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A B S T R A C T

This work is devoted to strain analysis and optimal design of a Functionally Graded (FG) rods and beams with
small inclusions. The homogenization procedure plays a key role in our investigations. The method is illustrated
using an example of the rod longitudinal deformation and bending of a beam. We consider the cases of FG
inclusion sizes and FG steps between inclusions separately. Particular problems of optimal design are discussed
in some details. The mathematical model of the bending beam, which adapts to the external load action, is
proposed and an illustrative example of the adaptation process is given.

1. Introduction

The mechanical response of materials with spatial gradients in
composition and structure is of considerable interest in numerous and
diverse disciplines, such as tribology [1], geology [2,3] optoelectronics,
biomechanics [4,5], fracture mechanics [6], and nanotechnology [7,8].
A fundamental approach allowing for deduction of the macro-scale laws
and the constitutive relation by proper homogenization over the micro-
scale is known as the homogenization method [9–17]. This method is
also successfully used for modeling and simulating mechanical behavior
of the FG Materials (FGM) [18,19] and the Functionally Graded
Structures (FGS). Typically the term FGS is associated with the
constructions made/fabricated from FGM. However, in this paper, the
term FGS is understood in a broader manner, since the heterogeneous
constructions with a controlled heterogeneity parameter are also taken
into account (for instance, the reinforced plates and shells with
nonuniformly distributed ribs of different stiffness; goffer-type con-
structions consisting of different amplitudes of goffer shapes and their
half-wave length, etc. [20–25]). FGMs are composites consisting of two
different materials with a gradient composition. In the case of applica-
tion of the homogenization method, the coefficients of periodic
composites state equations are usually [9–13] approximated by the
first terms of their Fourier series (Fig. 1a). In a similar way [20–25], the
coefficients of FGSs state equations with FG inclusion sizes (Fig. 1b) and
FG step between the inclusions (Fig. 1c) can be approximated.

However, the truncated Fourier series (even for a small number of
terms) relatively well approximate the coefficients of the constitutive
equations for large concentration of inclusions (fibres, ribs, etc.), when
the distance between inclusions is of the same order as their typical
sizes. However, for small concentration, when the distance between
inclusions is essentially larger than their size, the constitutive equation
coefficients are approximated by impulse periodic function (see, for
instance, Fig. 1d). In this case, a usual homogenization procedure may
be accompanied by some problems to be directly applied.

Therefore, for a small concentration of inclusions, it is recom-
mended to use the further presented variant of homogenization
method, where small sizes of the inclusions with respect to the distance
between them are utilized to employ the asymptotic procedure.
Modifications of this approach for FGS with small inclusion concentra-
tions are also proposed.

The applied method is illustrated using a relatively simple problem,
i.e., we consider a rod with a longitudinal strain. In our investigations,
the rod diameter is taken commensurable with inclusions sizes.

2. FG inclusion sizes

FG properties can be achieved, for instance, by applying different
inclusion sizes. Let us analyze an influence of different sizes of
inclusions on the longitudinal rod stiffness, keeping the distance
between inclusions (Fig. 2) constant. We define changes of the inclusion
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dimensions by a function V V x= ( ).
In what follows, we consider a deformation of the FGM rod

subjected to the spatially distributed load P z( ) and the inclusions
(Fig. 2) by being equivalent to concentrated elastic elements (Fig. 3).
Observe that for composites with regular structure, the analogous
models of two-component rod are applied (see references [26–28]).

Obviously, a number of n is large, and hence the distance
l z z= −i i−1 between them is much less than the rod length L, l«L.
Therefore, in order to investigate the longitudinal deformation of the
two-component rod (Fig. 3), one may apply the following variant of the
homogenization procedure.

Equilibrium equation of the rod part between the concentrated
elastic elements has the following form

d u
dx

p= ,
2

2 (1)

where: x z l= / ; u v l= / ; v is the longitudinal displacement; p = ;P lx
lk
( )

0
k0=E0F; E0 is Young's modulus of the rod material; F is the cross section
area.

Since the approximate inclusions composed of the elastic elements
can be treated as discrete elastic cross sections, the associated compat-
ibility conditions regarding the i-th inclusion follow

u u du
dx

du
dx

ku( ) = ( ) ; − = ,+ −
+ −⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ (2)

where (…) = lim (…); (…) = lim (…);
x i x i

−

= −0

+

= +0
k = ;lk x

k
( )1
0

k1 is the stiffness of

the discrete elastic inclusions.

3. Homogenization procedure for longitudinal deformation

Owing to the homogenization approach, let us introduce the “fast”
variable ξ

ξ x ε= / , (3)

where ε=1/n «1.
We treat the variables x and ξ as independent ones, and the

differential operator used in (1), (2) has the following form

d
dx x

ε
ξ

= ∂
∂

+ ∂
∂

.−1

(4)

Displacement u can be presented in the following form

u u x ε u x ξ ε u x ξ= ( ) + ( , ) + ( , ) + ... ,0
2

1
3

2 (5)

where us (s=1,2,…) is a periodic function with respect to ξ with period
n.

Substituting Ansatzes (4), (5) into Eq. (1) and compatibility condi-
tion (2) and carrying out the splitting with respect to ε, the following
homogenized equation describing the longitudinal displacement of the
two-component rod is obtained

d u
dx

k x u p+ ( ) = .
2

0
2 0 (6)

Micromechanical effects are described by the functions us (s=1,2,
…). For the function u1 on the period ξ n∈(0, )one obtains:

u
ξ

k x u ξ n∂
∂

= ( ) −
2

.1
0
⎛
⎝⎜

⎞
⎠⎟ (7)

Next, the function u1 is periodically extended along the whole rod
length.

4. Inverse problem

The main advantage of the proposed approach is that it allows to
efficiently solve the problems of optimization, i.e., problems devoted to
determination of optimal characteristics of the internal material
structure protecting the given structure properties. In the studied case
of the FG amplitudes, the target characteristic is the function V˭V(x)
governing a rule of the inclusion sizes change. As an example we
consider the problem of determination of the function V(x) that
provides the largest longitudinal stiffness of the rod under a given load.

It is convenient to rather take the function k(x) as the control
function instead of the function V(x).

Without loss of generality, let us take the boundary conditions in the
following form

u du
dx

| = 0, | = 0.x x n=0 = (8)

In order to measure the rod stiffness properties, we take energy of
the elastic deformations and use zero-order approximation of the
displacement (5). Then, we define a minimum of the following
functional

Fig. 1. Schematic view of the constitutive equation coefficient a x( )for a composite: a) periodic structure; b) FG inclusion sizes; c) FG steps between inclusions; d) small inclusion
concentration.

Fig. 2. Schematic view of the rod with FG sizes of inclusions.

Fig. 3. Schematic view of the two-component rod with concentrated elastic elements.
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∫I pu dx= → min .
n

k
0

0 (9)

One can introduce the following isoperimetric condition which
guarantees constant total stiffness inclusions

∑ k x C( ) = .
i

n

i d
=1

−1

(10)

For large number of inclusions and smooth function k x( ), сondition
(10) can be transformed to the isoperimetric form owing to the
application of an Euler-Maclaurin formula [29].

∫ k x dx C C( ) = ≈ .
n

d
0 (11)

In practice, the inclusion sizes meet the technological constrains.
Hence, the next constraint for the target function of the following form
is required

k k x k≤ ( ) ≤ .min max (12)

Constraint (12) is satisfied through introduction of the following
new control function θ(x) [30].

k α γ θ= + sin , (13)

where: α k k= 0.5( + ),max min γ k k= 0.5( − ).max min
Obtaining the function θ x( ) requires solution to the inverse problem

(6)–(13):

∫I pu dx= → min ,
n

θ
0

0 (14)

∫I γ θdx c= sin = ,
n

1
0 (15)

d u
dx

α γsinθ u p+ ( + ) = ,
2

0
2 0 (16)

u
du
dx

(0) = 0, = 0,
x n

0
0

=

⎛
⎝⎜

⎞
⎠⎟ (17)

where c denotes a constant.
Applying variation of the Lagrange functional of the problem (14)–

(17) and introducing the conjugate variable, we get the optimality
condition

θ u λcos ( − ) = 0.0
2 (18)

As it has been pointed out in Refs. [20–25], the occurrence of
singular points belongs to typical problems for optimization of FGS. If
one is looking for the control function θ x( ) as a continuous one, then it
is impossible to satisfy the first boundary condition in Eq. (17).
Therefore, we assume the control function θ x( ) in the form of a
piecewise continuous function, which satisfies the following condition
on the interval x(0, )1

θcos = 0, (19)

while on interval x n( , )1 we have

u λ− = 0,0
2 (20)

where λ stands for the Lagrange multiplier; x c( )1 denotes the boundary
of an area without inclusions.

One gets a coordinate of the point х1 from the continuity condition
of both the function u0 and its derivative u0x (these conditions are
yielded by the Weierstrass-Erdmann conditions [31]):

u u
du
dx

du
dx

( ) = ( ) , = .0
−

0
+ 0

−
0

+⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ (21)

The conditions (21), taking into account relations (20), can be
written in the following form

u x λ( ) = ± ,01 1 (22)

du
dx

= 0,
x x

01

= 1

⎛
⎝⎜

⎞
⎠⎟ (23)

where u01 denotes displacement in the interval x(0, ).1 Relations (13),
(16), (19) allow to derive the following equation:

d u
dx

k u p+ = ,
2

01
2 min 01 (24)

with conditions (8), (23). For known u01, conditions (22) allow to obtain
x1. Introducing Ansatz (22) into Eq. (16), we find a formula for θsin in
the interval x n( , ).1 Then, taking into account relation (13), the
following optimal control function is defined

k
k x x

x x n=
, ∈ (0, ),

± , ∈ ( , ).p
λ

min 1

1⎪

⎪⎧⎨
⎩ (25)

The constant λ is found from an isoperimetric condition (11), which
takes the following form

∫ pdx λ k x= ± (С − ).
x

n

min 1
1 (26)

5. Example of amplitude optimization

In order to illustrate the proposed method, we consider the
problems (6)–(12) for linearly distributed load, i.e.,

p ρx= , (27)

where:ρ is the positive constant.
Assume that the minimal size of inclusions is equal to zero, i.e.,

k = 0.min (28)

Using Eqs. (27), (28) and taking into account the Eq. (24) and
boundary conditions (8), (23), one obtains

u ρ x x
x=

6
−

2
.01

3
1
2⎛

⎝
⎜⎜

⎞
⎠
⎟⎟

(29)

Eqs. (22), (27)–(29) give

λ ρ x=
3

.1
3

(30)

Eq. (26), taking into account relations (27), (28), (30), implies the
following equation to find x :1

x x n2С + 3 − 3 = 0.1
3

1
2 2 (31)

Observe that Eq. (31) does not concern an intensity of the load ρ,
i.e., x1 depends only on the applied load character, which is typical for
the linear statement formulation. We take the following parameters in
order to carry out the numerical simulations: n = 100, С = 10 , …, 10 .2 3

It should be emphasized that for the chosen parameters, Eq. (31)
uniquely defines x ,1 since among any three roots of the equation, only
one is real positive.

The function x1 versus С is reported in Fig. 4.
Finally, (25) yields the optimal control function

k
x x

x x n=
0, ∈ (0, ),

, ∈ ( , ).ρx
x

1
3

1
1
3

⎪

⎪

⎧
⎨
⎩ (32)

Let us estimate the efficiency of the proposed optimization. For this
purpose, we compare the extension of the rod for the optimal stiffness
distribution for the equivalent cross section (32) and extension of the
rod of the regular form. Extension Δ0 of the optimal rod can be found
from Eqs. (20), (30):
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Δ
ρx

=
3

.0
1
3

(33)

Integration of Eq. (6) for k n= С/ , taking into account the boundary
conditions (8) and the load (27), yields the following explicit estimating
formula for extensions of the regular form rod:

Δ ρn=
С

1 − tan С
С

.
3⎛
⎝⎜

⎞
⎠⎟ (34)

With the help of relations (33), (34) we find the relative decrease in
the rod extension due to optimal distribution of the inclusions volume

δ
Δ Δ

Δ
=

−
100%.0

(35)

For the considered parameters, the relative decrease in the exten-
sion δ is of 50%, i.e., for С = 10 ,2 δ = 46.6%; С = 5⋅10 ,2 δ = 49.1%;
С = 10 ,3 δ = 49.7%. It should be noted that a small variation δ
corresponds to a large difference in summed value of inclusions С.
The latter behavior can be explained in the following way. We quantify
the relative increase in the stiffness generated only by rearrangement of
the inclusion due to the assumed rule. The inclusions stiffness increase
is compared with the stiffness of a regular rod having the same
inclusions and the same their total magnitude as the investigated
functionally graded rod. Obviously, in general, when we consider a
linear problem, then variation of δ should not depend on С. The
obtained variations of δ are implied by nonlinear equations (for
instance (31)) governing a process of the optimized decomposition of
inclusions.

6. FG steps between inclusions

Now we will analyze an influence of FG steps between equal
inclusions. Consider the basic two-component rod (Fig. 3) with equal
elastic inclusions, k const= . Assuming a fixed number of inclusions n
and L n= , we have l = 1. Now we change the distance l. In order to
describe the rule of the step changes, and following reference [25], we
apply a function f x( ). This is smooth function with prescribed values in
n points:

f x i( ) = ,i (36)

where xi is a coordinate of the i-th inclusion.
In the problems of optimization of inclusion arrangement, the

coordinates of inclusions xi are unknown to be defined via solution of
the employed optimization procedure. It is assumed that our optimiza-
tion scheme allows us to obtain a continuous function f x( ) with the help

of variational computation. The function f x( ) should satisfy the given
conditions and assumptions of the used optimization procedure. When
the function f x( ) is found, the optimal coordinates xi of inclusions are
defined by Eq. (36) for i n= 1, ... , .

For a constant number of inclusions, the relation between function
and coordinates of the inclusions can be found with the help of Fig. 5,
which can be treated as a nomogram.

Fig. 5 implies that in order to keep a constant number of inclusions,
the function f x( ) should have the following properties

f f n n f x(0) = 0, ( ) = , ′( ) ≥ 0. (37)

Relation Δf f x Δx≈ ′( ) yields the approximation to the steps between
inclusions. For the given step Δf = 1 (Fig. 3), the step of the FG rod
Δx s= takes the following form

s
f x

≈ 1
′( )

.
(38)

7. Direct problem for FG steps

Proceeding in a similar way to that used for the FG inclusion sizes,
we consider now the inclusions thickness approaching to zero, and the
equations governing the rod deformation with the FG steps take the
following form

∑d u
dx

k δ f x i u p+ ( ( ) − ) = ,
i

n2

2
=1

−1

(39)

where δ x( ) denotes the Dirac delta function.
We introduce the following variable η f x= ( ) x f η( = ( )).−1 Therefore,

Eq. (39) can be transformed to the following form

∑d
dη

du
φdη

k δ η i φ u p+ ( − ) = ,∼
i

n

=1

−1⎛
⎝⎜

⎞
⎠⎟ (40)

where: φ = ,d f
dη

−1
p φ p= .∼

Eq. (40) is an equation with periodically discontinuous coefficients,
and we can apply a homogenization procedure [9]. The equation of
equilibrium between inclusions (1) and compatibility conditions (2) for
the considered FG steps take the following form

Fig. 4. The function x1 versus С, n = 100.

Fig. 5. Nomogram to define coordinates of the i-th elastic inclusion for a given function
f x( ).
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d
dη

du
φdη

p= ,∼⎛
⎝⎜

⎞
⎠⎟ (41)

u u du
φdη

du
φdη

ku( ) = ( ) , − = .η i η i
η i η i

= +0 = −0
= +0 = −0

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ (42)

After introduction of the fast variable ξ η ε= / and applying series

u u η ε u η ξ ε u η ξ= ( ) + ( , ) + ( , ) + ... ,0
2

1
3

2 (43)

relations (41), (42) yield the following homogenized equations for u :0

d
dη

du
φdη

ku p+ = ∼0
0

⎛
⎝⎜

⎞
⎠⎟ (44)

and the equation for the correction term u :1

u
ξ

kφ u ξ n∂
∂

= −
2

.1
0
⎛
⎝⎜

⎞
⎠⎟ (45)

In the original variable we get

d u
dx

kf x u p+ ′( ) = .
2

0
2 0 (46)

It should be emphasized that the obtained homogenized Eq. (46)
represents all physical aspects of the problem. The second term
occurring on the left hand side of this equation presents an "additional
stiffness" governed by inclusions and continuously distributed along the
rod length. In the case of FGS, this distribution is not uniform. In the
case of FG steps, denser localization of inclusions involves larger
contribution of the "additional stiffness". Mathematically, this property
is described by the derivative of the step function f x′( ) in Eq. (46).

8. Inverse problem for FG steps

Consider the inverse problem for Eq. (46) with the boundary
conditions (8), which uses the following control function

ψ kf x= ′( ). (47)

Minimizing functional I represents the energy of the elastic defor-
mation

∫I u qdx= → min .
n

ψ
0

0 (48)

The condition for keeping the number of inclusions (37) constant
yields the isoperimetric form for the control function

∫ ψdx kn= .
n

0 (49)

We apply also the technological bounds for ψ , analogous to (12),
which will be satisfied automatically after introduction of the control
function (13). One may easily verify that the considered inverse
problem for the FG rod (46)–(49) coincides with the analogous problem
(6)–(12). In what follows, we illustrate how to find the solution to the
considered problem.

9. Example of steps optimization

We consider optimization of the steps for the rod (46). Owing to the
physical and technological motivations, it is clear that a step/distance
between the successive inclusions is subjected to constrains. This is why
the function ψ , governing variation of the step between inclusions (38),
should obey some constrains in a way similar to the condition (12). In
the given example we assume that the following constrain holds

ψ = 0.min (50)

It means that inclusions do not appear in the interval x(0, )1 , since
formula (38) estimating the step between inclusions implies that when
condition (50) is satisfied, then the step between inclusions tends to

infinity (s = ∞). The illustrated requirement (50) yields the particular
case considered in Section 5 (for k ψ= ). Using the control function due
to formula (32), the function f x( ) is calculated with the help of the
condition f n n( ) = . Eventually we get for load (27)

f x
x x

n x x n
( ) =

0, ∈ (0, ),

+ , ∈ ( , ).ρ x n
x k

1

3 ( − )
2 1

2 2

1
3

⎧
⎨⎪
⎩⎪ (51)

The function f x( ) for ρ = 100, k = 10, n = 100 is shown in Fig. 6.
Introduction of expression (36) into Eq. (51) yields optimal

coordinates of the inclusions:

x n
x k n i

ρ
= −

2 ( − )
3

,i
2 1

3

(52)

where: i = 2, 3, 4, ... , 100, and x1 is defined by Eq. (31).
In Fig. 7 the window enlargement of a part of the nomogram (Fig. 6)

is shown for two first inclusions.
The first inclusion coordinate (x = 11.451 ) is found from Eq. (31),

whereas the second inclusions coordinate x = 13.882 is given by formula
(52).

10. Bending of a beam with FG inclusion sizes

We consider bending of a beam with FG inclusion sizes (Fig. 8)
loaded by a normal load Q(z). The beam is made of a homogeneous
material and has inclusions of varying sizes. The equilibrium equations
between successive inclusions follow

d M
dx

q x d w
dx

Ml
E I

= ( ), = ,
2

2

2

2
0 (53)

where: М is the bending moment; x z l= / ; w W l= / ; W is the beam

Fig. 6. Nomogram for determination of the optimal coordinates of inclusions providing
the largest longitudinal stiffness of the rod under load q ρx ρ const= , ≡ .

Fig. 7. Nomogram for determination of the coordinates of two first inclusions.
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normal displacement; q = ,Q lx l
k

( ) 3

0
k E I= ;0 0 E0 is Young's modulus of the

beam material; I is the moment of inertia of the beam transverse cross
section.

Let us isolate a small area around the i-th inclusion (Fig. 9).
In the case of a small concentration of the inclusions, the distances

between them are essentially larger than their lengths. Therefore,
Δ ≪ 1,i and since ΔM Δ~( ) ,i i

2 we take

ΔM = 0,i (54)

M k d w
dx

= ,i i
x x

2

2
= i

⎛
⎝⎜

⎞
⎠⎟ (55)

where: k E I= ,1 1 E1 is Young's modulus of the inclusion material.
Integration of the equation for equilibrium for elastic inclusion

(Fig. 9) implies the following relations

w w dw
dx

dw
dx

( ) − ( ) ~(∆ /2) ; − ~ ∆ /2.x x i
x x

i−∆ /2 +∆ /2
2

−∆ /2 +∆ /2
i i i i

i i i i

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ (56)

Relations (53)–(56) yield the following compatibility conditions
assuming that ∆ → 0i :

M M dM
dx

dM
dx

w w dw
dx

dw
dx

k x
k

d w
dx

( ) = ( ) ; = ;

( ) = ( ) ; − = ( )

x x

− +
− +

− +
+ −

0

2

2
= .i

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

(57)

Bending moment M and deflection w are approximated by the
following series

M M x ε M x ξ

w w x ε w x ξ

= ( ) + ( , )+⋯;
= ( ) + ( , )+…,

0
2

1

0
2

1

⎪

⎪

⎧
⎨
⎩ (58)

where functions M w s, ( =1,2,…)s s are periodic regarding ξ with a period
n.

Using relations (53), (57), (58) yields the homogenized equilibrium

equations of the FGM beam as well as the equation for the first
corrector, which have the following forms

d
dx

k k x
n

d w
dx

q
d w
dx

q k
d w
dx

ξ n ξ+ ( ) = ; = 1
2

− ( − ) .
2

2 0

2
0

2

2
1

2 0

4
0

4

⎛
⎝
⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

(59)

In the case of the FG steps between inclusions, we apply a function
f x( ) (see Chapter 6), the fast variable ξ η ε= / , and, finally, the
equilibrium equation, which overlaps with (59) when k x φ x( ) = ( ) is
obtained.

11. Homogenized model of the FGM beam bending which adapts
to the external load action

One of the challenging directions of the FG materials theory aims at
constructing smart materials, which may change/adapt their character-
istics in response to the action of external loads. As an example of a
smart structure we consider a beam with inclusions which may change
their sizes depending on action of the external load q x( ) (see Fig. 10a).
The beam consists of the homogeneous material and n regularly
distributed and stiff to bending inclusions having varying lengths. In
what follows, we substitute action of the inclusions by their equivalent
counterpart reactive moments, as it is schematically shown in Fig. 10b.

b) equivalent beam with the reactive moments Mi.
We assume that the magnitude of the reactive moments are

proportional to the inclusion length and depends linearly on the
rotation angle of the transverse beam cross section, in which the
inclusion is located. We have

M k x dw
dx

= ( ) .i
x x= i

⎛
⎝⎜

⎞
⎠⎟ (60)

Dimensionless equation governing beam bending (Fig. 10b) be-
tween two successive inclusions follows

d w
dx

q= .
4

4 (61)

On the other hand, compatibility equations on the i-th cross section
can be written in the following form

w w dw
dx

dw
dx

( ) = ( ) ; = ;− +
− +⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ (62)

d w
dx

d w
dx

k x dw
dx

− = ( ) ;
2

2

+ 2

2

−⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ (63)

d w
dx

d w
dx

d
dx

k x dw
dx

− = ( ) ,
3

3

+ 3

3

+⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ (64)

where: k k x= , ( )lk x
k
( )

1
1

0
is the coefficient of torsion rigidity of the

inclusions.
Let us suppose k x ε( )~ .
The deflection w is represented by the following series

w w x ε w x ξ ε w x ξ= ( ) + ( , ) + ( , )+⋯,0
4

1
5

2 (65)

where: w s( =1,2,…)s is periodic with respect to ξ function with the period
n.

Introducing relations (4), (65) into Eq. (61) and compatibility
conditions (62)–(64), and employing the splitting with respect to

Fig. 8. Schematic view of the bending of the FGМ beam.

Fig. 9. Schematic view of the i-th inclusion.

Fig. 10. Two beam models: a) beam with regularly distributed elastic inclusions of varying lengths;.
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powers of ε, the following homogenized model taking into account the
amplitude gradient is yielded

d w
dx

d
dx

k x
dw
dx

q+ ( ) = .
4

0
4

0⎛
⎝⎜

⎞
⎠⎟ (66)

12. Inverse problem

As an example, we find the optimal distribution of the inclusions
providing the largest bending stiffness of the beam with constant total
volume of inclusions, for a given load distribution q (x). As a target
function k x( ) is taken. Observe that k x( ) ≥ 0, whereas
k x( )=0 correspond to the beam parts without inclusions. In what
follows, we introduce the auxiliary control function y such that
y k x= ( )2 . We use the following isoperimetric condition

∫I y dx C= = .∼n

1
0

2
(67)

where C∼ denotes a constant.
Therefore, the problem of an optimal design is reduced to find

∫I w qdx min= → ;
n

y

0
0

(68)

d w
dx

d
dx

y
dw
dx

q+ = .
4

0
4

2 0⎛
⎝⎜

⎞
⎠⎟ (69)

For simplicity, we consider the boundary conditions of a simple
support

w w n
d w
dx

(0) = ( ) = 0; = 0.
x n

0 0

2
0

2
=0,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

(70)

Applying variation of the Lagrange functional of the problem (67)–
(70), and introducing the conjugate variable, we get the optimality
condition

y
dw
dx

λ+ = 0.0
2⎛

⎝
⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

(71)

13. An example of amplitude optimization

We consider the problem (67)–(71) for uniformly distributed
external load q const q= , ≤ 0. In this case we take into account the
additional conditions of the central symmetry.

If we include the optimality conditions with respect to the second
multiplier only, then the symmetry of the problem yields (71) on the
interval λ(0, ), = −n dw

dx2
0 , and on the interval n λ( , ), = − −n dw

dx2
0 .

Therefore, bending form of the optimal beam must have a node in the
beam center x( = )n

2 . In order to avoid this, we introduce an
additional, isolated central part x x( , )1 2 , where the optimality condition
will be satisfied with respect to the first multiplier y=0. The symmetry
condition implies

x x=1− .2 1 (72)

In points x x,1 2, the bending and deformation continuity hold (these
conditions are derived by Weierstrass-Erdman relations [31])

w w
dw
dx

dw
dx

lim = lim ; lim = lim .
x x x x x x x x→ −0

0
→ +0

0
→ −0

0

→ +0

0

1,2 1,2 1,2 1,2 (73)

Integrating the second multiplier of the optimality conditions (71)
and taking into account the boundary conditions (70), the deflections
on both x x n(0, ), ( , )1 2 intervals are found

w λ x x x w λ n x x x n= , ∈ (0, ); = ( − ), ∈ ( , ),01 1 1 02 1 2 (74)

where λ λ= −1 .

From Eq. (69) for y=0 one obtains

w q x C x C x C x C=
24

+ + + + ,03

4

1
3

2
2

3 4 (75)

where C i( =1 − 4)i are constants.
Substituting (74), (75) into (73) and taking into account symmetry

condition (72), Ci and λ1 can be expressed by the variable x1 in the
following form

C qn C C qn C
qx x n=−

12
; =0; =

24
; =

2 4
−

3
;1 2 3

3

4
1
3

1⎛
⎝⎜

⎞
⎠⎟ (76)

λ q n nx x=
24

( −6 +4 ).1
3

1
2

1
3

(77)

Introducing (74) into (69), we may define the control function
y x( )on the interval x x n(0, ), ( , )1 2 . The boundary conditions for the target
function are chosen in the following way

y y n(0) = ( )=0, (78)

which means that there are no inclusions on the boundaries. As a result,
the target function is a piecewise function of the following form

y

x x

x x n x

x n x n

=

, ϵ(0, );

0, ϵ( , − );

, ϵ( − , ).

x
n nx x

n x
n nx x

2

24
−6 +4 1

1 1
24( − )
−6 +4 1

3
1
2

1
3

3
1
2

1
3

⎧

⎨
⎪⎪

⎩
⎪⎪

(79)

It should be emphasized that the target function does not depend on
the magnitude of the external load, which is typical for linear problems.

Implementing expression (79) into the isoperimetric condition (67),
one obtains equation for x1

C n nx x x
24

( −6 +4 ) − = 0.
∼

3
1
2

1
3

1
2

(80)

The graph of the size of the central zone of the beam free of
inclusions to total value of the inclusions C∼less than n =10 is shown in
Fig. 11. The values of x1 are yielded by Eq. (80) in a unique way, as the
positive root is less than n/2. The shape of the target function y2for the
beam subjected to the uniformly distributed load for n C=10, =5,∼ is
reported in Fig. 12.

Therefore, the deflection of the optimally supported beam is
governed by a continuous function

w

n nx x x x x
w x x n x

n nx x n x x n x n

=
( −6 +4 ) , ϵ(0, );
, ϵ( , − );

( −6 +4 )( − ), ϵ( − , ),

1
24

3
1
2

1
3

1

03 1 1
1
24

3
1
2

1
3

1

⎧
⎨
⎪⎪

⎩
⎪⎪

(81)

Fig. 11. Coordinate x1 (the beginning of the central beam zone without inclusions) vs. C∼

for n ; q const=10 = ..
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w
w
q

w x qn x n x
x x nwhere: = ; =

24
−

12
+

24
+

2 4
−

3
.0

03

4 3 3
1
3

1⎛
⎝⎜

⎞
⎠⎟

The beam deflection (81) for n C=10, =5∼ is shown in Fig. 13, which
includes the deflection of the regular beam (reinforced by the same
inclusions) yielded by the following ODE:

d w

dx
k

d w

dx
q+ = ,p p

4

4

2

2 (82)

k C nwhere = / .∼

Integrating Eq. (82) and taking into account the boundary condi-
tions (70) for n C=10, =5, one obtains

w
sin sin

sin
x x=

4 −4 −5 2

(5 2 )
+ −10 −4,p

x x
2 2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

(83)

w
w
q

where = .p
p

Comparison of the maximum deflections of the optimal FGM beam
w( )n

2 and the regular composite beam w ( )p
n
2 shows that the proposed

optimization sufficiently increases the beam stiffness.

14. Concluding remarks

Introduction of the function f(x) allowed solving problems of
computations and optimal design of FGS with a FG inclusion sizes
and FG steps between inclusions using the unique approach. Both
considered problems occurred to be identical from the mathematical
point of view, whereas the difference between them is in the sense of
coefficients in the constitutive equations and control functions.

While optimizing the FGS with FG inclusion sizes and FG steps
between inclusions, it is recommended to look for the control function
on a set of piecewise continuous functions. The optimization process is
realized with the help of two mechanisms. First of all, we define the
boundary area where inclusions do not occur. Secondly, we choose
inclusion sizes to fit the external load distribution. The reported
optimization mechanisms, being obvious from physical point of view,
have found a mathematical foundation in our work. It is expected that
the proposed method will be useful during computations and optimal
design of more complex heterogeneous structures governed by differ-
ential equations of a higher order.

In addition, the carried out analysis of the simply supported FGM
beam subjected to uniformly distributed pressure (Fig. 13) yields the
following observations. The beam deflection takes place only in the
central part of the beam, on the interval x n x( , − )1 1 . The length of the
remaining non-reinforced beam part x2 1 decreases while the total

stiffness of the inclusions C is raised (see Fig. 11). Therefore, an
increase in the total stiffness of inclusions implies an increase in the
beam stiffness. However, it should be mentioned that problems for
other boundary conditions or for other loads require additional
investigations.
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