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a b s t r a c t 

The mathematical model of three-layered beams developed based on the hypothesis of the Grigolyuk–

Chulkov and the modified couple stress theory and the size depended equations governing the layers 

motions on the micro- and nano-scales is constructed. The Hamilton’s principle yields the novel equa- 

tions of motion as well as the boundary/initial conditions regarding beams displacement. The latter ones 

clearly exhibit the size dependent dynamics of the studied micro- and nano-beams, and the introduced 

theory overlaps with the classical beam equations for large enough layer thickness. In particular, a three- 

layer beam with the micro-layer thickness has been investigated with respect to the classical theory of 

Grigolyuk–Chulkov. The derived boundary problem is of sixth order and can be solved analytically in 

the case of statics. The carried out numerical experiments allowed to detect and explain size dependent 

effects exhibited by the micro-beams. The beam deflections and stress yielded by the employed couple 

stress model are less than those predicted by the classical Grigolyuk–Chulkov theory, while the estimated 

eigen frequencies are higher, respectively. It has been shown that the proposed model can be reduced to 

the classical three-layer Grigolyuk–Chulkov beam through increase of the layers thickness, which vali- 

dates our approach. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

It is well known that the three-layer structures have found ap-

lications in the mechanical and civil engineering, aviation, ship

esign, as well as in the airplanes and cosmic industries. In re-

ent years they are employed in the design of numerous micro-

nd nano-devices, including the micro- and nano-sensors as well

s the electromagnetic sensors. 

A general theory of static/dynamic behavior of the three-layer

tructural construction with respect to their size dependent be-

avior subjected to various external loading has been proposed by

rigolyuk and Chulkov (1973) . 

Remarkably, three-layer constructions do not only imply the

tructural non-homogeneity regarding the beam thickness, but
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hey require inclusions of the middle layer due to occurrence of

he transversal shear and compression, as well as coupling ef-

ects of the layers should be taken into account. Grigolyuk and

hulkov (1973) introduced a hypothesis of the linear distribution

f the tangent displacements with respect to both weight of the

eam package and condition of the lack of compression in the

tructural package while constructing their theory of three-layered

tructures. In contrary to the Bernoulli-Euler hypothesis, in the

rigolyuk–Chulkov model a perpendicular line to the initial sur-

ace becomes not perpendicular to the deformed surface, since it

otates on amount of a certain angle due to transversal shear gen-

rated by the middle layer. On the other hand, the external lay-

rs fit with the Bernoulli–Euler hypotheses, whereas the internal

ayer follows the Timoshenko hypothesis. It should be emphasized

hat the mentioned theory generalizes the classical beam theory.

rigolyuk–Chulkov, using the hypothesis of straight cross-sections

or the internal layer, constructed the equilibrium equations and

tudied the stability and vibrations of the carrying load by the
el of a three-layer micro- and nano-beams based on the hy- 
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three layer beam. Namely, the external layers have been made

from materials of infinite stiffness against shear and transversal

compression, whereas the internal layer had the infinite stiffness

against the transversal compression. The static and dynamic be-

havior of multi-layer beams based on the Bernoulli–Euler and Tim-

oshenko hypotheses have been employed for the whole structural

package in references ( Zenkour, 1999; Miller and Shenoy, 20 0 0;

Chong et al., 2001; Yang et al., 2002; Lam et al., 2003; Park and

Gao, 2006; Sun et al., 2007; Awrejcewicz et al., 2008; Krysko et

al., 2012 ). For multilayer anisotropic plates and shells, Andreev and

Nemirovsky developed a general theory based on a broken line

( Andreev and Nemirovskii, 2001 ). A regular and chaotic contact/no-

contact nonlinear dynamics of the multi-layer structure composed

of one plate and three Euler–Bernoulli beams coupled only by

boundary condition have been studied in the work of Awrejcewicz

et al. (2016) . 

The functional nano-materials used as plies and layers put on

the surfaces of the rigid bodies essentially improve the exploita-

tion characteristics of the industrial products. If the multi-layer

beams with the plane thin external layers do not have the re-

quired loading ability, the latter can be increased/improved via

application of the reinforced external layering, i.e. employing the

layers/plies/films having large Young moduli in the form of nano-

layers and the micro-layers made from carbon. 

On the basis of the standard computations regarding the mate-

rial resistance, the thickness of the layers of a micro-beam should

achieve tenth of microns in order to satisfy the industrial require-

ments. However, as the experimental investigations show, the me-

chanical properties of the micro- and nano-size elements depend

on their sizes. This is why a novel name has been introduced em-

phasizing the size dependent effect and characterizing the change

of the properties of the structures composed of elements of the

size of microns and nano-meters. Different features of the size-

depended effects exhibited by the micro- and nano-elements are

widely described in the existing literature, and among them the

gradient effects play a significant role. 

The size dependent behaviour of elastic elements have been

observed experimentally while bending and turning of the micro-

beams ( Fleck et al., 1994; Stolken and Evans, 1998; Chong et al.,

2001; Lam et al., 2003 ;). In reference Fleck et al. (1994) , it has

been reported that the torsion stiffness of a copper made wires

increases simultaneously decreasing their diameter from 170 down

to 12 μm (observe that the size decrease should imply zero stiff-

ness of a wire). In reference Stolken and Evans (1998) the in-

crease in the bending stiffness of a nickel foil corresponding to its

height yielded the decrease in its thickness from 50 to 12.5 μm.

The micro- and nano-oriented investigations ( Miller and Shenoy,

20 0 0; Yang et al., 2002 ) show that the stiffness of the pure and

poly-crystal metallic materials can be doubled while decreasing

the thickness from 10 to 1 μm. In order to estimate the material

resistance and keep the optimal design of the mentioned products,

the key role is played by the reliable and highly accurate analy-

sis of the stress-strain states of the investigated micro- and nano-

mechanical objects. 

Importance of the size dependent behaviour being an inher-

ent property of materials has been presented experimentally by

McFarland and Colton (2005) and Kong et al. (2008) . It has been

demonstrated that in micron/sub-micron scale regions, i.e. when

characteristic diameter of thickness is close to the internal ma-

terial length scale parameter, the classical continuum mechanical

theories cannot be employed to study the beam static/dynamic be-

haviour. 

In references Chong et al. (2001) and Sun et al. (2007) investi-

gations regarding explanation of the so far mentioned effects on a

basis of the strain gradient theory for the problems of bending and

torsions have been carried out. 
Please cite this article as: J. Awrejcewicz et al., Mathematical mod
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More recently Srinivasa and Reddy (2013) proposed a system-

tic treatment of higher gradient theories in a nonlinear context. 

The size dependent models of the Bernoulli–Euler beam have

een studied in reference Park and Gao (2006) and Awrejcewicz

t al. (2012) , whereas the Timoshenko beam has been analyzed

n Park and Gao (2008) , and the Reddy–Levinson beam has been

tudied in references Ma et al. (2010) and Reddy (2011) using

he modified couple stress theory proposed in reference Yang et

l. (2002) (the latter mainly employs only size depended material

ength). 

The origin and development of the couple stress elasticity the-

ry can be found in the seminal works of Koiter (1964), Toupin

1962), Mindlin and Tiersten (1962) and Mindlin (1963) . 

As it has been already mentioned, a modified couple stress the-

ry has been developed by Yang et al. (2002) , where only one scale

arameter of material length as well as symmetric couple stress

ensor have been employed. This concept has been expanded in

eference Park and Gao (2008) , where the variational formalism as-

ociated with this theory has been introduced. 

Park and Gao (2006) utilized the concepts of the modified cou-

le stress theory (MCST) to develop a new model for the bending

f a Bernoulli–Euler beam. It contains an internal material length

cale parameter and in contrary to the classical Bernoulli–Euler

eam model, it captures the size scale effects. Considering a can-

ilever beam, it has been shown, that the bending rigidity esti-

ated through their model is larger than that yielded by the clas-

ical model. 

The seminal work of Eringen (1983) serves as a source to

evelop microstructure-dependent non-local theories of beams

eing based on the Hamilton’s principle and the non-local

onstitutive relations including the Bernoulli–Euler, Timoshenko,

eddy/Levinson models ( Yang et al., 2002; Peddieson et al., 2003;

olizzotto, 2003; Wang, 2005; Wang et al., 2006 ). Ma et al.

2008) constructed a microstructure-dependent Timoshenko beam

odel based on a modified couple stress bending and axial prin-

iple, where both bending and axial deformations, as well as the

oisson effect, have been taken into account. 

In reference Arbind and Reddy (2013) solving equations for

he models of functionally graded Bernoulli–Euler, Timoshenko and

eddy–Levinson beams with respect to their thickness on the basis

f the modified couple stress theory and taking into account the

ize dependent state equations have been derived and analyzed. 

Asghari et al. (2010) utilized the MCST to study nonlinear be-

avior of Timoshenko hinged-hinged beam including the mid-

lane stretching. In the case of static bending the non-linear size

epended phenomena has been studied numerically, whereas a so-

ution to the free-vibrations problem has been solved analytically.

he latter work has been extended by Ke and Wang (2011) and Ke

t al. (2011) to study non-linear beam vibrations with an emphasis

ut to the stability estimation while including the axial displace-

ent in their study. 

Reddy (2011) extended theories related to nonlinear Euler–

ernoulli and Timoshenko beam taking into account through-

hickness power-law vibration of a two-constituent material and

oderate rotation of transverse normal through the von Kármán

onlinear strain. The proposed model, based on a modified cou-

le stress theory, power-law variation of the material, and the von

ármán geometric nonlinearity uses only one material length scale

arameter and captures the size effect in a functionally graded ma-

erial. 

Santos and Reddy (2012) presented comparison among classical

lasticity, nonlocal elasticity, and modified couple stress theories

or free vibration analysis of the Timoshenko beams, where the ro-

ary inertia and nonlocal parameter have been taken into account.

onvergence of the theories has been demonstrated taking into ac-

ount increase of the beam global dimension. 
el of a three-layer micro- and nano-beams based on the hy- 
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Reddy and Arbind (2012) reformulated the classical beam the-

ries, i.e. the Bernoulli–Euler and Timoshenko, using a modified

ouple stress theory and employing thickness power-law variation

f a functionally graded material. The algebraic relationships have

een derived for the beam deflections, slopes and stress resultants.

hey have been validated through examples of straight beams with

imply supported and clamped boundary conditions. 

The nonlinear resonant dynamics of a microscale beam based

n the modified couple stress theory has been analyzed numeri-

ally in reference Ghayesh et al. (2013) . First Hamilton’s principle

as been employed to derive a PDE governing motion using the

odified couple stress theory, and then the Galerkin technique has

een utilized to obtain a set of coupled nonlinear ODEs. The effect

f different system parameters on the resonant dynamics system

esponse has been studied. 

Kahrobaiyan et al. (2014) proposed a new comprehensive Timo-

henko beam element based on the modified couple stress theory.

hen the mass and stiffness matrices have been computed using

nergy approach and Hamilton’s principle. In particular, the static

eflection of a short microbeam and pull-in voltage of an electro-

tatically actuated micro cantilever made of silicon are estimated

sing this new beam element. 

A microstructure-dependent nonlinear third-order beam the-

ry which accounts for through-thickness power-law variation of

 two-constituent material has been developed by Arbind et al.

2014) based on modified couple stress theory the influence of the

aterial length has been investigated. 

Thai and Vo (2013) studied static bending, buckling and free

ibration behaviors of size dependent functionally graded sand-

ich microbeams based on the modified couple stress theory and

imoshenko beam theory. Two kinds of the sandwich beams have

een analyzed: functionally graded skins and homogeneous core

nd functionally graded core and homogeneous skins. It has been

hown that inclusion of the size effect resulted in an increase in

he beam stiffness. 

In reference Alashti and Abolghasemi (2014) a size-dependent

ormulation for the Bernoulli–Euler beam based on the couple

tress theory has been given. It has been shown that the natu-

al frequencies obtained using the utilized couple stress model are

igher than these predicted by the classical theory. 

A new modified couple stress theory containing three mate-

ial length scale parameters has been developed by Chen and Li

2014) for anisotropic elasticity and microscale laminated Kirchhoff

late model. The principle of minimum total potential energy has

een employed, and the curvature tensor has been taken as asym-

etric, whereas the couple stress moment tensor has been used

s symmetric. The carried out numerical simulation have validated

he proposed Kirchhoff plate model, which captures the scale ef-

ect of the microstructures. 

Mohammad-Abadi and Daneshmehr (2015) carried out the vi-

ration analysis of the composite laminated beams in order of mi-

ron based on the modified couple stress theory. In particular, the

uler–Bernoulli, Timoshenko and Reddy beam model have been

tudied with respect to the differences in estimation of shear de-

ormation. The governing equations have been solved using three

oundary conditions and four types of lamination. 

The transverse vibration of rotary tapered microbeam has

een analyzed by Shafiei et al. (2015) using a modified couple

tress theory and Euler–Bernoulli beam model. In particular, the

ffect of the small-scale parameter, beam length, rate of cross-

ection change, hub radius and non-dimensional angular velocity

n the microbeam vibration process have been illustrated and

iscussed. 

In reference Dehrouyeh-Semnani et al. (2015) the size depen-

ent model of a three-layer beam employing the modified version

f the couple stress theory and length parameter influence associ-
Please cite this article as: J. Awrejcewicz et al., Mathematical mod

potheses of the Grigolyuk–Chulkov and the modified couple stress
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ted with all layers and its impact on the damping characteristics

f the micro-beam vibrations have been studied. 

Rajneesh (2016) solved the problem of thermoelastic beam us-

ng the modified couple stress theory. Both governing equation

or the modified couple stress theory and heat conduction equa-

ion for coupled thermoelasticity have been employed to study

he vibrations in homogenous isotropic thin beam by applying the

uler–Bernoulli theory. The lateral deflection, thermal moment, ax-

al stress average due to normal heat flux have been derived and

tudied numerically. 

In reference Khorshidi et al. (2016) shear deformable func-

ionally graded nano-beams in post-buckling based on modified

ouple stress theory have been studied. The governing equations

nd boundary conditions are yielded by the principle of mini-

um potential energy. Exact and generalized differential quadra-

ure solutions for the static postbuckling response of the function-

lly graded nanobeams under different boundary conditions have

een derived. Effects of length-scale parameter, material gradient,

ength-to-thickness ratio and Poisson’s ratios have been illustrated

nd analyzed, among other. 

In all mentioned works, in contrary to the Grigolyuk–Chulkov

ypothesis, only one hypothesis, i.e. either the Bernoulli–Euler or

imoshenko assumptions (for all layers) have been employed. It

oes not allow to take into account a large difference between

hickness of the layers (for example when the external layers are

ade from the thin emulsion membranes). 

We have employed the modified couple stress theory in or-

er to take into account the size depended effects in the three-

ayer beam with both stiffening and softening external layers. This

hoice is motivated by an observation that in all works using the

entioned theory, the stiffening effect is exhibited to explain the

ize depended effects (see, for instance the references Fleck et al.,

994; Stolken and Evans, 1998; Miller and Shenoy, 20 0 0; Yang et

l., 2002 ). Owing to the experimental results published in the work

bazari et al. (2015) , where in Table 1 the size dependency of mi-

ro/nano structures is reported for different materials, the majority

f the analysed materials show stiffening effects. 

In our work, we study the beam having the external layer made

rom copper (Cu) and the internal layer made from epoxide tar.

wing to the mentioned Table 1, those materials exhibit stiffening

ffects. On the other hand a comparison of the couple stress the-

ry and non-local Eringen’s theory has been carried out by Tsiatas

nd Yiotis (2015) , where the effects of the beam softening based

n non-local Eringen’s theory and the beam stiffening due to the

odified couple stress theory have been reported. In reference

antos and Reddy (2012) it is pointed out while investigating the

imoshenko beams dynamics that the use of non-local Eringen’s

heory implies a decrease in the frequencies of free beam vibra-

ions, which stands in contrast to the results obtained using the

odified couple stress theory. 

Relevance of the gradient and non-local (integral) elastic mod-

ls to include the size dependent effects is widely illustrated and

iscussed for instance in reference Challamell and Wang (2008) .

he gradient models are considered as weak non-local models. Fur-

hermore, in many cases, the non-local models may yield a para-

ox, since the obtained solutions based on the classical theory are

he same as in the case of the non-local theory, i.e. there is a lack

f the size dependent effect. The mentioned paradox does not ap-

ear while using the modified couple stress theory. 

In this work we propose the theory of three-layer beams based

n the hypotheses of Grigolyuk and Chulkov (1973) as well as

he modified couple stress theory and the derived size-dependent

quations of motion for the micro- and nano-order thickness of

he layers. The Hamilton principle yields new equations of mo-

ion as well as the boundary and initial conditions regarding dis-

lacements for the micro-beams. The obtained equations allow to
el of a three-layer micro- and nano-beams based on the hy- 
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Fig. 1. The longitudinal cross-section of the three layers beams. 
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explain the size dependent behavior of a micro-beam and they co-

incide with the classical equations if the layer thickness becomes

large enough. A numerical example of computation of the three-

layer beam with micro-level thickness of the layers has been given,

and a comparison of its behavior versus the classical Grigolyuk–

Chulkov theory has been conducted. 

2. Theory of bending including shear effects and the modified 

couple stress theory 

In the process of the beam deformation the transversal cross

sections of the middle layer being perpendicular to the beam axis,

in contrary to Bernoulli–Euler hypothesis, rotate as a rigid body

on amount of angle ψ . Here, in contrary to the hypothesis of the

plane cross-sections, we do not require cross-sections to be per-

pendicular to the bended beam axis while deformation process,

but in general, this behavior is not excluded. This stands for a

general hypothesis, which is not contradicting the Bernoulli–Euler

one. Namely, it tends to the latter one if the middle layer stiffness

against shear is of infinite magnitude. The external layers material

is assumed to be linearly elastic, and they obey Hooke’s law. The

homogenous internal layer also obeys Hooke’s law. 

The beam is analyzed using the rectangular coordinates Oxz

(see Fig. 1 ). The axis x overlaps with the middle beam layer line,

whereas the axis z goes in direction opposite to the Earth grav-

ity. The carrying out load layer located in the positive z axis direc-

tion is called the first layer and the middle layer is called the third

layer. 

Let h k ( k = 1, 2, 3) denote the layer thickness ( h 3 =2 c );

h = h 1 + h 2 + h 3 stands for the thickness and b is the width of

a beam wall, respectively; E k is the elasticity material modulus,

whereas νk denotes the Poisson’s coefficient of a layer with num-

ber k; G 3 is the modulus regarding the transversal shear of the

middle beam, l k stands for the internal material length scale pa-

rameter. In order to keep a compact formulation of the problem,

we introduce the following averaged elasticity modulus 

E = ( E 1 h 1 + E 2 h 2 + E 3 h 3 ) /h, (1)

as well as the non-dimensional stiffness characteristics γ k and the

non-dimensional thickness of the layer t k as follows 

γk = E k h k /Eh, t k = h k /h. (2)

Owing to the concept of continuum mechanics, the deforma-

tions εij , displacements u i and the curvatures χ ij satisfy the fol-

lowing relations: 

ε i j = 

1 

2 

(
u i, j + u j, i 

)
, χi j = 

1 

2 

(
θi, j + θ j, i 

)
, (3)

where θ is the infinite small vector of rotations with components

θ i . Observe that θ = ( rot( u ) ) / 2 . 

In order to simplify our analysis and in order to get explicit re-

sults, we employ the couple stress theory ( Yang et al., 2002; Park

and Gao, 2006, 2008 ), in which the deformation energy contains
Please cite this article as: J. Awrejcewicz et al., Mathematical mod

potheses of the Grigolyuk–Chulkov and the modified couple stress
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nly one parameter of the material length and is governed by a

ymmetric function of deformation and is associated with the sym-

etric curvatures. Relations between deformations and symmetric

omponents of the curvatures and coupled with them moments of

igher orders follow 

i j = 

E ν

( 1 + ν) ( 1 − 2 ν) 
δi j ε kk + 2 G ε i j , (4)

 i j = 2 l 2 G χi j , (5)

here: E , G and ν is the Young modulus, the shear modulus and

he Poisson’s coefficient of a rigid body, respectively, and l stands

or the internal material length scale parameter. 

In the modified couple stress theory the summed energy of de-

ormation of an elastic body of space 
 is governed by the follow-

ng formula (it differs from the classic formula only with respect

o the second term) 

 = ( 1 / 2 ) 

∫ 



(
σi j ε i j + m i j χi j 

)
d
 (6)

Owing to the assumption that the material of all three layers is

on-compressed in the transversal direction, the deflection w does

ot depend on the transversal coordinate z , i.e. we have 

 = w ( x ) . (7)

In the case of the middle layer, we take into account the

imoshenko hypothesis and the longitudinal displacements of the

oints read 

 3 = u + zψ, −c ≤ z ≤ c. (8)

Material of the carrying load layers is assumed to be absolutely

tiff with respect to shear, and hence the shear angles in the first

nd second layers are equal to zero, i.e. 

1 = 

∂ u 1 

∂z 
+ 

∂w 

∂x 
= 0 , ( c ≤ z ≤ c + h 1 ) , 

2 = 

∂ u 2 

∂z 
+ 

∂w 

∂x 
= 0 , ( −c − h 2 ≤ z ≤ −c ) . (9)

The last formula, taking into account Eqs. (7) and (8) and as-

uming lack of the relative sliding of the layers, yields the fol-

owing formulas governing the longitudinal displacements of the

oints of the transversal beam cross-section 

 ( x, z ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

u + cψ − ( z − c ) 
∂w 

∂x 
, ( c ≤ z ≤ c + h 1 ) 

u + zψ, ( −c ≤ z ≤ c ) 

u − cψ − ( z + c ) 
∂w 

∂x 
, ( −c − h 2 ≤ z ≤ −c ) . 

(10)
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Introducing α instead of the shear angle ψ , due to relations α =
 + ∂w / ∂x , Eq. (10) yields 

 ( x, z ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

u + cα − z 
∂w 

∂x 
, ( c ≤ z ≤ c + h 1 ) 

u + zα − z 
∂w 

∂x 
, ( −c ≤ z ≤ c ) 

u − cα − z 
∂w 

∂x 
, ( −c − h 2 ≤ z ≤ −c ) . 

(11) 

For the given displacements, the deformations of each layer ly-

ng in a distance z from the averaged line of the middle layer, have

he following form 

 xx ( x, z ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂u 

∂x 
+ c 

∂α

∂x 
− z 

∂ 2 w 

∂ x 2 
, ( c ≤ z ≤ c + h 1 ) 

∂u 

∂x 
+ z 

∂α

∂x 
− z 

∂ 2 w 

∂ x 2 
, ( −c ≤ z ≤ c ) 

∂u 

∂x 
− c 

∂α

∂x 
− z 

∂ 2 w 

∂ x 2 
, ( −c − h 2 ≤ z ≤ −c ) . 

(12) 

ε xz = 

{ 

α1 = 0 , ( c ≤ z ≤ c + h 1 ) , 
α3 ( x ) = α( x ) , ( −c ≤ z ≤ c ) , 
α2 = 0 , ( −c − h 2 ≤ z ≤ −c ) , 

 xy = ε yz = 0 . (13) 

Symmetric components of the curvature possess one non-zero

omponent 

xy = χyx = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

−1 

2 

∂ 2 w 

∂ x 2 
, ( c ≤ z ≤ c + h 1 ) 

1 

4 

(
∂α

∂x 
− 2 

∂ 2 w 

∂ x 2 

)
, ( −c ≤ z ≤ c ) 

−1 

2 

∂ 2 w 

∂ x 2 
, ( −c − h 2 ≤ z ≤ −c ) . 

(14) 

Now, having in hand the deformations and employing the

ook’s law, we find the normal stresses in the layers: 

xx ( x, z ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

E 1 

(
∂u 

∂x 
+ c 

∂α

∂x 
− z 

∂ 2 w 

∂ x 2 

)
, ( c ≤ z ≤ c + h 1 ) 

E 3 

(
∂u 

∂x 
+ z 

∂α

∂x 
− z 

∂ 2 w 

∂ x 2 

)
, ( −c ≤ z ≤ c ) 

E 2 

(
∂u 

∂x 
− c 

∂α

∂x 
− z 

∂ 2 w 

∂ x 2 

)
, ( −c − h 2 ≤ z ≤ −c ) , 

(15) 

he tangential stresses in the middle layer 

xz = τ = 

⎧ ⎨ 

⎩ 

G 1 α1 = 0 , ( c ≤ z ≤ c + h 1 ) ;
G 3 α3 ( x ) = G 3 α( x ) , ( −c ≤ z ≤ c ) ;
G 2 α2 = 0 , ( −c − h 2 ≤ z ≤ −c ) ;

σxy = σyz = 0 , 

(16) 

s well as the higher order moments 

 xy = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

−l 2 1 G 1 
∂ 2 w 

∂ x 2 
, ( c ≤ z ≤ c + h 1 ) 

l 2 3 G 3 

2 

(
∂α

∂x 
− 2 

∂ 2 w 

∂ x 2 

)
, ( −c ≤ z ≤ c ) 

−l 2 2 G 2 
∂ 2 w 

∂ x 2 
, ( −c − h 2 ≤ z ≤ −c ) . 

(17) 
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Applying Eqs. (15) –(17) , we find the forces and moments in

ach beam layer. In the case of the first carrying load layer с ≤
 ≤ c + h 1 , we have 

 1 = b 

∫ c+ h 1 

c 

σxx dz = B γ1 
∂u 

∂x 
+ K γ1 

[
t 3 

∂α

∂x 
− ( t 1 + t 3 ) 

∂ 2 w 

∂ x 2 

]
, (18)

 1 = M 

0 
1 + M 

h 
1 = b 

∫ c+ h 1 

c 

[
σxx ( z − c ) + m 

1 
xy 

]
dz 

= −c N 1 + K γ1 t 1 
∂u 

∂x 
+ D γ1 t 1 �

−1 

×
[ 

3 t 3 
∂α

∂x 
−

( 

4 t 1 

( 

1 + 

3 

2 ( 1 + ν1 ) 

(
l 1 
h 1 

)2 
) 

+ 3 t 3 

) 

∂ 2 w 

∂ x 2 

] 

. 

(19) 

In the case of the middle layer −с ≤ z ≤ c, we obtain: 

 3 = b 

∫ c 

−c 

σxx dz = B γ3 
∂u 

∂x 
, (20)

 3 = M 

0 
3 + M 

h 
3 = b 

∫ c 

−c 

[
σxx z + m 

3 
xy 

]
dz 

= D γ3 t 
2 
3 �

−1 

[ ( 

1 + 

3 

1 + ν3 

(
l 3 
h 3 

)2 
) 

∂α

∂x 

−
( 

1 + 

6 

1 + ν3 

(
l 3 
h 3 

)2 
) 

∂ 2 w 

∂ x 2 

] 

, (21) 

 3 = b 

∫ c 

−c 

G 3 αdz = G 3 hb t 3 α. (22)

Finally, for the second layer ( −с − h 2 ≤ z ≤ c − c), we get 

 2 = b 

∫ −c 

−c−h 2 

σxx dz = B γ2 
∂u 

∂x 
− K γ2 

[
t 3 

∂α

∂x 
− ( t 2 + t 3 ) 

∂ 2 w 

∂ x 2 

]
, (23)

 2 = M 

0 
2 + M 

h 
2 = b 

∫ −c 

−c−h 2 

[
σxx ( z + c ) + m 

2 
xy 

]
dz 

= c N 2 − K γ2 t 2 
∂u 

∂x 
+ D γ2 t 2 �

−1 

[
3 t 3 

∂α

∂x 

−
( 

4 t 2 

( 

1 + 

3 

2 ( 1 + ν2 ) 

(
l 2 
h 2 

)2 
) 

+ 3 t 3 

) 

∂ 2 w 

∂ x 2 

] 

. (24) 

here in Eqs. (18) –(24) the following notation has been introduced

 = E hb, K = 

1 

2 

E h 

2 b, D = 

E h 

3 b 

12 

�. (25)

Furthermore, D in Eq. (25) denotes a usual classical minimum

eam bending stiffness, where the introduced parameter � is not

efined yet. The full longitudinal force follows: N = N 1 + N 2 + N 3 ,

nd taking into account Eqs. (18) , ( 23 ), and ( 20 ) we finally get 

 = B 

∂u 

∂x 
+ K 

[
c 12 

∂α

∂x 
− c 13 

∂ 2 w 

∂ x 2 

]
. (26)

If, instead of the displacement u , we introduce a new general-

zed displacement V due to the formula 

 = u + 

1 

2 

h 

(
c 12 α − c 13 

∂w 

∂x 

)
(27)

hen the full longitudinal force Eq. (26) takes the form 

 = B 

∂V 

∂x 
(28) 
el of a three-layer micro- and nano-beams based on the hy- 
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The full moment computed in relations to the averaged line of

the third layer follows 

ˆ M = D 

(
γ

∂α

∂x 
− ∂ 2 w 

∂ x 2 

)
+ 

h 

2 

c 13 N + M 

h , (29)

where M 

h stands for an additional moment due to the size depen-

dent additives yielded by the occurred size effects. The latter is

governed by the formula 

M 

h = D �−1 

{ 

3 γ3 t 
2 
3 

1 + ν3 

(
l 3 
h 3 

)2 
∂α

∂x 
−

[ 

6 γ1 t 
2 
1 

1 + ν1 

(
l 1 
h 1 

)2 

+ 

6 γ3 t 
2 
3 

1 + ν3 

(
l 3 
h 3 

)2 

+ 

6 γ2 t 
2 
2 

1 + ν2 

(
l 2 
h 2 

)2 
] 

∂ 2 w 

∂ x 2 

} 

. (30)

On this step we introduce a new moment 
∧ 
H 

, which does not

have analogy in theory of homogeneous beams, and which defines

the transversal shear in the middle layer. It is called the shear mo-

ment and it is defined in the following way 

∧ 
H 

= M 3 + c N 1 − c N 2 (31)

or equivalently 

∧ 
H 

= 

h 

2 

c 12 N + Dγ

(
γ

1 − ϑ 

∂α

∂x 
− ∂ 2 w 

∂ x 2 

)
+ H 

h (32)

where 

H 

h = 

D 

2�

{ 

3 γ3 t 
2 
3 

1 + ν3 

(
l 3 
h 3 

)2 
∂α

∂x 
− 6 γ3 t 

2 
3 

1 + ν3 

(
l 3 
h 3 

)2 
∂ 2 w 

∂ x 2 

} 

(33)

stands for the size dependent additive term to the shear moment. 

In the previous formulas the following notation has been intro-

duced 

� = c 33 − 3 c 2 13 ; γ = ( c 23 − 3 c 12 c 13 ) �
−1 ;

ϑ = 1 − γ
c 23 − 3 c 12 c 13 

c 22 − 3 c 2 
12 

, (34)

where the explicit form of the coefficients с i j read 

с 12 = t 3 ( γ1 − γ2 ) ; c 13 = γ1 ( t 1 + t 3 ) − γ2 ( t 2 + t 3 ) ;
c 22 = t 2 3 ( 3 γ1 + 3 γ2 + γ3 ) ;
c 23 = 3 γ1 t 3 ( t 1 + t 3 ) + 3 γ2 t 3 ( t 2 + t 3 ) + γ3 t 

2 
3 ;

c 33 = γ1 

(
4 t 2 1 + 6 t 1 t 3 + 3 t 2 3 

)
+ γ2 

(
4 t 2 2 + 6 t 2 t 3 + 3 t 2 3 

)
+ γ3 t 

2 
3 . (35)

3. Equations of motion and boundary conditions for the 

three-layer beam 

The state/motion equations as well as the associated boundary

conditions corresponding to the assumed kinematic hypotheses are

yielded directly from the Hamilton’s principle 

δ

∫ t 2 

t 1 

( T − U + W ) d t = 0 , (36)

where U is the energy of deformation of the bended isotropic

three layer linearly elastic beam, T is its kinetic energy, whereas

W presents the work of external forces. Therefore, we study the

three layer beam of length L subjected to both external transversal

load q ( x ) and external stresses: normal b σ and tangential b τ with

intensities on boundaries 

σ0 , τ0 | x =0 , σL , τL | x = L . (37)

We introduce virtual displacements, i.e. normal 

δ w , ( −c − h 2 ≤ z ≤ c + h 1 ) (38)
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nd tangential 

u ( x, z ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δu + cδα − z 
∂δ w 

∂x 
, ( c ≤ z ≤ c + h 1 ) 

δu + zδα − z 
∂δ w 

∂x 
, ( −c ≤ z ≤ c ) 

δu − cδα − z 
∂δ w 

∂x 
, ( −c − h 2 ≤ z ≤ −c ) . 

(39)

The virtual displacements generate the following virtual defor-

ations in the layers 

ε xx ( x, z ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂δu 

∂x 
+ c 

∂δα

∂x 
− z 

∂ 2 δw 

∂ x 2 
, ( c ≤ z ≤ c + h 1 ) 

∂δu 

∂x 
+ z 

∂δα

∂x 
− z 

∂ 2 δw 

∂ x 2 
, ( −c ≤ z ≤ c ) 

∂δu 

∂x 
− c 

∂δα

∂x 
− z 

∂ 2 δw 

∂ x 2 
, ( −c − h 2 ≤ z ≤ −c ) , 

(40)

α = 

{ 

0 , ( c ≤ z ≤ c + h 1 ) 
δα, ( −c ≤ z ≤ c ) 
0 , ( −c − h 2 ≤ z ≤ −c ) , 

(41)

χxy = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

−1 

2 

∂ 2 δ w 

∂ x 2 
, ( c ≤ z ≤ c + h 1 ) 

1 

4 

(
∂δ α

∂x 
− 2 

∂ 2 δ w 

∂ x 2 

)
, ( −c ≤ z ≤ c ) 

−1 

2 

∂ 2 δ w 

∂ x 2 
, ( −c − h 2 ≤ z ≤ −c ) . 

(42)

Since σ yy = σ zz = 0, then using Eqs. (3) –(5) and (12) –(17) , the in-

ernal energy U of the deformed isotropic three layer beams takes

he following form 

 = ( 1 / 2 ) b 

∫ L 

0 

∫ c+ h 1 

−c−h 2 

(
σi j ε i j + m i j χi j 

)
d xd z 

= ( 1 / 2 ) b 

∫ L 

0 

[ ∫ c+ h 1 

c 

( 

E 1 

(
∂u 

∂x 
+ c 

∂α

∂x 
− z 

∂ 2 w 

∂ x 2 

)2 

+ l 2 1 G 1 

(
∂ 2 w 

∂ x 2 

)2 
) 

dz 

+ 

∫ c 

−c 

( 

E 3 

(
∂u 

∂x 
+ z 

∂α

∂x 
− z 

∂ 2 w 

∂ x 2 

)2 

+ G 3 α
2 + 

l 2 3 G 3 

4 

(
∂α

∂x 
− 2 

∂ 2 w 

∂ x 2 

)2 
) 

dz 

+ 

∫ −c 

−c−h 2 

( 

E 2 

(
∂u 

∂x 
− c 

∂α

∂x 
− z 

∂ 2 w 

∂ x 2 

)2 

+ l 2 2 G 2 

(
∂ 2 w 

∂ x 2 

)2 
) 

dz 

] 

dx. (43)

Let us introduce to the layers the virtual displacements δ u ,

δ w , δα owing to Eqs. (38) –(42) . Therefore, the variation of the

nternal energy takes the form 

U = b 

∫ L 

0 

[∫ c+ h 1 

c 

(
σxx 

(
∂δu 

∂x 
+ c 

∂δα

∂x 
− z 

∂ 2 δw 

∂ x 2 

)

−m xy 

(
∂ 2 δw 

∂ x 2 

))
dz + 

∫ c 

−c 

(
σxx 

(
∂δu 

∂x 
+ z 

∂δα

∂x 
− z 

∂ 2 δw 

∂ x 2 

)

+ τδα + m xy 
1 

2 

(
∂δ α

∂x 
− 2 

∂ 2 δ w 

∂ x 2 

))
dz 

+ 

∫ −c 

−c−h 2 

(
σxx 

(
∂δu 

∂x 
− c 

∂δα

∂x 
− z 

∂ 2 δw 

∂ x 2 

)

−m xy 

(
∂ 2 δw 

∂ x 2 

))
dz 

]
dx. (44)
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Now, introducing the general displacement v instead if u , and

aking into account Eq. (27) we get 

u = δV − 1 

2 

h 

(
c 12 δα − c 13 

∂δw 

∂x 

)
nd hence Eq. (44) yields 

U = 

∫ L 

0 

[
∂N 

∂x 
δV + 

(
∂H 

∂x 
− Q 3 

)
δα + 

∂ 2 M 

∂ x 2 
δw 

]
dx 

−
[

NδV +M 

(
γ δα− ∂δw 

∂x 

)
+ 

(
H 

γ
−M 

)
γ δα+ 

∂M 

∂x 
δw 

]x = L 

x =0 

, 

(45) 

In the above the following notations have been introduced 

 = 

∧ 
M 

− h 

2 

c 13 N = D 

(
γ

∂α

∂x 
− ∂ 2 w 

∂ x 2 

)
+ M 

h , (46)

 = 

∧ 
H 

− h 

2 

c 12 N = Dγ

(
γ

1 − ϑ 

∂α

∂x 
− ∂ 2 w 

∂ x 2 

)
+ H 

h . (47)

Notice that M 

h , H 

h are defined by Eqs. (30) and (33) . Since the

inetic energy T has the following form 

 = ( 1 / 2 ) b 

∫ L 

0 

∫ c+ h 1 

−c−h 2 

×ρ

{[ 
V 

2 
, t + 

(
z− 1 

2 

h c 12 

)
α, t −

(
z− 1 

2 

h c 13 

)
w , xt 

] 2 
+w 

2 
,t 

}
d xd z (48) 

hen 

T = − ∫ L 
0 

{[
B 

∗V , tt + K 

∗(c ∗12 − c 12 

)
α, tt − K 

∗(c ∗13 − c 13 

)
w , xtt 

]
δ v 

+ 

[
K 

∗(c ∗12 − c 12 

)
V , tt + D 

∗γ ∗( γ ∗

1 −ϑ ∗ α, tt − w , xtt 

)]
δ ϑ 

+ 

[
K 

∗(c ∗13 − c 13 

)
V , xtt + B 

∗w , tt + D 

∗( γ ∗α, xtt − w , xxtt ) 
]}

dx 

+ 

[
K 

∗(c ∗13 − c 13 

)
V , tt + D 

∗( γ ∗α,tt − w , xtt ) 
] ∣∣x = L 

x =0 
. 

(49) 

here γ ∗
k 

= ρk h k /ρ h . Parameters c ∗
ik 

are computed through ( 35 ),

s it was with the parameters c 
ik 

(we should use γ ∗
k 

instead of γ
k 
).

he remaining parameters introduced while computing variation of

he inertia forces are as follows: 

B 

∗ = ρ hb, K 

∗ = 

1 

2 

ρ h 

2 b, D 

∗ = 

ρ h 

3 b 

12 

�∗, 

∗ = c ∗33 − 6 c ∗13 c 13 + 3 c 2 13 , 

γ ∗ = ( c ∗23 − 3 c ∗12 c 13 − 3 c ∗13 c 12 + 3 c 12 c 13 ) / �, 

ϑ 

∗ = 1 − γ ∗ c ∗23 − 3 c ∗12 c 13 − 3 c ∗13 c 12 + 3 c 12 c 1 3 

c ∗
22 

− 6 c 
12 

c ∗
12 

+ 3 c 2 
12 

. (50) 

The work of the external forces on the virtual displacement fol-

ows 

W = 

∫ L 

0 

qδw dx + 

[
N p δV + M p 

(
γ δα − ∂δw 

∂x 

)
+ Q p δw 

]x = L 

x =0 

. 

(51) 

Here N p , Q p , M p denote external forces and moments acting on

he beam 

N p = b 

∫ c+ h 1 

−c−h 2 

σp dz , Q p = b 

∫ c+ h 1 

−c−h 2 

τp dz , 

 p = b 

∫ c+ h 1 

−c−h 2 

z σp dz − 1 

2 

h c 13 N p , (52) 

nd for x = 0 we have σ p =σ 0 , whereas for x = L we have σ p =σ L .
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Employing the Hamilton principle, and comparing to zero mul-

ipliers standing by variation of the independent displacements,

ne gets 

∂ N 

∂ x 
= B 

∗ ∂ 2 V 

∂ t 2 
+ K 

∗ ∂ 2 

∂ t 2 

[
( c ∗12 − c 12 ) α − ( c ∗13 − c 13 ) 

∂ w 

∂ x 

]
, 

∂ H 

∂ x 
− Q 3 = K 

∗( c ∗12 − c 12 ) 
∂ 2 V 

∂ t 2 
+ D 

∗γ ∗ ∂ 2 

∂ t 2 

[
γ ∗

1 − ϑ 

∗ α − ∂ w 

∂ x 

]
, 

∂ 2 M 

∂ x 2 
+ q = K 

∗( c ∗13 − c 13 ) 
∂ 3 V 

∂ x ∂ t 2 
+ B 

∗ ∂ 2 w 

∂ t 2 

+ D 

∗ ∂ 2 

∂ t 2 

[
γ ∗ ∂ α

∂ x 
− ∂ 2 w 

∂ x 2 

]
. (53) 

The boundary conditions are 

[ N − N p ] | x =0 , l = 0 or δ u | x =0 , L = 0 , 

[ M − M p ] | x =0 , L = 0 or δ

(
γ α − ∂ w 

∂ x 

)∣∣∣∣
x =0 , L 

= 0 , 

[
H 

γ
− M 

] ∣∣∣∣
x =0 , L 

= 0 or δ α | x =0 , L = 0 , 

[
∂ M 

∂ x 
− Q p − K 

∗( c ∗13 − c 13 ) 
∂ 2 V 

∂ t 2 

−D 

∗�∗ ∂ 2 

∂ t 2 

(
γ ∗α − ∂ w 

∂ x 

)]∣∣∣∣
x =0 , L 

= 0 or δ w | x =0 , L = 0 . (54) 

. Static transversal bending of the three layer beam 

In order to get directly the counterpart static problem we omit

ynamic terms in Eq. (53) , and the following system of equilibrium

quations is obtained 

dN 

dx 
= 0 , 

dH 

dx 
− Q 3 = 0 , 

d 2 M 

d x 2 
+ q = 0 . (55)

Now, proceeding to displacements, we obtain 

d 2 V 

d x 2 
= 0 , (56) 

 γ 2 

[ ( 

1 + 

3 

2(1 + ν3 ) 

( 1 − ϑ ) γ3 t 
2 
3 

γ 2 �

(
l 3 
h 3 

)2 
) 

γ
d 2 α

d x 2 

−( 1 − ϑ ) 

( 

1 + 

3 γ3 t 
2 
3 

γ�

(
l 3 
h 3 

)2 
) 

d 3 w 

d x 3 

] 

−( 1 − ϑ ) G 3 bh t 3 γα = 0 , (57) 

 

{(
1 + 

3 
2 ( 1+ ν3 ) 

γ3 t 
2 
3 

γ�

(
l 3 
h 3 

)2 
)
γ d 3 α

d x 3 
−

−
(

1+ 

6 
�

[
γ1 t 

2 
1 

1+ ν1 

(
l 1 
h 1 

)2 

+ 

γ3 t 
2 
3 

1+ ν3 

(
l 3 
h 3 

)2 

+ 

γ2 t 
2 
2 

1+ ν2 

(
l 2 
h 2 

)2 
])

d 4 w 

d x 4 

}
+ qb = 0 . 

(58) 

After employment of the following simplifications 

 

2 
h = 

3 

2 ( 1 + ν3 ) 

( 1 − ϑ ) γ3 l 
2 
3 

γ 2 �
, b 2 h = 

3 γ3 l 
2 
3 

γ�
, 

c 2 h = 

3 

2 ( 1 + ν3 ) 

γ3 l 
2 
3 

γ�
, d 2 h = 

6 

�

[
γ1 l 

2 
1 

1 + ν1 

+ 

γ3 l 
2 
3 

1 + ν3 

+ 

γ2 l 
2 
2 

1 + ν2 

]
, (59) 
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Eqs. (57) and ( 58 ) take the following form 

D γ 2 

[ (
1 + 

(
a h 
h 

)2 
)

γ
d 2 α

d x 2 
−( 1 − ϑ ) 

( 

1 + 

(
b h 
h 

)2 
) 

d 3 w 

d x 3 

] 

−( 1 − ϑ ) G 3 bh t 3 γα = 0 , (60)

D 

{ (
1 + 

(
c h 
h 

)2 
)

γ
d 3 α

d x 3 
−
( 

1 + 

(
d h 
h 

)2 
) 

d 4 w 

d x 4 

} 

+ qb = 0 . (61)

Therefore, the system of equilibrium Eqs. (56) –(58) split into Eq.

(56) and the system of Eqs. (60) and ( 61 ) regarding the functions

γα and w . It is suitable for a further analysis to reduce the whole

problem to only one equation by introducing w and γα as a func-

tion χ being differentiable the required times: 

w = 

{
1 − h 

2 

β

[
1 + 

(
a h 
h 

)2 
]

d 2 

d x 2 

}
χ, 

γα = −( 1 − ϑ ) 
h 

2 

β

[ 

1 + 

(
b h 
h 

)2 
] 

d 3 χ

d x 3 
. (62)

Substituting the expression Eq. (62) into Eq. (60) , we find 

β = 

12 G 3 t 3 ( 1 − ϑ ) 

E γ 2 �
. (63)

Introducing Eq. (62) into Eq. (61) , the following equation re-

garding the displacement function χ is obtained 

D 

h 

[
1 − h 

2 

β

((
1 + 

(
a h 
h 

)2 
)

− ( 1 − ϑ ) p h 

)
d 2 

d x 2 

]
d 4 χ

d x 4 
= qb, (64)

where 

D 

h = D 

( 

1 + 

(
d h 
h 

)2 
) 

, 

p h = 

(
1 + 

(
c h 
h 

)2 
)( 

1 + 

(
b h 
h 

)2 
) /( 

1 + 

(
d h 
h 

)2 
) 

. (65)

Eq. (64) describes the transversal bending of the three layer

beam. Since the function χ keeps the displacements, and conse-

quently the moments and transverse forces, we call Eq. (64) the

solving equation. 

In order to choose the formulation of the problem regarding de-

formation of the three layer beam, it is necessary to attach bound-

ary conditions to the equilibrium Eqs. (56) and (64) . The latter ex-

press the influences of both the boundaries action on the beam

edges and the boundary loads action. In the case of Eq. (56) , where

the stiffness is equal to zero (the edge is free), we have 

dV 

dx 

∣∣∣∣
x =0 , L 

= 0 , or N | x =0 , L = 0 . (66)

In contrary, if the coupling possesses an infinite stiffness, then

the boundary condition takes the form V | x = 0, L =0. 

In what follows we proceed to formulation of the boundary

conditions for the moments. If there is no coupling, then the edge

is free, and boundary conditions for χ have the form: 

χ = 

d 2 χ

d x 2 
= 

d 4 χ

d x 4 

∣∣∣∣
x =0 , L 

= 0 , (67)

which follow from the boundary conditions w | x =0 ,L = 

∂ 2 w 

∂ x 2 
| x =0 ,L =

∂γ
∂x 

| x =0 ,L = 0 . 

The boundary conditions for clamped ends have the form: {
1 − h 

2 

β

[
1 + 

(
a h 
h 

)2 
]

d 2 

d x 2 

}
χ = 

dχ

dx 
= 

d 3 χ

d x 3 

∣∣∣∣
x =0 , L 

= 0 . (68)
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Introducing the following non-dimensional quantity 

 

2 = 

β l 2 

h 

2 

((
1 + 

(
a h 
h 

)2 
)

− ( 1 − ϑ ) p h 

) , (69)

e reduce the solving Eq. (64) to the form 

d 2 

d x 2 
− n 

2 

l 2 

)
d 4 χ

d x 4 
= − q n 

2 

D 

h l 2 
. (70)

A general solution to the counterpart homogenous equation of

q. (70) follows: 

0 ( x ) = A 0 + A 1 
x 

l 
+ A 2 

(
x 

l 

)2 

+ A 3 

(
x 

l 

)3 

+ A 4 sh 

nx 

l 
+ A 5 ch 

nx 

l 
, (71)

hereas the particular equation, when q ( x ) = q 0 = const , takes the

ollowing form 

¯ ( x ) = 

q 0 

24 D 

h 
x 4 . (72)

Let us find a solution to Eq. (70) . For this purpose we define

oefficients A i in general solution Eq. (71) employing the boundary

onditions Eq. (67) : 

A 0 = −24 q 0 l 
4 

D 

h 
, A 1 = 

q 0 l 
4 
(
12 − n 

2 
)

D 

h 
, A 2 = −12 q 0 l 

4 

D 

h 
, 

 3 = 

2 q 0 l 
4 n 

2 

D 

h 
, A 4 = −24 q 0 l 

4 [ 1 − ch ( n ) ] 

D 

h n 

2 sh ( n ) 
, A 5 = 

24 q 0 l 
4 

D 

h n 

2 
. (73)

Therefore χ(x ) = χ0 (x ) + χ̄ (x ) and both functions γα and w

re defined now through formulas Eq. (62) . 

. Vibrations of a three layer beam 

Let us turn back to dynamic problem. The governing equations

re based on the introduced hypotheses and since they take into

ccount the full inertial force. The whole problem is governed by a

elatively complex system of parabolic equations . Observe that as-

uming the layers carrying the load (layers 1, 2) are membranes

 t 1 = t 2 =0), then the system becomes hyperbolic . In the general

ase, however, the studied system of PDEs can be reduced to only

ne PDE of eight order with even derivatives. Its coefficients allow

o carry out a deep analysis regarding the system behavior. How-

ver, in the current study our investigations will be limited to only

he main inertial term, assuming that the influence of the remain-

ng inertial terms can be neglected. Namely, we take K 

∗ =0, D 

∗ =0

n Eq. (53) , and we obtain 

∂ N 

∂ x 
= B 

∗ ∂ 2 V 

∂ t 2 
, (74)

∂ H 

∂ x 
− Q 3 = 0 , (75)

∂ 2 M 

∂ x 2 
+ q = B 

∗ ∂ 2 w 

∂ t 2 
, (76)

r the equivalent form with respect to displacements as follows 

 

d 2 V 

d x 2 
= B 

∗ ∂ 2 V 

∂ t 2 
, (77)

D γ 2 

[ (
1 + 

(
a h 

h 

)2 
)

γ
d 2 α

d x 2 
−( 1 − ϑ ) 

( 

1 + 

(
b h 
h 

)2 
) 

d 3 w 

d x 3 

] 

−( 1 − ϑ ) G 3 bh t 3 γα = 0 , (78)
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{ (
1 + 

(
c h 
h 

)2 
)

γ
d 3 α

d x 3 
−
( 

1 + 

(
d h 
h 

)2 
) 

d 4 w 

d x 4 

} 

+ qb = B 

∗ ∂ 2 w 

∂ t 2 
. 

(79) 

We take a 2 = E/ρ, and hence Eq. (77) yields 

d 2 V 

d x 2 
= 

1 

a 2 
∂ 2 V 

∂ t 2 
. (80) 

.e. we have got the PDE governing longitudinal vibrations of the

eam. 

Introducing, owing to Eq. (62) , the function χ ( x ), two indepen-

ent dynamic equations are obtained (the second Eq. (78) is satis-

ed identically). The third PDE Eq. (79) takes the form 

D 

( 

1 + 

(
d h 
h 

)2 
) [

1 − h 

2 

β

((
1 + 

(
a h 
h 

)2 
)

−( 1 −ϑ ) p h 

)
∂ 2 

∂ x 2 

]
∂ 4 χ

∂ x 4 

+ 

Ehb 

a 2 
∂ 2 

∂ t 2 

[
1 − h 

2 

β

(
1 + 

(
a h 
h 

)2 
)

∂ 2 

∂ x 2 

]
χ = qb. (81) 

We begin with a study of free vibrations of the beam q ≡ 0. For

his purpose we modify Eq. (81) using the non-dimensional coor-

inate ξ =πx / L and presenting the function χ ( ξ , t ) in its counter-

art form χ( ξ , t ) = 

L 
π X(ξ ) e iωt . Dividing the equation for X ( ξ ) by

 

i ωt and by D 

h h 2 

β
π6 

l 6 
˜ ϑ , where 

˜ 
 = 

(
1 + 

(
a h 
h 

)2 
)

− ( 1 − ϑ ) p h , (82) 

e get 

 

V I − 1 

k ̃  ϑ 

X 

IV −
ω 

2 
∗

(
1 + 

(
a h 
h 

)2 
)

˜ ϑ 

(
1 + 

(
d h 
h 

)2 
) X 

II + 

ω 

2 
∗

k ̃  ϑ 

(
1 + 

(
d h 
h 

)2 
)X = 0 , (83)

here the following non-dimensional parameters have been intro-

uced 

 = 

h 

2 π2 

l 2 β
, ω 

2 
∗ = 

12 l 4 ω 

2 

a 2 h 

2 π4 �
. (84)

It has been shown in Grigolyuk and Chulkov (1973) that the

haracteristic equation associated with Eq. (83) reads: 

 

3 − 1 

k ̃  ϑ 

s 2 −
ω 

2 
∗

(
1 + 

(
a h 
h 

)2 
)

˜ ϑ 

(
1 + 

(
d h 
h 

)2 
) s + 

ω 

2 
∗

k ̃  ϑ 

(
1 + 

(
d h 
h 

)2 
) = 0 , (85)

nd consequently, it may have one real and negative root. Introduc-

ng the following notations s 1 = −λ2 
1 
, s 2 = λ2 

2 
, s 3 = λ2 

3 
, the general

olution to Eq. (83) can be presented in the following form 

 ( ξ ) = C 1 sin ( λ1 ξ ) + C 2 cos ( λ1 ξ ) + C 3 sh ( λ2 ξ ) + C 4 ch ( λ1 ξ ) 

+ C 5 sh ( λ3 ξ ) + C 6 ch ( λ3 ξ ) . (86) 

On this step we need only to construct the characteristic equa-

ion to find the roots λ2 
1 , λ

2 
2 , λ

2 
3 by satisfying the homogeneous

oundary conditions. Note that the boundary conditions are the

ame as in the case if the static bending, and hence we have to

nd the roots of rather a complex transcendental equation. For the

ase of a h =0, d h =0 (classical case) and for a a h � = 0, d h � = 0

couple stress theory), the values of λ
1 
, λ

2 
, λ

3 
are the same and

hey depend only on the boundary conditions. Since −λ2 
1 is a root,

hen Eq. (85) implies 

 

2 
∗ = λ4 

1 

(
λ2 

1 k ̃
 ϑ + 1 

)(
1 + 

(
d h 
h 

)2 
)

kλ2 
1 

(
1 + 

(
a h 
h 

)2 
)

+ 1 

. (87) 
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In the classical case we have ( Grigolyuk and Chulkov, 1973 ) 

 

2 
clas = λ4 

1 

λ2 
1 kϑ + 1 

kλ2 
1 

+ 1 

. (88) 

Let us investigate the ratio r(λ2 
1 ) = ω 

2 ∗/ ω 

2 
clas 

expressed explicitly

n the form 

(λ2 
1 ) = 

(
λ2 

1 k ̃
 ϑ + 1 

)(
1 + 

(
d h 
h 

)2 
)

kλ2 
1 

(
1 + 

(
a h 
h 

)2 
)

+ 1 

kλ2 
1 + 1 

λ2 
1 
kϑ + 1 

, (89) 

here λ2 
1 

plays a role of the control parameter. 

. Numerical results and their validation 

Owing to the literature reports ( Sun et al., 2007; Awrejcewicz

t al., 2008; Krysko et al., 2014 ), the values of the size dependent

arameter l are quite different and still awaiting the estimation

or many materials. Since the three layer beams can be metallic,

olymer and made from the biological tissues, therefore the scalar

ength l parameter can change within a rather large interval. For

nstance, in the case of Al and Si materials, the scalar parameter

egarding length l equals to 10 −10 m. The results of the molecular

odeling reported in the reference Fleck et al. (1994) show that

he gradient effects occur the thickness of amount l ≈ 10 −9 m. In

eference Yang et al. (2002) , in the case of investigation of the cop-

er wire the value of the length parameter achieves l = 3 ·10 −3 m.

n the other hand, in the case of the rubber epoxides materials, in

eference Miller and Shenoy (20 0 0) has been shown that the scalar

arameter has been found experimentally as l = 12 · 10 −3 m for the

oung moduli E = 1.44 · GPa and the Poisson’s coefficient ν =0.38. 

As an example we consider a three layer beam with the micro-

tructural effect by taking into account the following length pa-

ameters l 1 = l 2 , l 3 for the given values t 1 = t 2 = 0.125, t 3 = 0.75, the

hickness h = 32 ·10 −6 m and length L = 240 ·10 −6 m, being under

ction of the constant and uniformly distributed load q 0 = 1 N / m . 

The numerical examples have been carried out for the three

ayer micro-beam composed of two copper made external layers

nd the middle layer made from the rubber epoxide material: 

 1 = E 2 = 120 GPa , ν1 = ν2 = 0 . 38 , l 1 = l 2 = 3 · 10 

−3 m , 

 3 = 1 . 44 GPa , ν3 = 0 , 38 , l 3 = 12 · 10 

−3 m 

.1. Static bending 

In the beginning the deflections w 

c 
0 

in the three layer beam

enter are computed where the simple boundary conditions are

aken and the classical theory of the Grigolyuk–Chulkov is em-

loyed ( l 1 = l 2 = l 3 =0, D 

h = D ). In the next step we find the values

f the deflection w 

h 
0 

in the beam center, which have been obtained

ased on our introduced theoretical background for the different

xed values of l 1 / h 1 = l 2 / h 2 for l 3 =0 and l 3 =12 ·10 −3 m. 

In Fig. 2 the dependencies characterizing the relative values

f the deflection of the beam center w 

h 
0 
/w 

c 
0 

versus the ratio

 / h = l 1 / h 1 are obtained (solid/dashed curve corresponds to l 3 =0 /

 3 =12 ·10 −3 m). 

The reported results show that for l 3 =0 and l 3 =12 ·10 −3 m the

eflection decreases while l 1 / h 1 increases. The similar like results

as been obtained in reference Fleck et al. (1994) for the plates

odelled by the Kirchhoff hypotheses and taking into account the

radient effects. Also in reference McFarland and Colton (2005) ,

here the microstructural effects for a simply supported Timo-

henko beam with the employment of the modified couple stress

heory of elasticity ( Kong et al., 2008 ) the similar effect has been

eported. Observe that for l 3 =12 ·10 −3 m the beam center deflec-

ions become less, i.e. the beam becomes more stiff while tak-

ng into account the micro-structural effect in the middle layer.
el of a three-layer micro- and nano-beams based on the hy- 
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Fig. 2. Relative values of the beam center deformation vs. l / h . 

Fig. 3. Profiles of the relative beam deflection value for different values l 1 / h 1 for 

l 3 / h 3 =0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Profiles regarding the beam deflection for different values of l 3 / h 3 for 

l 1 / h 1 =0. 

 

t  

b  

a  

o  

b  

b  

w  

d

4

 

s  

t  

t  

E

 

v  

t  

l

 

l  

 

t

 

n  

G  

p  

r  

p

5

 

t  

a  

s  

a  

t  

a  

m

 

t  
The figure presents also the dependence (dotted-dashed curve for

l 1 =0 and dotted curve for l 1 =3 ·10 −3 m) w 

h 
0 
/w 

c 
0 

versus the pa-

rameter l / h = l 3 / h 3 . In the latter case the deflection decreases vs.

increase of l 3 / h 3 . 

Furthermore, in Fig. 3 the profiles regarding the deflection value

w ( x )/ h of the simply supported three layer beam for l 3 / h 3 =0 and

for the different values of the non- dimensional length parameters

l 1 / h 1 are reported ( l 1 / h 1 =0 corresponds to the classical Grigolyuk–

Chulkov solution). 

Results reported in Fig. 3 imply that the obtained deflections

of our model are less than those yielded by the classical theory

of Grigolyuk–Chulkov on amount of six times for l 1 / h 1 =0.8. A de-

crease of the difference between two models while increasing the

thickness (when l 1 / h 1 is decreased) means that the size effect is

visible only on the micro-scale. The same conclusions have been

carried out in references Stolken and Evans (1998) and McFarland

and Colton (2005) , where the difference of the classical Bernoulli–

Euler beams as well as the simply supported Timoshenko beams

have been studied. 

In Fig. 4 the profiles regarding the deflection values w ( x )/ h of

the simply supported three layer beam for l 1 / h 1 = l 2 / h 2 =0 and the

different values of the scalar non-dimensional length parameter

l 3 / h 3 ( l 3 / h 3 =0 corresponds to the classical Grigolyuk–Chulkov so-

lutions) are shown. 
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Though the obtained deflections of the given model are less

han those yielded by the classical theory of Grigolyuk–Chulkov,

ut the influence of the parameter l 3 / h 3 is essentially less. For

ll types of the boundary conditions, deflections obtained using

ur model are always less than the corresponding values obtained

ased on the classical theory. Besides, the decrease of a difference

etween the results obtained using two models (our and classical)

hile increasing the size effect is essential only on the nano-scale

omain. 

.2. Free vibrations 

In what follows we investigate qualitatively the influence of the

ize effects in the beam on the frequencies of its free vibrations

aking into account the value of the negative root ( −λ2 
1 
) yielded by

he characteristic Eq. (85) . For this purpose, based on the formula

q. (89) , we find the ratio r(λ2 
1 ) . 

In Fig. 5 graphs of the values r(λ2 
1 
) of the three layer beam

ersus the ratio l / h = l 1 / h 1 are reported (solid curve corresponds

o l 3 =0, whereas the dashed curve to l 3 =12 ·10 −3 m; note that

 1 / h 1 =0 corresponds to the classical Grigolyuk–Chulkov solution). 

The mentioned figure includes also dependencies r(λ2 
1 
) against

 / h = l 3 / h 3 (dashed-dotted curve for l 1 =0 and dotted curve for

l 1 =3 ·10 −3 m for the parameter λ2 
1 

= 1 , 100 ( l 3 / h 3 =0 corresponds

o the classical Grigolyuk–Chulkov solution). 

For all values of the boundary conditions the ratio of the

on-dimensional frequencies r(λ2 
1 ) obtained through the classical

rigolyuk–Chulkov model always increases while increasing the

arameter l / h in an arbitrary beam layer. However, increase of the

atio l / h in the middle layer has less essential consequence in com-

arison to the increase of the l / h in the remaining layers. 

. Conclusions 

Based on both Grigolyuk–Chulkov and modified couple stress

heories, the new model validated by both static and dynamic

nalyses of the three layer micro-beams including only one

calar/length parameter has been constructed, which takes into

ccount the size effect. The employed Hamilton principle yielded

he governing equation of the motion as well as general boundary

nd initial conditions regarding displacements formulated for the

icro-beams. 

The proposed model of the micro-beam deformation is one of

he most simple models and it includes the only one scalar length
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arameter. However, it allows to take into account the micro-

tructural effects in both external as well as internal beam lay-

rs for any boundary conditions. The finally formulated boundary

alue problem is of sixth order, and in the case of the static prob-

em it is solved analytically. 

The carried out numerical results show that the studied beam

odel can explain the scale effect exhibited by the micro-beams.

he obtained deflections and stresses based on the introduced

odified couple stress model are less in comparison to the clas-

ical three layer beam model of the Grigolyuk–Chulkov while in-

reasing beam thickness. 
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