕ10

)
,

T̄22 = T22 · b2/
(
(2h0)

3 ϕ10

)
,

T̄12 = T12 · ab/
(
(2h0)

3 ϕ10

)
,

Q̄1 = Q1 · a/
(
(2h0)

2 ϕ10

)
,

Q̄2 = Q2 · b/
(
(2h0)

2 ϕ10

)
,

M̄11 = M11a2/
(
(2h0)

4 ϕ10

)
,

M̄22 = M22b2/
(
(2h0)

4 ϕ10

)
,
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M̄12 = M12ab/
(
(2h0)

4 ϕ10

)
,

M̄112 = M112a2/
(
(2h0)

4 ϕ10

)
,

M̄113 = M113a2/
(
(2h0)

4 ϕ10

)
,

M̄222 = M222b2/
(
(2h0)

4 ϕ10

)
,

M̄223 = M223b2/
(
(2h0)

4 ϕ10

)
,

M̄122 = M122ab/
(
(2h0)

4 ϕ10

)
,

M̄123 = M123ab/
(
(2h0)

4 ϕ10

)
.

Note that bars over non-dimensional quantities were
already omitted in equations (24). Let us consider thin
shallow shells of the thickness from the interval:

1

1000
<

2h0

R
<

1

50
, (51)

where R denotes the radius of the shell curvature, and
the Reissner’s criterion (< ρ = 600) is satisfied [8].

If one considers square shells, then λ = a/b = 1
and (51) allow one to employ parameters λ1 = λ2 for
fixed values of the non-dimensional curvatures. Indeed,
since 1000 · K̄1 < λ21 < 50 · K̄1, then for K̄1 = K̄2 =
9 : λ1 = λ2 ∈ (21,2; 94,8);

K̄1 = K̄2 = 15 : λ1 = λ2 ∈ (27.4; 122.5) ,

K̄1 = K̄2 = 18 : λ1 = λ2 ∈ (30.0; 134.2) ,

K̄1 = K̄2 = 24 : λ1 = λ2 ∈ (34.6; 154.9) ,

K̄1 = K̄2 = 36 : λ1 = λ2 ∈ (42.4; 189.7) . (52)

Condition (52) implies that 1
R ≤ 1

a , and hence

K̄1 ≤ λ1. (53)

However, if one takes fixed K̄1 = K̄2 = 9 : λ1 > 21.2
in (53), then the inequality (53) is also satisfied:λ1 > 9.
Consequently, satisfactionof conditions (52) governing
the interval of the geometric changes of the parameter
λ1 = λ2 guarantees satisfaction of the condition (51).
Recall that λ1, λ2 stand for the geometric parameter
characterising a ratio of the shell length and width to
the shell thickness. Obviously, for each fixed value of
the shell curvature, the change in λ1, λ2 fromminimum
to maximum implies the shell thickness decrease, and
hence there is no need to take angles of rotation and
twisting of the normal into account. In this case, defor-
mations of transverse shear follow: ε13 ≈ 0, ε23 ≈ 0,
i.e. γ1 ≈ − ∂u3

∂x1
, γ2 ≈ − ∂u3

∂x2
. It means that transverse

tangential stresses σ13 ≈ σ23 ≈ 0, and consequently,
also transversal forces Q1, Q2 ≈ 0, i.e. beginning with
the definedλ1 = λ2, one transits into the space of appli-
cation of the classical Kirchhoff-Love model.

Employing the variational-difference method and
introducing the parameters λ̄1 = Ā1313 · λ21 and λ̄2 =
Ā2323 · λ22, he matrix of the system of algebraic equa-
tions is defined, where also both shell geometry and
materials of layers are included by means of the ratio
Gi3/ϕ10 (i = 1, 2).

Now, if λ1, λ2 are increased to large values (within
the possible interval), then the matrix of algebraic
equations corresponding to MM1 becomes badly con-
ditioned and convergence of the iterational process
becomes too slow to employ MM1 for such kind of
problems. It is clear that for large values of λ1, λ2,one
can decrease λ̄1, λ̄2 by choosing properly the material
of layers i.e. every time MM1 is employed, there is a
need to follow the values of λ̄1, λ̄2. This drawback is
cancelled in the case of using MM2, which works well
in the case of both large and small values of λ̄1, λ̄2. This
observation exhibits an advantage and universality of
MM2 in comparison with the Timoshenko-type model
for f (x3) ≡ 1.

To avoid problems with finding a solution to the
system of nonlinear algebraic equations of large and
badly conditioned matrix (for large values of λ1, λ2),
the iteration was employed instead of the direct Gauss-
Seidel method, the main advantage of which is the self-
improvement property.

The materials of layers considered in the present
study are presented in Table 1 (in non-dimensional
form). To get their dimensional counterparts, the values
need to be multiplied by 10−6 (kG/cm2).

Reliability of the derived algorithms was verified
by comparing the results obtained for testing examples
with the exact solutions for the following mode prob-
lems:

(i) Boundary conditions (23a)—MM2: u3 = sin πx1
× sin πx2, γ1 = sin 2πx1 × sin πx2, γ2 =
sin πx1×sin 2πx2, F = sin2 πx1×sin2 πx2, q̄ =
π, MM3, MM4: W = sin2 πx1 × sin2 πx2, γ1 =
sin 2πx1×sin πx1, γ2 = sin πx1×sin 2πx2, F =
sin2 πx1 × sin2 πx2, q̄ = π;

(ii) Boundary conditions (23b)—MM2: W = sin πx1
× sin πx2, γ1 = cosπx1 × sin πx2, γ2 =
sin πx1 × cosπx2, F = sin2 πx1 × sin2 πx1, q̄ =
π, MM3, MM4: W = sin2 πx1 × sin2 πx2, γ1 =

123



On the mathematical models of the Timoshenko-type 2113

Table 1 Properties (Young’s moduli, Poisson’s coefficients, shear moduli) of the investigated materials

E1 E2 ν12 ν21 G12 G13 G23

Aluminium 7.1 7.1 0.3 0.3 2.73 2.73 2.73

Orthotropic 4.6 1.6 0.27 0.09 0.56 0.33 0.43

Perspex 7.65 2.65 0.25 0.25 1.12 1.12 1.12

Carbon fibre reinforced plastic 14.28 0.913 0.02 0.33 0.549 0.549 0.549

Graphite plastic 30.6 0.76 0.25 0.25 0.76 0.76 0.76

Boroplastic 1.58 1.58 0.3 0.3 0.64 0.64 0.64

Table 2 Results of testing the MM2 model: mesh resolution
N × N and accuracy between successive iterations ε

The Timoshenko model—MM2

N × N ε = 10−2 ε = 10−3

5 × 5 3.0806 3.0819

7 × 7 3.110 3.11

9 × 9 3.1120 3.1243

11 × 11 3.1250 3.1375

cosπx1 × sin πx2, γ2 = sin πx1 × cosπx2, F =
sin2 πx1 × sin2 πx2, q̄ = π.

In Table 2, the results of investigation of mesh con-
vergence are reported for various numbers of nodes N
(1/4 of the planform) and accuracy between iterations
ε for the three-layer shells of the same thickness with
curvatures K̄1 = K̄2 = 24, λ1 = λ2 = 55.56. The
exact value of the load is q̄ = 3.1416 for the boundary
condition (23a).

Convergence of the numerical algorithm aimed at
analysing the packet of layers of non-symmetric struc-
ture, where mesh approximations were used for differ-
ential equations with respect to γ1, γ2 in the approx-
imation of the out-of-contour nodes for the boundary
condition (23a), was verified on themodel problems for
shells of the same structure as in the case of the symmet-
ric packet. However, the coordinate surface was moved
from the packet centre to an arbitrary point x3 located
along the shell thickness (� �= h/2). Values of loads
for both symmetric and non-symmetric packets of lay-
ers coincide, which validates the use of the numerical
algorithm employed to the non-symmetric multi-layer
shell.

3. Reliability of the numerical algorithm for MM2
with f (x3) = 1 and for MM4with f (x3) = 1−( x3

h

)2
was checked by estimating deflection of the shell cen-

Table 3 Comparison of the results obtained using the exact
Brucker’s solution and the solutions yielded by Timoshenko
MM2 and MM4 models

Brucker’s
exact
solution
[53]

MM2 f (x3) = 1 MM4 f (x3) = 1 − ( x3
h

)2

1.54 1.71 1.56

tre u3(0; 0) = W00 and comparing it with the exact
Brucker’s solution [55] for the counterpart geometri-
cally linear variant of the PDEs.

The following three-layer plate was considered: the
middle layer h2 = 0, 6 · h1, where h1 stands for height
of the external layers (h1 = 0.0096, λ1 = λ2 = 40,
E1 = 10 · E2, ν12 = ν21 = 0.3), the boundary condi-
tion: u3 = M11 = γ2 = F = ∂ F

∂n

∣∣
x=0 = 0, and the

load q = q0 · sin πx1 · sin πx2.
If the load and shell deflection at theBrucker’s centre

are denoted by qo, W̄3, respectively, and the load and
deflection regarding the MM2 by q̄oK , W̄K , then the
following relations hold: W̄3 = W̄K ·E1/

(
104q0

)
, q0 =

q̄0K · E2/
((
1 − ν212

) · 12 · λ21 · λ22

)
.

Therefore, onefinally gets W̄3 =
(

W̄K ·E1

(
1 − ν212

)
·

12 ·λ21 ·λ22
)
/
(
104q̄0K · E2

)
. The obtained data used for

comparison/validation are reported in Table 3.
A comparison of the stability curves for MM2 and

MM4 (K1 = K2 = 15, λ1 = λ2 = 33.3) with N ×
N = 11 × 11, 13 × 13, 15 × 15 is shown in Fig. 2.

One can conclude that in spite of computations of
the “load-deflection” curve using different improved
models, the qualitative character of the numerically
obtained curves is similar. Based on extensive and
numerous numerical experiments, convergence of all
numerical algorithms investigating the improved MMs
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Fig. 2 Dependencies q(u3) for the Kirchhoff–Love (MM1) and
the Timoshenko (MM2) models obtained for different numbers
of mesh partitions (N ). -MM4-N13, -MM2-N13, -MM4-
11, -MM2-N11. (Color figure online)

was found. The number of partition points N of spatial
coordinates was changed with respect to the values of
the curvature parameters, the geometric parameters λ1,
λ2, the number of layers and their localisation regarding
the reference surface x3 = 0 in order to keep the same
accuracy while comparing the numerically estimated
values of critical loads.

The carried-out qualitative investigations aimed at
finding the critical loads in relation to the initial data
were carried out for the following numbers of mesh
nodes: N × N = 11 × 11, 13 × 13, 15 × 15. One can
conclude that real shells should be computed choosing
an optimal mesh for particular input data, keeping the
same required interval of the computational accuracy.

5 Comparison of stability curves of the multi-layer
symmetric shells in the “load-deflection”
coordinates

Since the shells composed of interlacing layers of
aluminium and an orthotropic material were studied,
this section presents the investigation of one-layer
shells made only of either aluminium or an orthotropic
material. Figures 3, 4 report the stability curves for
shells made of aluminium and the orthotropic mate-
rial, respectively, for fixed parameters K1 = K2 = 9,

Fig. 3 Dependency q(u3) for one-layer shell made from an
orthotropic material for K1 = K2 = 9, λ1 = λ2 = 21.7
for the Timoshenko model (MM2), ε-regularisation (MM3), and

the modified Timoshenko model (MM4) ( -MM2, -MM3, -
MM4). (Color figure online)

λ1 = λ2 = 21.7. For small loads, when the nonlinear
terms do not have a strong influence on the solution,
the curves are similar to each other. It holds, in par-
ticular, for the Timoshenko models with f (x3) = 1
(MM2) and with f (x3) = 1 − ( x3

h

)2 (MM4). For
the orthotropic material, the results yielded by the ε-
regularisation model (MM3) strongly differ from the
results obtained by MM2 and MM4 models in “the
linear part” of the q(u3) curves. However, for large
deflections, the difference between the results starts to
decrease. In the case of one-layer shells made of alu-
minium (Fig. 4), the largest differences between results
for MM2, MM4 and MM3 models are exhibited in the
nonlinear part of the q(u3) dependencies.

Furthermore, Figs. 5, 6 show the functions q(u3)

for the three-layer shell with layers of equal thick-
ness h = 0.046. Figure 5 presents the layers sequence
aluminium–orthotropic material–aluminium, whereas
the sequence orthotropic material–aluminium–
orthotropic material is presented in Fig. 6. The Tim-
oshenko model with a parabola (MM4) is very sensi-
tive to the order of layers. In the first case (Fig. 5), the
MM4 model yields the results close to the results of
the ε-regularisation model (MM3). In the second case
(Fig. 6), the obtained results are similar to those given
by the MM2 model. It should be emphasised that the
results obtained using the MM2 model qualitatively
differ from the results obtained by other models.
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Fig. 4 Dependency q(u3) for one-layer shells made from alu-
minium for K1 = K2 = 9, λ1 = λ2 = 21.7 for the Timoshenko
model (MM2), ε-regularisation (MM3), and the modified Timo-

shenkomodel (MM4) ( -MM2, -MM3, -MM4). (Color figure
online)

Fig. 5 Dependency q(u3) for the three-layer shells: the upper
and the lower layers made from aluminium, and the middle
layer made from the orthotropic material for the Timoshenko
model (MM2), ε-regularisation (MM3), and modified Timo-

shenko models (MM4) ( -MM2, -MM3, -MM4). (Color
figure online)

The comparison of the obtained numerical results
for thinner shells of the thickness h = 0.018 and for
different shellmodels is presented in Fig. 7 (the order of
layers: aluminium–orthotropic material–aluminium).
Comparing the results shown in Figs. 5 and 7, one
can conclude that the change of the layers thickness
(and thus the change of parameters λ1, λ2) yields diver-
gence of the results given by the Timoshenko model

Fig. 6 Dependency q(u3) for the three-layer shells: the upper
and the lower layers made from the orthotropic material, and
the middle layer made from aluminium for the Timoshenko
model (MM2), ε-regularisation (MM3), and modified Timo-

shenko models (MM4) ( -MM2, -MM3, -MM4). (Color
figure online)

Fig. 7 Dependency q(u3) for three-layer shells made from
aluminium–orthotropic material–aluminium for K1 = K2 = 9,
h = 0.018 for the Timoshenko model (MM2), ε-regularisation

(MM3), and the modified Timoshenko model (MM4) ( -

MM2, -MM3, -MM4). (Color figure online)

with f (x3) = 1 (MM2) and either the ε-regularisation
model (MM3) or the modified Timoshenko model with
f (x3) = 1 − ( x3

h

)2 (MM4). However, the results
yielded by the MM3 and MM4 models are similar to
each other.
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Fig. 8 Distribution of
stresses σ11 (a), σ11 (b) and
σ13 (c) along the thickness
for the Timoshenko model
(MM2), ε-regularisation
model (MM3), and the
modified Timoshenko

model (MM4) ( -MM2,
-MM3, -MM4). (Color

figure online)

Numerical investigation of stability of multi-layer
shells was also carried out based on simultaneous
observations of stress-strain states, i.e. the stresses σ11,
σ12, σ13 for the shell deflection in the neighbourhood
of the critical loads. Figure 8 present the results of
the following problems: three-layer shell composed
of aluminium–orthotropic material–aluminium for the
fixed curvatures K1 = K2 = 9 and the same layer
thickness h = 0.046. The results shown in Fig. 8a allow
one to conclude that normal stresses σ11 are similar to
each other. The stresses σ12 (Fig. 8b) exhibit visible
differences on the shell edge and the shell centre. The
stresses σ13 (Fig. 8c) are qualitatively different in the
case of the Timoshenkomodel with f (x3) = 1 (MM2)
and the two remaining ones, i.e. the ε-regularisation
model (MM3) and the modified Timoshenko model
with f (x3) = 1 − ( x3

h

)2 (MM4).
All the carried-out investigations validated the state-

ment that fundamental stresses of all tested models
are uniquely defined with an accuracy allowed by the
employed model for all physical-geometrical parame-
ters with and without temperature fields. However, the
shear stresses are non-uniquely defined for all inves-
tigated models. It means that the satisfaction of static

conditions of the layers should be supplemented by
using the discrete models while studying the stress-
strain states of multi-layer shells.

6 Concluding remarks

The carried-out investigations yielded the following
conclusions:

1. The mathematical models of geometrically non-
linear multi-layer rectangular shallow shells were
derived. The governing equations were obtained
in the mixed form, i.e. with respect to the stress
function and deflection function. All presented
models are based on the Timoshenko hypothesis.
In addition, a new mathematical model with ε-
regularisation was constructed, and the theorem on
existence of its general solutionwas formulated and
proved.

2. The conservative difference schemes were devel-
oped for the boundary value problems, based on
the fundamental variation equations of the shallow
shells. The method based on the difference approx-
imation of differential operators of the odd order
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yielded by the theory ofmulti-layer shellswith non-
symmetric packet of layers was developed.

3. Investigations devoted to feasibility of the con-
structed mathematical models were carried out.
Reliability of the obtained results was analysed
and validated by means of comparing the obtained
results with the analytical and/or numerical results
obtained by other authors.

4. The carried-out numerical experiments showed
convergence of numerical algorithms of all devel-
oped mathematical models. It was demonstrated
that the stability curves in the “load-deflection”
coordinates depend on the layers position, layers
thickness and the layers material.

5. The one-layer shells made from two different mate-
rials were investigated within all constructed mod-
els. It was detected that the mathematical models of
the Timoshenko type with f (x3) = 1 (MM2) and
f (x3) = 1 − ( x3

h

)2 (MM4) yield similar results,
in particular in the case of small deflections. The
ε-regularisation gives different results, particularly
in the case of an orthotropic material.

6. Investigation of the three-layer shell composed
of aluminium–orthotropic material–aluminium as
well as of the orthotropic material–aluminium–
orthotropic material showed that for the Timo-
shenko model with parabola (MM4), the position
of the stress-deflection curve strongly depends on
the order of layers in the packet.

7. The 2.5 times decrease in the layer thickness yields
convergence of the results obtained by the Tim-
oshenko model with parabola (MM4) and by the
ε-regularisation model (MM3).

8. The comparison of the stress-deformation states
shows that normal stresses yielded by all models
are very similar to each other. Also, the stresses
σ12 are qualitatively similar for all models, but the
ε-regularisationmodel exhibits a difference on both
the shell edges and the shell centre. The largest dif-
ference was obtained for the stress σ13, where for
MM2 (MM4) and MM3, the detected difference is
both qualitative and quantitative.
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