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This paper is a continuation of the investigations reported in the Part I. Based on the asymptotic approach
and the lubrication theory, the composite with rhombic inclusions are studied. Models of composites
with curvilinear rhombic inclusions and thin interfaces on phase boundaries are constructed with the
help of non-smooth argument substitution and asymptotically equivalent functions. The effective con-
ductivity is derived for absolutely conducting and non-conducting rhombic inclusions, taking into
account thin interface effects.

Generalisation of the classical Dykhne formula is proposed. Finally, asymptotic solutions are obtained
for the effective conductivity of a hexagonal lattice with circular large-size and absolutely conducting/
non-conducting inclusions.
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1. Introduction

This work extends the investigations presented in paper [4].
Based on the combination of the homogenization [7] asymptotic
homogenization [1-6,8,11,12,14], multiscale asymptotic approach
[15], lubrication theory [3,4,9,12], non-smooth argument substitu-
tion [18-20], and the asymptotically equivalent functions method
[1], the following problems have been discussed and solved:

(i) asymptotic analysis of models of a composite with curvilin-
ear rhombic inclusions has been carried out using the lubri-
cation theory;

(ii) composites with absolutely conducting/non-conducting
large rhombic inclusions and with a thin interface on a phase
boundary are studied;
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(iii) conditions of the physical equivalence of composite struc-
tures are derived and the corresponding asymptotics are
reported for composites of different structures and
inclusions;

(iv) proposed approaches and obtained results have been gener-
alised to fit the case of the hexagonal lattice of circular
inclusions.

The paper is organised as follows. Models of composites with
curvilinear rhombic inclusions are described in Section 2. Compos-
ite structures with curvilinear rhombic inclusions and with the
interfaces on phase boundaries are analysed in Section 3. Physical
equivalence of composite structures is considered in Section 4.
Composites with hexagonal lattices of circular inclusions are inves-
tigated in Section 5. Finally, Section 6 presents concluding remarks.

The formulas given in Part I are referenced here by adopting
dual indices, where the first number (1). indicates Part I of the
paper.

2. Models of composites with curvilinear rhombic inclusions

The structure of a composite cell with curvilinear rhombic
inclusions is shown in Fig. 1.
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Fig. 1. Characteristic cell of a composite with curvilinear rhombic inclusions.

In order to carry out asymptotic investigation of the composites
with inclusions of large sizes (0 < a<1) and large conductivity
(2> 1), the lubrication theory is employed [9]. The inclusion size
a depends on the coordinate ¢ in the following way (see Fig. 2):

a(®) =1-/1+ —(1-¢7 (1)

Solution of the following local problems
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Fig. 2. Approximation of the curvilinear rhombic inclusion in the model based on
the lubrication theory.

yields
L ou
uh = (14 mBy @)
ou
uy, = Dona—yo 3)
where

By =—(1-JA), D, = —(a+21—a)". (4)
Employing solutions (2)-(4) and relations

Uy Uy
+ + + + +
Uy = Uy + Uy, Up = Uy (Ty X

~(1-A), A

the homogenised equation
ol { / / o <%2;?20 %2;0 + gig; * S;ZZJ dedn

+4 / / (%2;0 %2;0 + 21152 + gy;%) d«:dn} =F
can be recast to the following one

where g stands for the homogenised coefficient

=g ( Jf 0 macan [ a +D6)déd11>. )

In (5), integration is carried over the domain Q; = Q; U Q; . Note
that the inclusion size a = a(¢) is governed by formula (1).
As a result of integration in (5), the following effective conduc-

1 .
1S
]+(1—a)2)

lnvA1—1+\/ZT—1>
VA =T VA +1)’

tivity coefficient for 1> 1, 0<a<1, (,1 >1+
obtained:

T 1

2 VA -1

where Ay = (21— 1)*(1+ (1 — a)?).
In particular cases, formula (6) yields the following asymptotic
relations:

(6)

A
q:l—a+)v_l(

a) in the case of absolutely conducting inclusions (1 — o), the
size of which is close to the maximal possible value
(0« a<1), we have

In (21,/1 +(1- a)z)

T
g=1-a+5- : @)
2 1+ -a?
for 2 — o0, a —» 1, we get
n In2i
4=5-——. ®)

b) In the case of inclusions of the maximal possible size a=1
and large conductivity (4 > 1), we have

_ A (m_ 1 VitVi-2
A=1\2 i(G-2) Vi-Vi-2)

For the maximal possible size (a — 1) of absolutely conducting
inclusions (1 — oo), we obtain

9)

o) T In22
qrd :i_ :

(10)

A
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For composites with curvilinear large (0 < a<1) rhombic

inclusions and small conductivity R

R W

(note that 1<1 T e

of the effective conductivity coefficient can be derived with the
help of the formula (6) and Keller’s theorem [13]:

), the asymptotic representation

. (1- WA =T
((1=a)(1 =)+ §VA; — In Vi
for i< 1, 0<a<1, (11)

where A; = (54)%(1 + (1 - a)®).
Formulas (7)-(10) can be recast to the following ones:

a) For non-conducting inclusions of a large, close to the maxi-
mal possible, size

2
1= 24/1+(1-0a)?
_ _ 2/ -
20-a)+m T In < - )
for n1—0,0xa<l, (12)
and in particular,
2
=——  _fori—0 a—1; 13
1=a—2m@ 0 at (13)
b) Inclusions of the maximal possible size and low
conductivity:
2(1-2) _
R TR fora=1, 1« 1; (14)
Vi-22 0 1-V1-22

or for almost absolutely non-conducting curvilinear rhombic
inclusions:

q9 = fora=1, 1 —0. (15)

2
7 —2la(2)

3. Composite structures with curvilinear rhombic inclusions
and an interface at the phase boundary

We consider a composite with highly conducting curvilinear
large rhombic inclusions contacting with each other through a thin
interface of the conductivity iy = “*% (see Fig. 3).

Note that asymptotic formula (9) holds for 4 > 2, and hence it
cannot be directly employed for 4 ~ 1. For this purpose, we rewrite
(6) to satisfy the condition 0 < 4 < 1 4 ——1

Vir(1-a?

Fig. 3. Composite with highly conducting curvilinear rhombic inclusions contacting
through a thin interface.

i (7 2 1-vVA
=1-a+ =— arctan/————1. 16
q ;,—1<2 V= A 1+\/E> (16)
Due to Keller’'s theorem, formula (16) yields [13]
(for 1 —%<i<oo>:
1+4/1+(1-a)
1
q= v (17)
1 2 - 2
1 —a+m<§fﬂarctan v/
For a =1, formula (17) takes the following form
q- i—1
2 arctanv27 —1 - z’
or for 1> 1:
2(4-1)
= ) 18
U (18)

Eq. (18), presented in the form of the sawtooth transformation
of the argument with an account for conductivities of inclusions
and the matrix (1.36), (1.37), is coupled with formula (1.43) repre-
senting the effective parameter yielded by the lubrication theory
for the absolutely conducting circular inclusion (41 — oo) in the fol-
lowing manner:

)

A 0’ (19)
where ¢,4 and g, denote the effective parameters of composites with
curvilinear rhombic and circular inclusions, respectively.

Consequently, asymptotic estimations (1.44), (1.48) are also
valid for the studied case. Therefore, for a composite with curvilin-
ear rhombic inclusions of the absolute conductivity (4 — oo), con-
tacting each other (a = 1) through a thin interface at the boundary
between phases, the effective parameter of conductivity takes the
below form

2(In1-1n2)

o0)

Qn == (20)
A scheme of the asymptotic investigation of the effective coeffi-

cient of large 0 < a < 1 inclusions of small conductivity 1 < 1, con-

tacting each other through a thin interface is identical as described

earlier. Thus, only the final results are reported here:

i 1
(i) for 1 14+y/1+(1-a)?
17y

(ii) Keller’'s theorem [13] yields the generalisation of (17) for

1 H .
O0<li<1+ i which has the form of (16);

(iii) for contacting inclusions (a = 1), formula (16) takes the fol-
lowing form (for 4 < 2)

< A < oo, formula (11) is substituted by

q=- L(T_ 2 arctanv2 — 1 |; (21)
2=1\2 M2-12)
(iv) for 2 < 1, Eq. (21) yields
T A
9=\ (22)

(v) formula (22), employed in the non-smooth argument substi-
tution, is coupled with formula (1.50) for the effective
parameter of heat transfer of a composite with non-
conducting circular inclusions (1 — 0) by means of relation
(19).



354 LV. Andrianov et al./Composite Structures 180 (2017) 351-359

In what follows, the asymptotic formulas (1.51), (1.52) are
applied to estimate (22) adopting the generalised relations for
the conductivity of inclusions and the matrix governed by formulas
(1.36), (1.37).

In the case of the composite structure with curvilinear rhombic
non-conducting inclusions (1 — 0) contacting each other (a=1)
through a thin interface, the following effective heat transfer coef-
ficient holds

0) T

N 23
Gdint = 310, T~ In2) @)

4. On the physical equivalence of the composite structures

Theoretical investigations of composite materials are based on
quantifying the effective conductivity by means of employing rel-
ative quantities describing the conductivity of the matrix instead
of the absolute ones. However, in a large class of composites of a
regular structure, the notion of a matrix and inclusions is rather
relative and depends on the decision of the researcher. For
instance, the composite shown in Fig. 4 can be treated either as
the structure with rhombic inclusions with sharp corners or as a
structure composed of rhombic inclusions with rounded corners.

Another important issue regarding this investigation concerns
the description of the physical characteristics (i.e. conductivity)
of the matrix and inclusions. It is clear that the term “absolutely
conducting/nonconducting inclusions”, widely employed in
mechanics of composites, refer rather to the mathematical abstrac-
tion, while real properties of phases can be more rigorously
described by the following relations:

B> o= A=F-> 1, (24)
tm

and

i <im > A=<, (25)
.

However, if the normalisation is adopted in relations (24), (25),
i.e. if we define 4 as relative to the conductivity of inclusions
instead of to the one of the matrix (or, equivalently, we change
the role of the phases “inclusion-matrix”), then the structure with
absolutely conducting inclusions can be described as a structure
with non-conducting inclusions, and vice versa.

Fig. 4. Composite material of a regular structure.

The so far given observations are valid not only in the limiting
cases of the conductivity (4 — 0 or 1 — co), but for its arbitrary
values.

For example, for the composite shown in Fig. 4, we take:

(i) Phase I: rhombs with rounded corners;

(ii) Phase II: rhombs with sharp corners;

(iii) if 4 < Ay, the composite structure can be equivalently
described;

(iv) A composite with absolutely conducting rhombic inclusions
with sharp corners (Fig. 5a);

(v) A composite with non-conducting rhombic inclusions with
rounded corners (Fig. 5b).

It is evident that the models reported in Fig. 4a,b present the
same composite, i.e. they present composites of physically equiva-
lent structures.

Observe that the effective parameters Z.; of physically equiva-
lent composite structures satisfy the following formula

W () =025 7. (26)

Formula (26) holds for the earlier described effective parame-
ters for the following cases:

a) Contact of absolutely conducting circular (1.49) and non-
conducting curvilinear rhombic (23) inclusions through a
thin interface;

b) Non-conducting circular (1.53) and absolutely conducting
curvilinear rhombic (20) inclusions in the case of presence
of a thin interface.

Besides, employing the relation (26) and the earlier established
asymptotic representation of the effective parameters of the com-
posites with rounded corners and with curvilinear rhombic inclu-
sions, for the case of their almost absolutely large/small
conductivity (see (1.28), (1.33), (10), (15)), one may prove the
equivalence of the considered structures by means of adopting
generalised asymptotics.

Asymptotic representations of the effective parameters of the
composites with different structure with almost absolutely large/
small conductivities of the inclusions are reported in Table 1.

Analysis of the asymptotic formulas shown in Table 1 implies
that all of them, if properly chosen in pairs, satisfy the so-called
“complementary system” condition reported in Ref. [10], which
can be treated as a generalisation of Dykhne’s formula holding
for composites with equally distributed phases. Namely, consider
a two-phase composite. If the conductivities of phases I and II
are denoted by 4; and Jj, and their concentrations are denoted
by c and 1 — ¢, respectively, where ¢ # 1/2, then either a change
Ji2Jy or ce1—c does not violate the effective parameters of
the structures Aer.(c) and Ze5. (1 — ¢), which satisfy the following
relation

2efr (C) - Jegp (1 =€) = 2 Jar. (27)

In what follows, it is shown that Dykhne’s relation (31) is satis-
fied for the asymptotic formulas given in Table 1 (4, = A, 4 = Ai):

(i) for relations (1.28) and (29)

[ A . 1 /2A )
Aeff.(€) + ey (1 — €) = (7'5 2):,“’) : (7‘(3 l{;%) = A

(ii) for relations (27) and (10)

2) T, ,
eff.(€) + ey (1 =€) = (ﬁw) : (le) =
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Fig. 5. Physically equivalent composite structures: a) composite with highly conducting rhombic inclusions with sharp corners: i, = 4, 4 = 4y, AV = Lm = ’7',' > 1; b)

composite with low conducting rhombic inclusions with rounded corners: i, = iy, 4 = 4,

(iii) for relations (1.49) and (20)

7[/1[ M 2 }v]
Jeff (€) - Aegg.(1 =€) = | —F——— 4 ~(— (ln——an)/l )
i 7 2 <1nj—’1’ —In 2) ! n At .

= A

(iv) for relations (1.33) and (30)

1 /22, A
Jeff (€) - Aefr.(1 =€) = (TE /MIIA") . ( \/21 in) = A

(v) for relations (28) and (15)

T, 2. R
Jeff (€) - Aefr.(1 =€) = (2/1;, ln) : (iMl) = A

In 2) /1]1)
. (g 7)“" 1 iu) = /11 . /111.
(lnfl —In 2)

5. Hexagonal lattice of circular inclusions

(vi) for relations (1.53) and (23)

2 2
Jeff (€) - A (1 =€) = <7'c /11" <ln /111’

In Ref. [12], the effective conductivity of the composite of a
hexagonal structure with large (a — 1) circular inclusions of large
conductivity (1 — oo) are derived with the help of the lubrication
theory.

In the limiting case of the inclusions size a = 1 (Fig. 6), the main
term of the obtained asymptotic follows

q= ”*75& (%), (28)

)+1/\/ 1 _/H_l

In further investigations, a composite of a hexagonal structure
with circular inclusions of high conductivity /> 1 and large size
a — 1, having a thin interface /i, at the phase boundary (Fig. 7),
is considered.

The non-smooth argument substitution (Appendix A [4]) is
applied with the assumption that conductivities of inclusions and

where f (4

o

m

the matrix are presented in the form of analytical relations
(1.36), (1.37).

A magnitude of f, (1) can be estimated using (31) for 1 — 1,
ie.

F1(7) ~ fo(2) for 7 -1, (29)

where
. 1 oV RAVZRA Y g
- () B Pl 8

As in the case of a square lattice, for the hexagonal lattice, the
approximating function f, (1) (33) has the following properties:

(i) It correctly describes the function f, (%) in the vicinity of the
point 7 = 1; series of functions f,(%), fo(Z) coincide with

accuracy up to the terms of order (J— 1)4
Appendix);

(ii) Its shape is analogous to the shape of the symmetric saw-
tooth function (Fig. 8);

(iii) It allows for a correct transition from the sawtooth argument
substitution to the original smooth parameter. Taking into
account relations (1.46), (1.47) for 4 — oo, we have

(see the

fo(7) ~ i (30)

Therefore, the formula for the effective parameter of the com-
posite of the hexagonal structure with large (a = 1), absolutely
conducting inclusions (1 — oc), and with a thin interface at the
boundary between phases, after taking into account formulas
(32)-(34), has the form

o T3
hex =37 —n2)’

The main part of the asymptotic formula (35) coincides with the
known result [16,17]
) T3
hex = 2Ina’

Using the formula for the effective parameter, reported in Ref.
[12], for 2 < 1, the main term of the asymptotic series is

1)
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Table 1
Asymptotic representations of the effective parameters of composites of different structures.

Composite structure form Asymptotic representations of the effective parameters

1. Absolutely conducting circular inclusions i — «
1.1. Contact through the matrix material (curvilinear rhombs)

— A
277«-1

a=m/;
Formula (1.28)

1.2. Contact through the inclusion material

y—a
rd

q=%
s
Formula (27)
(yielded by (26) and (15))

1.3. Contact with the interface

_
it

— T
9= 32y

Formula (1.49)

2. Non-conducting circular inclusions 4 — 0
2.1. Contact through the matrix material (curvilinear rhombs)
A=4
rd

— V2
q= £
Formula (1.33)

2.2. Contact through the inclusion material

— A
=i
=%

Formula (28)
(yielded by (26) and (10))

2.3. Contact with the interface
Ar
r =i

2/(In " —In2
q= ( - )

Formula (1.53)
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Table 1 (continued)

Composite structure form Asymptotic representations of the effective parameters

3. Curvilinear absolutely conducting rhombic inclusions i — «
.1. Contact through the matrix material

[SE} _}E

ma o~ W

ormula (10)

3.2. Contact through the material of inclusions (curvilinear rhombs)
r=

q="Z

Formula (29)

(yielded by (26) and (1.33))

3.3. Contact with the interface

A=

_ 2(In/-In2)
1

q
Formula (20)

4. Curvilinear non-conducting rhombic inclusions 1 — 0
4.1. Contact through the matrix material
A=tu
q=2
Formula (15)

4.2. Contact through the material of inclusions (curvilinear rhombs)

Formula (30)
(yielded by (26) and (1.28))

4.3. Contact with the interface

—
A=

_ fid
q= 2(Inz "-In2)

Formula (23)
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Fig. 6. Characteristic cell of a composite of a hexagonal structure.

Fig. 7. Composite of a hexagonal structure with a thin interface an the boundary
between phases.

)

where: f,(Z) = f,(i°1).

Presenting formula (36) in terms of the non-smooth argument
and estimating relation f, (%) of the asymptotically equivalent func-
tion, one gets

£, (A) -f (1*1) ~ fo(fr‘) for  — 1. (33)

Expansions of the functions of both parts of the equations (37)

into series coincide with accuracy up to the terms (1 — 1)4 (see the
Appendix).
Owing to relations (1.46), (1.47) for 4 — 0, one obtains

fo(F) ~ s (34)

Alng;

£(204

0.006
0,005
0.004- \ 4
0.0021 \

0.0024 P

0.001 \ .

c T T T T T ‘r
09950996 0997 0998 0999 1

T
1.0011.002 1.0031.0041.005

>y

Fig. 8a. Graph} of the~ asymptotically gquivalent (for 7 — 1) function. f1()
L) =f0H w m mfo().

£;(X)4

1.254
14 im m omomomowowowomew
0.75
0.50

0.25

>y

T T T T - T T T T T
0996099709980999 1 1.0011.0021.0031.0041.005
-0.254

-0.504
-0.754
= = = = oeoeowo o= E

-1.254

Fig. 8b. Graphs of the asymptotically equivalent derivatives of the functions.

i Gy m w mfy().

and therefore the relation for the effective parameter (36) can be
recast to the following form
-1
4 - 2.(In27" = 1n2) . (35)
hex TC\/§

Relations (35), (39), obtained for absolutely conducting/non-
conducting inclusions of a maximally large size a = 1 with a thin
interface at the boundary between phases, satisfy Keller's theorem
[13]:

1

)

Thex (4) = 5777
T i)

6. Concluding remarks

Based on the lubrication theory, the asymptotic representation
of the effective conductivity of fibre composites with curvilinear
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rhombic inclusions have been derived for both absolutely conduct-
ing or non-conducting inclusions.

Employing the non-smooth argument substitution for descrip-
tion of local and discretely varying properties of the inhomoge-
neous structures and using the asymptotically equivalent
functions, the model of the composite with curvilinear rhombic
inclusions and a thin interface on the phase boundary has been
constructed.

The conditions of the matrix-inclusions contact for absolutely
conducting/non-conducting circular and curvilinear rhombic inclu-
sions with an account for the thin interface effects have been
obtained.

The physical equivalence of composite structures has been dis-
cussed with respect to composites effective properties and possi-
bility of generalisation of Dykhne’s formula. In addition,
asymptotic solutions to the effective conductivity of the hexagonal
lattice of circular inclusions of a large size and absolutely
conducting/non-conducting properties are obtained.

Appendix A.

Series of the asymptotically equivalent functions

—io1- (1—1)2+;—2(1—1)3—%(1—1)4
1—1)5+o(1—1)6; (A1)
2(g+ - 1))

3
1—1)5+o(1—1)6; (A2)

+7
*%(I*A)Z%(lf’l) *16238(1*1)4
%(1—1) +o(1—1), (A3)

2(ip1_1)
fo(}f] _ln<%+21—~> %:;—j)?%zl—ﬁl)‘l‘(zi)‘l‘
:l—l+%<1—52+£<1—2)3 %(1 7)
+é§’%(1 75.)5 +o(1 721)6. (A4)
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