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a b s t r a c t

Chaotic dynamics of microbeams made of functionally graded materials (FGMs) is investi-
gated in this paper based on the modified couple stress theory and von Kármán geometric
nonlinearity. We assume that the beam properties are graded along the thickness direction.
The influence of size-dependent and functionally graded coefficients on the vibration char-
acteristics, scenarios of transition from regular to chaotic vibrations as well as a series of
static problems with an emphasis put on the load-deflection behavior are studied. Our the-
oretical/numerical analysis is supported by methods of nonlinear dynamics and the qual-
itative theory of differential equations supplemented by Fourier and wavelet spectra, phase
portraits, and Lyapunov exponents spectra estimated by different algorithms, including
Wolf’s, Rosenstein’s, Kantz’s, and neural networks. We have also detected and numerically
validated a general scenario governing transition into chaotic vibrations, which follows the
classical Ruelle-Takens-Newhouse scenario for the considered values of the size-dependent
and grading parameters.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

A functionally graded material (FGM) can be made by mixing two or more materials with the required continuous prop-
erties along a defined direction [1]. Continuous changes in the material properties of the FGM yield a lot of engineering ben-
efits, since this approach allows one to avoid an occurrence of large shear stresses, which are typically observed while
fabricating multi-layer beams. It should be emphasized that the static bending as well as the dynamic characteristics of
the structural members made from FGM have been intensively studied recently [2–10].

The mentioned materials can be applied in many scientific and engineering fields such as aerospace, automobile, elec-
tronics, optics, chemistry, biomedical engineering, nuclear engineering, mechanical engineering, and in manufacturing of
elements of micro- and nano-electromechanical systems (MEMS/NEMS). FGM are widely used in micro- and nanostructures,
including thin films/layers (see the works of Fu et al. [11,12]), and MEMS/NEMS (as shown in the works of Witvrouw et al.
., 90-924

m@ya.ru

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2017.01.047&domain=pdf
http://dx.doi.org/10.1016/j.ymssp.2017.01.047
mailto:awrejcew@p.lodz.pl
mailto:anton.krysko@gmail.com
mailto:pspsar@yandex.ru
mailto:zhigalovm@ya.ru
mailto:tak@san.ru
http://dx.doi.org/10.1016/j.ymssp.2017.01.047
http://www.sciencedirect.com/science/journal/08883270
http://www.elsevier.com/locate/ymssp


416 J. Awrejcewicz et al. /Mechanical Systems and Signal Processing 93 (2017) 415–430
[13] or Lee et al. [14]). What should be mentioned is that the thickness of beams employed in the above-mentioned appli-
cations is of an order of microns and submicrons, and thus the influence of the small scale effects on the behavior of such
beams can be significant. Hence, it is of great importance to analyze the dynamics of such beams.

The experiments described in the works [15–17,28] show that small size effects play an important role in materials with a
microscale structure, such as a thin copper wire, single crystal silver, nickel or steel epoxy polymeric beams. Namely, this
phenomenon is exhibited when the characteristic dimension of the beam, i.e. either the beam thickness or size, is close
to the internal material length scale parameter (as stated by Kong Shengli et al. in [18]).

The classical theory of elasticity does not enable one to predict and account for the small size effect that occurs in the
micro- and submicro-scale structures. To explain these effects, various size-dependent continuum theories have been pro-
posed, for example, the couple stress elasticity theory [19,20], nonlocal polar elastic continua theory (see the work by Erin-
gen [21]), micropolar theory (described by Eringen in [22]), strain gradient elasticity and gradient plasticity (see the work by
Aifantis [23]), and surface elasticity (described by Gurtin in [24]).

In the couple stress theory, two additional material constants can be distinguished (according to Toupin et al. [19] and
Mindlin et al. [20]). For isotropic elastic materials, they are related to the underlying microstructure of the material and
are inherently difficult to determine. Equations of the couple stress theory [19,20] were modified by Yang et al. and proposed
in [25]. As a result of the modifications, new equilibrium equations have been obtained with only length scale parameter of
the material. Such a model simplified the implementation of the modified couple stress theory.

In what follows, we apply the modified couple stress theory [18,26,30,7] to study the Euler-Bernoulli, Timoshenko, and
higher-order beam theories.

In reference [31], the size-dependent behavior of microbeams made of FGM has been investigated by Asghari et al. using
the modified couple stress theory for the linear Euler-Bernoulli model.

The Timoshenko beammodel, contrarily to the Euler-Bernoulli model, allows one to take into account the shear deforma-
tion and is more accurate for relatively thick beams and beams of materials of low shear stiffness. The modified couple stress
theory aimed at investigating the size-dependent behavior of the homogeneous Timoshenko beam has been studied in ref-
erence by Ma et al. [27]. In other work by Asghari et al. [32], these results have been extended for the Timoshenko beams
made from FGM. Furthermore, a closed analytical formula has been obtained for the case of statics as well as the size-
dependent frequencies have been detected and studied.

In reference [33], Arbind and Reddy investigated functionally graded beams with properties graduation along the thick-
ness and the von Kármán nonlinear strains by means of employing the modified couple stress theory. The nonlinear PDEs
governing the dynamics of both Euler-Bernoulli and Timoshenko beams have been analyzed. In addition, the effect of non-
linearity, shear deformation, power-law index, microstructural length scale, and boundary conditions on the bending
response of beams under mechanical loads have been presented.

It should be mentioned that nonlinear equations governing the microstructural dependences in beams made from FGM
have been derived in other work by Arbind et al. [34], where a general third-order beam theory as well as the Bernoulli–Euler
and Timoshenko beam theories (as special cases) have been investigated.

Scheible et al. [29] have experimentally observed that the effects of nonlinearities on the behavior of micro- and nanome-
chanical resonators are very significant even if the amplitudes of the excitation are not large. Hence, studying the nonlinear/
chaotic dynamics of such NEMS/MEMS devices is crucial for getting appropriate and accurate results while analyzing or
designing such elements. It should be noted that when the chaotic dynamics of such beams is exhibited, the beams vibra-
tions are large and cause numerous harmful effects on the studied structural systems. It means that in general, the design of
the studied structural members should prevent the chaotic response of the system. Namely, having obtained a set of param-
eters associated with the occurrence of chaotic zones, one may avoid this harmful behavior. This stands for the motivation of
our study aimed at an analysis of such harmful vibrations. In addition to the applied aspects of our analysis, novel theoretical
results associated with a scenario of transition from regular to chaotic dynamics of the studied size-dependent Timoshenko
beam are presented in the paper. However, the critical literature review implies that there is a lack of investigations of the
chaotic dynamics of beams made from FGM and exhibiting, in particular, the size-dependent behavior.

Investigations of nonlinear statics and dynamics of beams, plates, and shells have been carried out by the authors of the
present paper for many years. In particular, problems devoted to solutions of nonlinear/chaotic continuous dynamical sys-
tems [35–42] have been studied. Furthermore, the analysis of nonlinear dynamics of mechanical constructions has been con-
ducted taking into account different types of the nonlinearity, including geometrical, physical, and fabrication ones, and
including actions of various physical fields like thermal, electric, magnetic, and mechanical [43,44] as well as white-noise
interaction [45].

The monograph by Awrejcewicz et al. [46] focuses on the computational analysis of nonlinear vibrations of structural
members (beams, plates, panels, shells), where studying of dynamical problems can be reduced to considering one spatial
variable and time. The simplification is introduced based on a formal mathematical approach aimed at reducing the prob-
lems with an infinite dimension to the problems of a finite one. The process includes also a transition from governing non-
linear partial differential equations to a set of a finite number of ordinary differential equations.

An important issue while investigating the nonlinear dynamics is the study of the largest Lyapunov exponent. In the lit-
erature, numerous methods to calculate the largest Lyapunov exponent are distinguished, e.g., Wolf’s [54], Rosenstein’s [55],
Kantz’s [56], Benettin’s [57], Shimada and Nagashima’s [58], Stefanski’s [59], and other. The authors of the present paper
have developed an approach based on neural networks [62]. The method allows one to calculate the whole spectrum of
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Lyapunov exponents. Eventually, all the above-mentioned methods are used in this paper to calculate the largest Lyapunov
exponent based on the analysis of the signal.

In the present paper, the chaotic dynamics of the size-dependent FG Timoshenko beams with the von Kármán nonlinear-
ity is investigated for the first time based on the modified couple stress theory by Yang et al. [25]. We report the influence of
the length scale parameter and the grading parameter on the vibration characteristics and supplement the investigations
with a scenario of transition from regular to chaotic vibrations. As a result, it has been shown that beams modeled by the
classical theory of continuum have less normalized deflection in comparison to the models yielded by the modified stress
couple theory, independently of the material distribution along the beam thickness. It has been detected that the beam
dynamics is most essentially influenced by the coefficient describing the heterogeneity of the material.

Finally, we have found that, for a set of fixed values of the parameters, including the size and material grading coefficients,
regular vibrations of the beam tend to chaotic vibrations, following the Ruelle-Takens-Newhouse scenario.
2. Mathematical background

According to Yang et al. [25], in the modified couple stress theory, the strain energy U for a linear elastic body occupying
the volume V has the form:
U ¼ 1
2

ZZZ
V
rijeij þmijvij

� �
dV : ð1Þ
Now, for isotropic material, one can write
rij ¼ kemmdij þ 2leij; ð2Þ
eij ¼ 1
2

ui; j þ uj; i
� �

; ð3Þ
mij ¼ bvij ¼ 2ll2vij; ð4Þ
vij ¼
1
2

hi; j þ hj; i
� �

; ð5Þ
where rij; eij; mij, and vij denote components of the following tensors: the Cauchy stress tensor r; the strain tensor e, the
deviator part of the couple stress tensor m, and the symmetric curvature tensor v, respectively. In addition, ui are compo-
nents of the displacement vector, and u, h stand for the infinitely small vector of rotation with components hi. Observe that
hi ¼ ðrotðuÞÞi=2. Two Lamé constants are denoted by k and l; whereas l stands for the internal material length scale
parameter.

Consider a beam of the length L and a rectangular cross section. The x-coordinate is taken along the length of the beam (it
coincides with the reference line), z-coordinate along the thickness (the height) of the beam, and the y-coordinate along the
width of the beam, as shown in Fig. 1. The coordinate z (Fig. 1) denotes a distance between the cross section points and the
reference line.

Gðx; tÞ denotes a force acting on the axial cross section along the body axis OX per beam unit length. The parameter Cðx; tÞ
presents the y component of the resultant volumemoment per unit beam length. The resultant of the transverse stress acting
on the upper side of the beam and the transverse volume forces per unit beam length is denoted by qðx; tÞ:
Fig. 1. Beam geometry and loading.
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Coordinates z and ~z (see Fig. 1) denote the distance between an arbitrarily chosen point and the reference line or the bot-
tom surface, respectively. Also, the distance between the reference line and the bottom surface or the axial coordinate are
represented by ~zc and x, respectively. It is assumed that the beam properties are constant along the axis OX.

For the beammade from FGM, the variation of properties along the thickness coordinate z is assumed to be represented as:
E ð~zÞ ¼ E0 þ
~zþ h

2

h
ðE1 � E0Þ; l ð~zÞ ¼ l0 þ

~zþ h
2

h
ðl1 � l0Þ; q ð~zÞ ¼ q0 þ

~zþ h
2

h
ðq1 � q0Þ: ð6Þ
where E1 ð~zÞ; E2 ð~zÞ - Young’s modulus, l1 ð~zÞ; l2 ð~zÞ - shear modulus, q1 ð~zÞ; q2 ð~zÞ - density of the constituent materials of the
functionally graded beam.The kinematic relations of the Timoshenko beam follow [47]:
ux ¼ uðx; tÞ þ zwðx; tÞ; uy ¼ 0; uz ¼ wðx; tÞ; ð7Þ

where uðx; tÞ; wðx; tÞ, and wðx; tÞ denote the axial shift of the beam middle line, the transverse beam deviation, and the angle
of rotation of the transverse beam cross section with respect to the vertical direction, respectively.

Using (7) as well as assuming very small slopes in the beam after deformation and a possible finite transverse deflection,
the nonzero components of the strain tensor can be approximately expressed by the von Kármán relation [48]:
exx ¼ u; x þ 1
2
ðw; xÞ2 þ zw; x; exz ¼ 1

2
wþw; xð Þ: ð8Þ
Furthermore, hi ¼ ðrot ðuÞÞi=2 yields
hy ¼ 1
2
ðw�w; xÞ; hx ¼ 0: ð9Þ
Substituting (9) into (5), one obtains the following expression for a component of the symmetric part of the curvature tensor:
vxy ¼ vyx ¼
1
4

w; x �w; xx
� �

: ð10Þ
Assuming that the material properties change only with respect to the thickness, neglecting Poisson’s effect as well as sub-
stituting (8) in (2), the following components of the stress tensor are obtained with respect to the kinematic parameters
rxx ¼ Eð~zÞ u; x þ 1
2
ðw; xÞ2 þ zw; x

� �
; rxz ¼ kslð~zÞðw; x þ wÞ; ð11Þ
where Eð~zÞ and lð~zÞ denote Young’s modulus and shear modulus, respectively, and ks stands for the correction coefficient,
which is introduced due to the assumption of the graded shear strain regarding the beam transverse section, which depends
on the form of the beam cross sections.

Substituting (10) into (4), one finds components of the deviator part of the tensor of the higher-order moments, which are
expressed by the kinematic parameters:
mxy ¼ myx ¼ 1
4
bð~zÞ w; x �w; xx

� �
: ð12Þ
For further investigations, it is convenient to introduce a reference line for the z-coordinate, using the condition
B11 ¼
Z
A
Eð~zÞzdA ¼

Z
A
Eð~zÞ ~z� ~zcð ÞdA ¼ 0 ð13Þ
From (13) one obtains the coordinate ~zc of the reference line
~zc ¼
R
A Eð~zÞ~zdAR
A Eð~zÞdA

: ð14Þ
The expression (14) allows one to exclude the terms with coefficients B11 from the system of equations, what significantly
simplifies the system of equations presented in references by Arbind et al. and Ke et al. [33,48].

3. Derivation of the equations of motion

In order to derive equations of motion of the FG Timoshenko beam using the modified couple stress theory, we substitute
(8)–(12) in the expression for the strain energy U (1). As a result, the following strain energy U and kinetic energy K are
obtained
U ¼ 1
2

Z L

0

Z
A

rijeij þmijvij

� �
dA dx

¼ 1
2

Z L

0

Z
A

Eð~zÞ u; x þ 1
2
ðw; xÞ2 þ zw; x

� �2

þ kslð~zÞðwþw; xÞ2 þ 1
8
bð~zÞ w; x �w; xx

� �2( )
dA dx ; ð15Þ
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K ¼ 1
2

Z L

0

Z
A
qð~zÞ ðu; t þ zw; tÞ2 þ ðw; tÞ2

n o
dAdx; ð16Þ
where L stands for the beam length.
Variation of the work dW generated by the external forces, the distributed moments, and stresses on a threshold surface

take the form
dW ¼
Z L

0
Gduþ qdwþ cdhy
� �

dxþ Nduþ VdwþMrdwþMmdhy
� ���x¼L

x¼0; ð17Þ
where the external forces acting on the beam ends in the axial direction, the external transverse forces, the external bending
moment generated by the normal stress rxx, and the external bending moment caused by the moment mxy are denoted by
N; V ; Mr and Mm, respectively.

Owing to (13), relations (15) and (16) take the following form
U ¼ 1
2

Z L

0
k1 u; x þ 1

2
ðw; xÞ2

� �2

þ k2ðw; xÞ2 þ k3ðwþw; xÞ2 þ k4 w; x �w; xx
� �2( )

dx ; ð18Þ

K ¼ 1
2

Z L

0
m0ðu; tÞ2 þ 2Q u; tw; t þ~Iðw; tÞ2 þm0ðw; tÞ2
n o

dx: ð19Þ
where
k1 ¼ RA Eð~zÞdA; k2 ¼ RA Eð~zÞz2 dA ¼ RA Eð~zÞ ð~z� ~zcÞ2dA;
k3 ¼ ks

R
A lð~zÞdA; k4 ¼ 1

8

R
A bð~zÞdA ¼ 1

4

R
A lð~zÞl2ð~zÞdA;

m0 ¼ RA qð~zÞdA; Q ¼ RA qð~zÞzdA ¼ RA qð~zÞ ð~z� ~zcÞdA;
~I ¼ RA qð~zÞz2 dA ¼ RA qð~zÞ ð~z� ~zcÞ2dA :

ð20Þ
Hamilton’s principle yields
d
Z t2

t1

ðK � U þWÞdt ¼ 0: ð21Þ
The carried-out variation with respect to u, w and w, integration by parts, and setting the terms standing by du; dw and dw to
be equal to zero yield the following equations of motion
k1ðu; x þ 1
2
ðw; xÞ2Þ

	 

; x
þ G ¼ m0u; tt þ Q w; tt

k2w; x þ k4 w; x �w; xx
� �� �

; x
� k3ðwþw; xÞ þ C

2
¼ Q u; tt þ~Iw; tt; ð22Þ

k1ðu; x þ 1
2
ðw; xÞ2Þ

	 

w; x þ k3ðwþw; xÞ

 �
; x

þ k4ðw; x �w; xxÞ
� �

; xx
þ qþ C; x

2
¼ m0wtt;
the following boundary conditions
k1ðu; x þ 1
2
ðw; xÞ2Þ � N

	 
����
x¼0; L

¼ 0

or dujx¼0; L ¼ 0;

k2w; x þ k4 w; x �w; xx
� ��Mr �Mm

2

" #�����
x¼0; L

¼ 0 ð23Þ

or dwjx¼0; L ¼ 0;

k1ðu; x þ 1
2
ðw; xÞ2Þ

	 

w; x þ k3ðwþw; xÞ þ k4 w; xx �w; xxx

� �þ c
2
� V

 �����
x¼0; L

¼ 0

or dwjx¼0; L ¼ 0;



420 J. Awrejcewicz et al. /Mechanical Systems and Signal Processing 93 (2017) 415–430
k4ðw; x �w; xxÞ þMm

2

 !�����
x¼0; L

¼ 0 or dw; x

��
x¼0; L ¼ 0 ;
and the initial conditions
wðx;0Þ ¼ u1ðxÞ; wðx; 0Þ;t ¼ u2ðxÞ;
uðx;0Þ ¼ u3ðxÞ; uðx; 0Þ;t ¼ u4ðxÞ;
wðx;0Þ ¼ u5ðxÞ; wðx; 0Þ;t ¼ u6ðxÞ:

ð24Þ
The equations of motion (22) of the nonlinear Timoshenko beam made from FGM and the boundary conditions (23) are
obtained using the relation (14).

4. Statement of the problem

For further numerical investigations, to simplify the problem, the following parameters are fixed: Gðx; tÞ ¼ 0, ðx; tÞ ¼ 0.
To construct the rules of the change of the beam characteristics along the beam thickness, parameters including Young’s
modulus E ð~zÞ, shear modulus l ð~zÞ, and beam density q ð~zÞ are used.

The considered FGM microbeams consist of Titan (Ti) and Nickel (Ni) with the material properties

E0 ¼ 105 GPa;q ¼ 4940 kg=m2
; m ¼ 0:31 for Ti and E1 ¼ 210 GPa; q ¼ 8902 kg=m2

; m ¼ 0:3 for Ni.
The required integration is carried out in formulas (14) and (20) by using the following coupling between the elastic and

shear moduli
E 1 ¼ PEE0; l1 ¼ Pl l0;q1 ¼ Pq q0: ð25Þ

Substituting (6) and (25) in (14), one obtains:
~zc ¼ h
12

PE � 1
1þ 1

2 ðPE � 1Þ : ð26Þ
Formula (26) implies that for PE > 1; ð~zc > 0Þ and the neutral line is shifted above in comparison to the neutral line of the
homogeneous beam ðPE ¼ 1Þ: In the case PE < 1; ~zc < 0; and the neutral line is shifted below the neutral line of the counter-
part homogeneous beam.

Using (6), (25) and (26), and taking into account (20), the following coefficients are defined
k1 ¼ E0A 1þ 1
2 ðPE � 1Þ� �

; k2 ¼ 1
12 E0Ah

2 3
2 þ ðPE�1Þ2

12 1þ1
2ðPE�1Þð Þ

	 

;

k3 ¼ ksl0A 1þ 1
2 ðPl � 1Þ� �

; k4 ¼ 1
4l0 Al

2 1þ 1
2 ðPl � 1Þ� �

;

m0 ¼ q0A 1þ 1
2 ðPl � 1Þ� �

; Q ¼ q0A
h
12 ðPq � 1Þ � 1

2
ðPE�1ÞðPqþ1Þ
1þ1

2ðPE�1Þ

h i
;

~I ¼ q0A
h2

12 ð1þ ðPE�1Þ2
12 ð1þ1

2ðPE�1ÞÞ2
Þ 1þ 1

2 ðPq � 1Þ� �� 1
6

ðPE�1ÞðPqþ1Þ
1þ1

2ðPE�1Þ

	 

:

ð27Þ
The shear coefficient ks is taken as 5=6, which is most suitable for the description of the behavior of beams with rectangular
cross sections, as described by Ke et al. in [48]. In what follows, we introduce the following dimensionless parameters:
�w ¼ w
h ; �u ¼ ua

h2
; �w ¼ w a

h ; �x ¼ x
a ; c1 ¼ a

h ; c2 ¼ l
h ; �q ¼ q a2

h2E
;

�t ¼ t
s ; s ¼ a

c ; c ¼
ffiffiffiffi
E
q

q
; �e ¼ e a

c ;
�k1 ¼ k1

AE0
; �k2 ¼ k2

AE0h
2 ;

�k3 ¼ k3
AE0

; �k4 ¼ k4
AE0 l

2 :
ð28Þ
Taking into account the introduced simplifications and notation as well as omitting the bars over dimensionless parameters,
the following dimensionless beam equations are eventually obtained:
k1 u; x þ 1
2
ðw; xÞ2

	 

; x

¼ u; tt

k2w; xx þ 3k4 c22 w; xx �w; xxx
� �� 12ksk3c21ðwþw; xÞ ¼¼ w; tt ; ð29Þ

1
c21

k1 ðu; x þ 1
2
ðw; xÞ2Þ

	 

w; x

 �
; x

þ k3 w; x þw; xx
� �þ k4

c22
c21

w; xxx �w; xxxx
� �þ q ¼ w;tt þ ew;t
Hereafter, all the considerations are made for the dimensionless form.
We restrict further considerations to the following boundary conditions (rigid clamping of the beam ends):
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wð0; tÞ ¼ wð1; tÞ ¼ 0; w;xð0; tÞ ¼ w;xð1; tÞ ¼ 0;
uð0; tÞ ¼ uð1; tÞ ¼ 0; wð0; tÞ ¼ wð1; tÞ ¼ 0;

ð30Þ
and the following initial conditions:
wðx;0Þ ¼ w;tðx;0Þ; uðx;0Þ ¼ u;tðx; 0Þ ¼ 0; wðx;0Þ ¼ w;tðx;0Þ ¼ 0: ð31Þ
Reduction of the PDEs (29)–(31) is carried out by means the finite difference method (FDM) of the second-order accuracy,
and the finite element method (FEM). Both FDM and FEM were used to validate the results.

We have compared numerical results yielded by the 4th and 6th order Runge-Kutta methods. Owing to the coincidence of
results and the study by Krysko et al. in [49], we have further employed the 4th order Runge-Kutta method. The optimal
number of the spatial mesh elements regarding the beam length has been chosen on the basis of the Runge principle.
5. Results and discussions

Numerical investigations of static and dynamic problems have been reported for the following fixed system parameters:
relative beam length c1 ¼ a

h ¼ 30, size-dependent parameter c2 ¼ l
h ¼ 0; 0:3. Young’s and shear coefficients regarding the

thickness (25) are taken as PE ¼ Pl ¼ Pq ¼ P ¼ 1; 2; 0:5: This choice fits with the formulas for the coefficients given by
(27). All numerical results are within the applicability of the introduced hypotheses.
5.1. Reliability and validity of the obtained results

To check the reliability of the results obtained for the Timoshenko beam model, solutions obtained with the use of FDM
and FEM are compared. Then, the problem is studied for clamping-clamping boundary conditions and for the zero initial con-
dition. The curves of the dependence of the maximum deflection on the amplitude of the external load, obtained with dif-
ferent computational methods (see Fig. 2), fully coincide in the case of regular beam vibrations, whereas slight differences
appear for chaotic dynamics (Fig. 2).

On the basis of results presented in Fig. 2, one can conclude that values of wmax fully coincide for both applied computa-
tional approaches if the excitation amplitude corresponds to regular vibrations. Small differences are noticeable in the case
of chaotic dynamics. Vibration scales obtained by the two methods fully coincide. For FDM, the transition to chaos appears
later than for FEM and the chaotic regime is smaller if the FDM approach is applied.
5.2. Problems of statics

We solve the problems of statics by using equations governing the dynamics (29)–(31). This method will be further
referred to as the relaxation method (see the work by Awrejcewicz et al. [46]).

If the load ½�q� does not depend on time, a static solution to the problem can be yielded by the dynamic approach. Namely,
the initial condition plays a role of an excitation, whereas the term with the first time derivative, including the dissipation/-
damping coefficient, presents a dissipative character of the excited solution. A solution to the so far defined dynamic prob-
lem can be found through the employment of an arbitrary method aimed at solving the Cauchy problem. Once a stationary
state is achieved, the counterpart static problem is solved.

The above-mentioned idea of finding solutions to stationary problems as parts of nonstationary problems for increasing
time has been first illustrated by A.N. Tichonov. The applied relaxation technique can be derived as the iterational method to
solve linear and nonlinear problems of the algebraic and transcendential equations, where a step in time defines a new
approximation for an unknown root of an equation. One more benefit of the relaxation method includes the simplicity of
its computer implementation, since there exists a wide palette of effective algorithms aimed at solving the Cauchy problem
[50–53].
Fig. 2. Maximum deflection as a function of the excitation amplitude.



Fig. 3. The load–deflection (a) and the deflection–time dependences (b).

Table 1
The values of the c2; PE parameters in the studied cases.

Case number 1 2 3 4 5 6 7 8

Parameters c2 ¼ 0:3
PE ¼ 1

c2 ¼ 0:3
PE ¼ 0:5

c2 ¼ 0:3
PE ¼ 2

c2 ¼ 0
PE ¼ 1

c2 ¼ 0
PE ¼ 0:5

c2 ¼ 0
PE ¼ 2

c2 ¼ 0
PE ¼ 1
E ¼ 2E0

c2 ¼ 0:3
PE ¼ 1
E ¼ 2E0
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The results of solving the static problem for c2 ¼ l=h ¼ 0:3 and e ¼ 3 are reported in Fig. 3. In Fig. 3a the load–deflection
dependence yielded by the relaxation method is shown for the given values of qðxÞ ¼ q ¼ const: In Fig. 3b, the stationary part
of the dynamical process of the beam deflection w(t) is reported for q ¼ 30; 100; 160:

The w(t) histories show that the steady/static state is achieved relatively fast for the fixed dissipation coefficient for all
loads. For the load amplitude q ¼ 30, the steady state is achieved at t ¼ 49, whereas for q ¼ 100;160, at t ¼ 28 and
t ¼ 19; respectively. Therefore, the employedmethod is highly stable and allows one to solve nonlinear static problems with-
out any numerical difficulties.

The results of application of the relaxation method to study eight different combinations of the size-dependent parameter
c2 and the material grading parameter PE (the damping coefficient e = 3) are shown in Table 1.

The choice of parameters is as follows: P = 1 – homogeneous material; P = 2 – material with E1 ¼ 2E on the upper side of
the beam, and a material with E2 ¼ E on the bottom side of the beam; P = 0.5 – reverse material arrangement (2E on the bot-
tom side). The results of the carried-out investigations are given in Fig. 4.

The analysis of wðqÞ for c2 ¼ 0:3 (Fig. 4a) shows that, for the same load (q > 100), the minimum value of the deflection is
observed for the nonhomogeneous beam with the reinforcement (i.e. stiffer layer) on the upper side. The minimum value of
the deflection is observed for the functionally graded beam in which the stiffer layer is located on the bottom side. If classical
beams, i.e. those without the size-dependent factor, are considered (Fig. 4b), the distribution is similar. The investigation of
the results obtained for homogeneous beams with different values of stiffness and the size-dependent coefficient (Fig. 4c)
shows that the minimum deflection corresponds to the variant with the doubled stiffness and the size-dependent behavior
of the material (c2 ¼ 0:3; PE ¼ 1; E ¼ 2E0). A comparison of the results obtained for the same values of P (Fig. 4d) implies that
the size-dependent behavior results in a decrease of the deflection values.

Observe that for the case 2, the deflection curve changes its position, i.e. for q = 50 it is located below the deflection of the
case 6, for q = 100 it overlaps with the latter one, whereas for q = 150, it is above the afore-mentioned deflection.

In general, the size-dependent behavior reduces the deflection value for the same grading parameter. Placing the stiffer
layer on the upper side of the beam essentially influences the deflection value for the same value of the size-dependent
coefficient.

5.3. Dynamic problems

The investigation of dynamic problems consists of the determination of the eigenfrequencies of the linear counterpart
problem and the investigation of the chaotic dynamics with respect to different combination of the parameters c2 and P.

5.3.1. Determination of the Timoshenko beam eigenfrequencies
In order to get the eigenfrequencies, we study the linear equations governing the size-dependent behavior in the func-

tionally graded beams, which are yielded by system (30) if nonlinear terms are neglected. The following linear PDEs are
obtained regarding the functions w; w:



(a) (b) 

(d)(c)

0100
0

1

1

2

3

q

w

0100
0

1

2

5

4

6

q

w

0100
0

1

2

1

4

7

8

q

w

Fig. 4. Comparison of static solutions of the Timoshenko beam: (a) wðqÞ for the cases 1–3, c2 ¼ 0:3; (b) wðqÞ for the cases 4–6, c2 ¼ 0; (c) wðqÞ for the
homogeneous beam; (d) wðnÞ for q ¼ 150.

Table 2
The frequencies associated with the studied cases.

Case number 1 2 3 4 5 6 7 8

x0 4.9 4.5 5.4 3.9 3.7 4.05 5.9 6.7
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k2w; xx þ 3k4 c22 ðw; xx �w; xxxÞ � 12ksk3c21ðwþw; xÞ ¼ w; tt ;

k3ðw; x þw; xxÞ þ k4
c22
c21

w; xxx �w; xxxx
� �� q ¼ w;tt :

ð32Þ
Equations (32) are solved using the algorithm presented earlier. Table 2 reports the results obtained numerically, and the
studied cases correspond to those shown in Table 1.

The carried-out analysis yields the following conclusions. The smallest eigenfrequency is exhibited by the FG beam when
the stiffer material is located on the beam bottom side (this is case 5 without the size-dependent behavior). The largest
eigenfrequency corresponds to the case 8, i.e. the size-dependent behavior is taken into account and the stiffness of the
homogeneous beam is doubled. The size-dependent behavior strongly reduces the value of the eigenfrequency. For the
homogeneous beam (cases 1, 4 and 7, 8), the change in the frequency value is of 10% and 12%, respectively. For FG beam
(cases 2, 5 and 3, 6) – 18% and 25%, respectively. Therefore, the graded distribution of the beam thickness has an impact
on the eigenfrequency value.

5.3.2. Investigation of the Timoshenko beam chaotic dynamics versus the combination of parameters c2 and P
The investigation of the solutions to the dynamic problems, i.e. when the excitation q ¼ q0 sinðxptÞ is taken into account,

has been carried out for the size-dependent coefficient c2 ¼ 0; 0:3 and different values of PE reported in Table 1.
The loading parameters are: q0 ¼ 17000; xp ¼ 8. The frequency xp ¼ 8 is essentially higher comparing to the arbitrary

eigenfrequency given in Table 2. All obtained results are shown in Tables 3–10:



Table 3
c2 ¼ 0:3, P = 1.

Time history FFT 2D wavelet Phase portrait Poincaré section LLE

2000 4000 6000 8000
0

0.5

1
LCE

t

Table 4
c2 ¼ 0:3, P = 2.

Time history FFT 2D wavelet Phase portrait Poincaré section LLE

2000 4000 6000 8000
-5

0

5x 10-3LCE

t

Table 5
c2 ¼ 0:3, P = 0.5.

Time history FFT 2D wavelet Phase portrait Poincaré section LLE

2000 4000 6000 8000

1

2

3

LCE

t
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Table 6
c2 ¼ 0, P = 1.

Time history T 2D wavelet Phase portrait oincaré section LLE

2000 4000 6000 8000
0

0.5

1

1.5

2LCE

t

Table 7
c2 ¼ 0, P = 2.

Time history 2D wavelet Phase portrait caré section LLE

2000 4000 6000 8000
-0.01

-0.005

0

0.005

0.01LCE

t

Table 8
c2 ¼ 0, P = 0.5.

Time history FT 2D wavelet Phase portrait oincaré section LLE

2000 4000 6000 8000
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1
LCE

t

J.A
w
rejcew

icz
et

al./M
echanical

System
s
and

Signal
Processing

93
(2017)

415–
430

425
FF

FFT

F

P

Poin

P



Table 9
c2 ¼ 0, P = 1, E = 2E0.

Time history FFT 2D elet Phase portrait Poincaré section LLE

2000 4000 6000 8000

-0.04

-0.03

-0.02

-0.01

0
LCE

t

Table 10
c2 ¼ 0:3, P = 1, E = 2E0.

Time history FFT 2D elet Phase portrait Poincaré section LLE

2000 4000 6000 8000
-0.01

-0.005

0

0.005

0.01
LCE

t
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Table 3 (c2 ¼ 0:3, P = 1, E = E0) – homogeneous beam with the size-dependent behavior and an initial stiffness;
Table 4 (c2 ¼ 0:3, P = 2) – functionally graded beamwith the size-dependent behavior for the case when the stiffer layer is

located on the upper side of the beam;
Table 5 (c2 ¼ 0:3, P = 0.5) - functionally graded beam with the size-dependent behavior for the case when the stiffer layer

is located on the bottom side of the beam;
Table 6 (c2 ¼ 0, P = 1, E = E0) – homogeneous beam without the size-dependent behavior and with an initial stiffness;
Table 7 (c2 ¼ 0, P = 2) – nonhomogeneous beamwithout the size-dependent behavior for the case when the stiffer layer is

located on the upper side of the beam;
Table 8 (c2 ¼ 0, P = 0.5) – nonhomogeneous beam without the size-dependent behavior for the case when the stiffer layer

is located on the bottom side of the beam;
Table 9 (c2 ¼ 0, P = 1, E = 2E0) – homogeneous beam without the size-dependent behavior and with a doubled stiffness;
Table 10 (c2 ¼ 0:3, P = 1, E = 2E0) – homogeneous beam with the size-dependent behavior and a doubled stiffness.
The following results are reported in the above-listed tables: (a) time history wð0:5; tÞ; (b) Fourier spectrum based on the

Fast Fourier Transform (FFT) SðxÞ; (c) 2D wavelet spectrum based on the Morlet wavelet; (d) Poincaré section wðt þ TÞ½wðtÞ�;
(e) phase portrait _w½wðtÞ�; f) time evolution of the largest Lyapunov exponent (LLE) based on Wolf’s algorithm [54].

The results obtained for the functionally graded beam with the location of the stiffer layer on the upper side (Table 4)
essentially differ from the results shown in Tables 3 and 5. This beam exhibits quasi-periodic vibrations at three linearly
dependent frequencies and the LLE is negative. Results reported in Tables 3 and 5 imply that the homogeneous beam and
the functionally graded beam with the stiffer layer located on the bottom side vibrate chaotically. The difference between
the results reported in Tables 3 and 5 is as follows. In the case of the homogeneous beam (Table 3), the transition into chaos
takes place at t = 3800, which has been also validated by the wavelet spectrum and the LLE. On the contrary, the functionally
graded beam (Table 5) starts to chaotically vibrate in the beginning of the time interval.

Therefore, the functionally graded beam with the stiffer layer located on the upper side can be employed for a given
amplitude and frequency of the excitation load.

The analysis of the obtained results for the variants corresponding to a lack of the size-dependent behavior (c2 ¼ 0) val-
idates a conclusion that the beam with the stiffer layer located on the upper side can be employed to carry the dynamic load.
It should be mentioned that all characteristics of the vibration process, i.e. Fourier and wavelet spectra, Poincaré section, and
the LLEs qualitatively coincide. The carried-out analysis and comparison with the previous variants (c2 ¼ 0:3) for the homo-
geneous beam and the beam with the stiffer layer located on the bottom side implies the essential difference in all charac-
teristics of the vibrational process. In other words, for the studied structures, the size-dependent behavior plays an essential
role.

The analysis of the results associated with the homogeneous beams (Tables 3 and 6–8) allows one to extend the conclu-
sions formulated with respect to static problems. Namely, application of the material of large stiffness has an essential influ-
ence on the character of vibrations.

In the case of the beams with a single (initial) stiffness, chaotic vibrations occur (Tables 3 and 6), whereas in the case of
beams with a doubled stiffness (Tables 7 and 8), quasi-periodic vibrations are exhibited.

In order to validate the reliability of the LLEs computation using Wolf’s algorithm [54], we have computed them using
three other methods, i.e. Rosenstein’s [55], Kantz’s [56], and neural network (NW) (proposed by the authors of the present
paper) [62] approaches. The investigations have been carried out for all mentioned variants. In what follows, we give exem-
plary results regarding the case 1 (see Table 3). The numbers of time intervals correspond to the following values: 1 -
t 2 ½300 ; 2100 �, 2 - t 2 ½2105 ; 2160 �, 3 - t 2 ½2165 ; 3900 �, 4 - t 2 ½3901 ; 5000 �, 5 - t 2 ½5001 ; 8000 � .

All four methods yield positive values of the LLEs (k1) on all time intervals, which implies chaotic vibrations. However,
there are some differences with respect to the computed values. The qualitative changes of k1 are similar for three methods
(Wolf’s, Rosenstein’s, Kantz’s) on the intervals 1–3. Beginning from the 3rd time interval, all three characteristics (Rosen-
stein’s, Kantz’s, neural networks (NW)) shown in Fig. 5 approach each other, and hence essentially differ from the values
obtained using Wolf’s method.

Fig. 6 reports time evolutions of the Lyapunov spectrum obtained with the neural network approach. One may observe
the qualitative similarity between the curves corresponding to the first four Lyapunov exponents.
5.4. Scenarios of transition into chaos

One of essential aspects while investigating the dynamics of continuous mechanical systems comprises the detection and
analysis of the scenario of transition from regular to chaotic dynamics. Scenarios of such transitions for classical beams,
plates, and shells, including the Bernoulli-Euler and Timoshenko theories, have been described in Refs. [60–62]. In this work,
we were aimed at analysing the scenario associated with the Timoshenko model, taking into account two cases, i.e. the one
concerning the size-dependent behavior c2 ¼ 0:3 and the through-thickness functionally graded beam for P = 2 or P = 0.5 as
well as the one without the size-dependent effect (c2 ¼ 0) and for the homogeneous beam P = 1 for E ¼ E0; E ¼ 2E0. The fol-
lowing parameters are fixed: xp ¼ 8; e ¼ 1; c1 ¼ 30; m ¼ 0:3:

On the basis of the obtained results, one may conclude that the scenarios of transition from regular to chaotic vibrations
of the Timoshenko beam follow the classical Ruelle-Takens-Newhouse scenario for the all considered cases.



Fig. 5. Comparison of the LLE computed with four different algorithms.

Fig. 6. Spectrum of the first four Lyapunov exponent obtained using the neural network method.
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6. Concluding remarks

1. We have considered the dynamics of nonlinear FG Timoshenko beams based on the modified couple stress theory, using a
novel concept of the reference line.

2. The influence of the size-dependent coefficient and the grading parameter on the load-deflection dependence is investi-
gated for the static problem. In order to get solutions to nonlinear static problem, the relaxation method was employed. It
has been shown that the minimum deflection is achieved by the beam when the functional grading process is taken into
account and the stiffer layer is located on the upper side in both cases, i.e. with/without the size-dependent behavior.

3. The functionally graded beam with the stiffer layer on the upper side is suitable to carry dynamic loads at a given fre-
quency and amplitude of the harmonic excitation. This conclusion coincides with that formulated for static problems.
In the case of the homogeneous beam and the beam with the stiffer layer located on the bottom side, the essential depen-
dence of the obtained results on the size-dependent coefficient is observed.

4. In order to validate the reliability of the LLEs computed with Wolf’s algorithm, three qualitatively different methods have
been employed, i.e. Rosenstein’s, Kantz’s, and the one based on neural network. The carried-out analysis implies that all
methods give qualitatively the same result, i.e. positive or negative values of the LLEs, on the whole studied time interval.

5. For the considered values of the size-dependent and material grading parameters, the universal route to chaos, following
the classical Ruelle-Takens-Newhouse scenario, has been detected.
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