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Abstract 
We study non-linear vibrations of the geometrically non-linear Timoshenko 

beams on a basis of the modified couple stress theory, and taking into account the 

functionally graded material (FGM) of a beam. It is assumed that the studied 

beams are functionally graded along their thickness. In particular, investigation of 

influence of the size dependent coefficient and the coefficient responsible for 

material non-homogeneity/grading on the beam vibrations are studied. It has been 

discovered that the beams modelled on a basis of the modified couple stress 

theory are more stiff versus the beams modelled using the classical theory of 

continuum. The latter statement is valid for any distribution of the material 

characteristics along beam thickness. It has been illustrated that both mentioned 

coefficients, i.e. size dependent and characterizing the material non-homogeneity 

have essential influence of the beams vibrations. 
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1. Introduction  
 

Nowadays, the structural members fabricated using the functionally graded 

materials have important role in both theory and applications. The FGM can be 

fabricated as the non-homogeneous composites made from two or more material 

with desired changes of mechanical properties along a chosen direction [1].  

The roots of the couple stress theory can be found in the works of Toupin [2], 

Mindlin [3] and Koiter [4]. The recently proposed modification to the classical 

theory relies on the introduction, in spite of the Lamé constants, the size 

dependent parameter responsible for the observed scale effects. In this paper we 

are focused on a study of chaotic dynamics of the FGM beams taking into account 

the size dependent behaviour, which belongs to a novel branch of investigations 

and has not be reported so far in the existing literature [5-7].  

It should be emphasized that nonlinear statics and dynamics of the beams, 

plates and shells have been studied by the authors of this paper for many years [8-

10]. The general methods devoted to study vibrations of the structural members 

(beams, plates, panels and shells), which can be reduced to analysis of only one 

spatial variable are reported in the recent monograph [11].  

In this paper we study Timoshenko beam dynamics on a basis of the modified 

couple stress theory. We introduce the so called bending line, which essentially 

simplifies the governing equations, in contrary to the method proposed in 

reference [7]. We employ the control parameters, i.e. the size dependent 

coefficient and the coefficient responsible for the material gradient and we 

investigate their influence on the characteristic vibrations, as well as on the 

scenarios of transition from regular to chaotic dynamics. It is shown that the 

beams modelled via the modified couple stress they are more stiff in comparison 

to those modelled via the classical theory of continuum. This is validated and 

generally true observation independently on a way of the material distribution 

along the beam thickness.  

 

2. The governing equations 
 

The equations of motion of the studied Timoshenko beam follow 

[𝑘1 (𝑢,𝑥 +
1

2
(𝑤,𝑥)

2
)]

,𝑥
= 𝑚0𝑢,tt + 𝑄𝜓,tt 

[𝑘2𝜓,𝑥 + 𝑘4(𝜓,𝑥 −𝑤,xx)],𝑥 − 𝑘3(𝜓 + 𝑤,𝑥) = 𝑄𝑢,tt + 𝐼~𝜓,tt, 

{[𝑘1 (𝑢,𝑥 +
1

2
(𝑤,𝑥)

2
)]𝑤,𝑥 + 𝑘3(𝜓 + 𝑤,𝑥)}

,𝑥
+ [𝑘4(𝜓,𝑥 −𝑤,xx)],xx − 𝑞 = 𝑚0𝑤tt, 

(1) 

where 
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𝑘1 = ∫𝐸(𝑧̃)dA
𝐴

, 𝑘2 = ∫𝐸(𝑧̃)𝑧2dA
𝐴

= ∫𝐸(𝑧̃)(𝑧̃ − 𝑧̃𝑐)
2dA

𝐴

, 𝑘3 = 𝑘𝑠∫𝜇(𝑧̃)dA
𝐴

,

𝑘4 =
1

8
∫𝛽(𝑧̃)dA
𝐴

=
1

4
∫𝜇(𝑧̃)𝑙2(𝑧̃)dA
𝐴

, 𝑚0 = ∫𝜌(𝑧̃)𝑑A
𝐴

,

 

𝑄 = ∫𝜌(𝑧̃)𝑧dA
𝐴

= ∫𝜌(𝑧̃)(𝑧̃ − 𝑧̃𝑐)dA
𝐴

, 𝐼 = ∫𝜌(𝑧̃)𝑧2dA
𝐴

= ∫𝜌(𝑧̃)(𝑧̃ − 𝑧̃𝑐)
2dA

𝐴

, 

(2) 

and the deflection curve is defined through the following relation 

𝑧̃с = ∫ 𝐸(𝑧̃)𝑧̃dA
𝐴 ∫ 𝐸(𝑧̃)dA

𝐴
⁄ . (3) 

We employ also the thickness dependent physical quantities like the Young 

modulus 𝐸(𝑧̃), shear modulus 𝜇(𝑧̃) and the beam density 𝜌(𝑧̃). The functionally 

grading of the beam material with respect to the beam thickness is introduced 

through the following linear formulas: 

𝐸(𝑧̃) = 𝐸0 +
𝑧̃+

ℎ

2

ℎ
(𝐸1 − 𝐸0), 𝜇(𝑧̃) = 𝜇0 +

𝑧̃+
ℎ

2

ℎ
(𝜇1 − 𝜇0),  

𝜌(𝑧̃) = 𝜌0 +
𝑧̃+

ℎ

2

ℎ
(𝜌1 − 𝜌0). 

(4) 

  

In order to carry out integrations in formulas (2), (3), the following coupling 

between the elastic and shear moduli is introduced  

𝐸1 = 𝑃𝐸𝐸0, 𝜇1 = 𝑃𝜇𝜇0, 𝜌1 = 𝑃𝜌𝜌0.  (5) 

Substitution of (4), (5) into (3) yields 

𝑧̃с =
ℎ

12

𝑃𝐸−1

1+
1

2
(𝑃𝐸−1)

. (6) 

It follows from formula (6) that for 𝑃𝐸 > 1/𝑃𝐸 < 1, we have 𝑧̃𝑐 > 0 and the 

neutral line of the FG beam is moved above/below the neutral line of the 

counterpart homogeneous beam (𝑃𝐸 = 1). Employing relations (4)-(6) the values 

of the coefficients in formula (2) the shear coefficient 𝑃𝐸 are simplified.  

The following non-dimensional parameters are introduced 

𝑤̄ =
𝑤

ℎ
, 𝑢̄ =

ua

ℎ2
, 𝜓̄ =

𝜓𝑎

ℎ
, 𝑥̄ =

𝑥

𝑎
, 𝛾1 =

𝑎

ℎ
, 𝛾2 =

𝑙

ℎ
, 𝑞̄ = 𝑞

𝑎2

ℎ2𝐸
,

𝑡̄ =
𝑡

𝜏
, 𝜏 =

𝑎

𝑐
, 𝑐 = √

𝐸

𝜌
, 𝜀 = 𝜀

𝑎

𝑐
, 𝑘̄1 =

𝑘1
AE0

, 𝑘̄2 =
𝑘2

AE0ℎ
2
, 𝑘̄3 =

𝑘3
AE0

, 𝑘̄4 =
𝑘4

AE0𝑙
2
.

(7) 

Taking into account the so far introduced simplifications and notations, 

neglecting the bars over non-dimensional quantities yields the following beam 

governing equations 

𝑘1 [𝑢,𝑥 +
1

2
(𝑤,𝑥)

2
]
,𝑥
= 𝑢,tt 

𝑘2𝜓,xx + 3𝑘4𝛾2
2(𝜓,xx −𝑤,xxx) − 12𝑘𝑠𝑘3𝛾1

2(𝜓 + 𝑤,𝑥)=𝜓,tt, 

1

𝛾1
2 {𝑘1 [(𝑢,𝑥 +

1

2
(𝑤,𝑥)

2
)]𝑤,𝑥}

,𝑥
+ 𝑘3(𝜓,𝑥 +𝑤,xx) + 𝑘4

𝛾2
2

𝛾1
2 (𝜓,xxx −𝑤,xxxx) − 𝑞

= 𝑤,tt+ 𝜀𝑤,𝑡 

(8) 
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We consider, as an example, the rigid clamping of the beam ends: 
𝑤(0, 𝑡) = 𝑤(1, 𝑡) = 0;𝑤,𝑥 (0, 𝑡) = 𝑤,𝑥 (1, 𝑡) = 0;

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0;𝜓(0, 𝑡) = 𝜓(1, 𝑡) = 0.
 (9) 

 

and the following initial conditions are taken  

 

𝑤(𝑥, 0) = 𝑤,𝑡 (𝑥, 0); 𝑢(𝑥, 0) = 𝑢,𝑡 (𝑥, 0) = 0; 𝜓(𝑥, 0) = 𝜓,𝑡 (𝑥, 0) = 0. (10) 

 

PDEs and the boundary/initial conditions (8)-(10) have been reduced to ODEs 

using the FDM (Finite Difference Method) of a second order accuracy. We have 

validated the numerical results through the 6th and 4th Runge-Kutta methods, and 

finally we have employed the latter one (see reference [13] for the motivation 

choice). Furthermore, the applied Runge principle yields the optimal choice of the 

beam partition along its length as well as time computational step. 

 

3. Numerical results 
 

Numerical investigation of the static and dynamics problems of the FG 

Timoshenko beams has been carried out for the following fixed parameters: 

relative beam length 𝛾1 = 𝑎 ℎ⁄ = 30, size dependent parameter 𝛾2 = 𝑙 ℎ⁄ = 0; 0.3; 

the coefficients describing changes of the Young and shear moduli regarding 

beam thickness (7) are taken as follows (𝑃𝐸 = 𝑃𝜇 = 𝑃𝜌 = 𝑃 = 1; 2; 0.5). The 

harmonic load 𝑞 = 𝑞0sin(𝜔𝑝𝑡) is uniformly distributed along the beam length. 

The obtained results include construction of the so called charts of the vibration 

kind on the amplitude-frequency plane {𝑞0, 𝜔𝑝}, as well as investigation of the 

following vibration characteristics: a) signal 𝑤(0.5; 𝑡); b) Fourier spectrum based 

on the FFT 𝑆(𝜔); c) 2D wavelet spectrum based on the Morlet spectrum; d) phase 

portrait 𝑤̇[𝑤(𝑡)]. 
In order to analyse the vibration character the following algorithms devoted to 

computation of the Lyapunov exponents are employed: the Wolf algorithm [14], 

the Rosenstein method [15], the Kantz algorithm [16], as well as the neural 

network method [17]. 

One of the important problems while constructing the vibrational charts is their 

accuracy and transition of information regarding the dynamic processes. In result 

of the numerical experiments we have chosen the charts with the resolution 300 ×
300. Fig. 1 reports color interpretation of the detected beam vibration regimes  

 

 

 
 

Fig. 1. Color notation of the beam vibrations. 
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We have studied eighth different combination of the control coefficients (see 

Table 1). 

 

Table 1. The employed parameters 

 

Variant 1 2 3 4 5 6 
Parameters 𝛾2 = 0 

𝑃 = 1 
𝛾2 = 0.3 
𝑃 = 1 

𝛾2 = 0 
𝑃 = 2 

𝛾2 = 0 
𝑃 = 0.5 

𝛾2 = 0.3 
𝑃 = 2 

𝛾2 = 0.3 
𝑃 = 0.5 

 

The following notation has been introduced: P =1 – homogeneous material; P 

=2 – material with 𝐸1 = 2𝐸 located on the beam upper part, and material with 

𝐸2 = 𝐸 located on the beam down part; P =0.5 – change of the position, i.e. now 

material with 2Е is located down. In Tables 2 -7 the charts of vibration kinds as 

well as the vibration characteristics corresponding to fixed values 𝑞0 =

15000,𝜔𝑝 = 6.9 are reported. 

 

3.1. Homogeneous beams (variants 1-2) 

 

In what follows we report the results of investigation of the homogeneous 

beams with a single stiffness E=E0. 

The charts of the vibration kinds show that inclusion of the size dependent 

behavior 𝛾2 = 0.3 implies increase of the periodic vibration zones with a 

simultaneous decrease of chaotic vibration zone in comparison to the results 

obtained for 𝛾2 = 0. In the case of the chart 𝛾2 = 0.3 periodic zones are located 

symmetrically regarding the frequency 𝜔𝑝 = 6.9. In the case of 𝛾2 = 0 there is lack 

of periodic zones for 𝜔𝑝 > 8.7.  

In addition, there is lack of a chaotic island located in periodic zone as it 

happened for the chart associated with 𝛾2 = 0.3.  Based on the so far obtained 

results one may conclude that inclusion of the size dependent effect yields robust 

zones with respect to stability loss, i.e. there is a lack of occurrence of 

discontinuities in the periodic zones. 

 

Table 2. Maps of the modes of vibrations of a homogeneous beam 

 

𝛾2 = 0 𝛾2 = 0.3 
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Analysis of the vibration characteristics implies that the influence of the size 

dependent coefficient (𝑃𝐸) yields not only decrease of the amplitude of vibrations, 

but implies the qualitative changes of the exhibited vibrations. Namely, for 𝛾2 = 0 

the Fourier and wavelet spectra contain four frequencies: excitation frequency – 

𝜔𝑝,independent frequency 𝜔1 = 0.3145 as well as two dependent frequencies: 

𝜔2 = 0.965,𝜔3 = 6.258. Remarkably, a distance between stable and unstable 

frequency, as well as between 𝜔𝑝 and 𝜔3 is equal to 0.65. In the case of 𝛾2 = 0.3 

the following frequencies are exhibited 𝜔𝑝, 𝜔1 = 0.712,𝜔2 = 2.135,𝜔3 =

2.629,𝜔4 = 4.053,𝜔5 = 5.477. The independent frequency 𝜔1, the remaining 

frequencies are associated either with 𝜔1 or 𝜔𝑝 and a distance between the 

independent frequencies and dependent ones is constant 1.42. 

 

Table 3. Characteristics of vibrations of a homogeneous beam 

 
𝛾2 Signal FFT 2D Morlet 

wavelet 
Phase portrait 

0 

 
   

0.3 

 
   

 

3.2. FG beams (variants 5-8) 

 

We consider the beam vibrational regimes and the vibration characteristics of 

the functionally graded beams with two possibilities of location of the most stiff 

layer for the different values of the size dependent coefficients (𝛾2 = 0; 0.3). 
 

3.2.1. FG beams with the most stiff layer located on the beam top (P=2) 

 

Again, influence of the size dependent behavior 𝛾2 = 0.3 implies increase of 

the periodic zones and decrease of the chaotic zones in comparison to the case for 

𝛾2 = 0. Furthermore, the chaotic island exhibited in the chart 𝛾2 = 0 vanishes for 

𝛾2 = 0.3.  

 

In contrary to the previous example, now in the chaotic zone there is an island 

of bifurcations. Furthermore, chaotic zones are extended up to the maximum 

amplitude of the harmonic load for both charts (𝛾2 = 0.3, 𝛾2 = 0), which stands in 

contrary to the previously studied cases. 
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Table 4. Maps of the modes of vibrations of a heterogeneous beam with the 

location of a harder layer for 02/  zh . 

 

𝛾2 = 0  𝛾2 = 0.3  

  
 

In both cases the multi-frequency vibrations are exhibited. For 𝛾2 = 0 the 

frequency spectrum consists of 10 frequencies: 𝜔𝑝, 𝜔1 = 0.0874, 𝜔2 = 0.6827, 

𝜔3 = 1.45,𝜔4 = 2.043, 𝜔5 = 2.812, 𝜔6 = 3.4,𝜔7 = 4.174,𝜔8 = 4.769,𝜔9 = 5.538. 

In the case of 𝛾2 = 0.3 the spectrum is composed of 12 frequencies: 𝜔𝑝, 𝜔1 =

0.267,𝜔2 = 0.797, 𝜔3 = 1.333,𝜔4 = 1.861,𝜔5 = 2.396,𝜔6 = 2.929,𝜔7 = 4.239, 
𝜔8 = 4.771,𝜔9 = 5.303,𝜔10 = 5.836,𝜔11 = 6.36. 

In both cases 𝜔1 plays a role of the independent frequency.  

 

Table 5. Characteristics of vibrations of a heterogeneous beam 

 
𝛾2 Signal FFT 2D Morlet 

wavelet 
Phase portrait 

0 

 
   

0.3 

 
   

 

3.2.2. FG beam with the most stiff layer located on the beam bottom (P=0.5)  

 

In contrary to all previous variants in the chart 𝛾2 = 0 there are not any chaotic 

windows inside the periodic zones, i.e. the studied structure is most stable in 

periodic zones.  
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Both charts exhibit existence of the frequency 𝜔𝑝 2⁄ , in contrary to the all 

previously reported results.  

 

Table 6. Maps of vibrations of a heterogeneous beam with the location of a harder 

layer for 2/0 hz  . 

𝛾2 = 0 𝛾2 = 0.3 

  
 

In this case we have detected the essential difference in the vibration regimes 

corresponding to the cases with/without inclusion of the size dependent effect. 

Namely, for the case 𝛾2 = 0 the vibrations take place with the excitation frequency 

𝜔𝑝 whereas in the case 𝛾2 = 0.3 the multi-frequency vibrations are exhibited: 

𝜔𝑝, 𝜔1 = 0.27,𝜔2 = 0.6474,𝜔3 = 1.563,𝜔4 = 2.479,𝜔5 = 2.856,𝜔6 = 3.774,𝜔7 =

4.693,𝜔8 = 5.067,𝜔9 = 5.5607,𝜔10 = 5.981. It should be mentioned that the 

frequency 𝜔6 possesses time dependent power with clearly exhibited period, what 

is seen on the wavelet spectrum. 

 

Table 7. Characteristics of vibrations of a heterogeneous beam 
𝛾2 Signal FFT 2D wavelet Phase portrait 
0 

 
   

0.3 

 
   

 

Concluding remarks 

 

1. Non-linear dynamics of the FG Timoshenko beams is studied on a basis of 

the modified couple stress theory with employment of the bending line concept. 
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2. It has been shown that the FG beam with the top located stiff layer is most 

suitable for engineering applications for a given harmonic load. In the case of the 

homogeneous beam with the stiff layer located on the beam bottom part we have 

discovered essential dependence of the obtained results on the size dependent 

coefficient. 

3. The Lyapunov exponents obtained by the Wolf algorithm have been 

validated also by the computational methods of the Rosenstein, Kantz and neural 

networks. 

All of the employed methods yields the qualitatively same results, i.e. either 

positive or negative value of the largest Lyapunov exponent estimation in all 

studied time intervals. 

 

Acknowledgements. This work has been supported by the Grant RSF № 16-11-

10138. 
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