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a b s t r a c t

Dynamical regular response of an oscillator with two serially connected springs with
nonlinear characteristics of cubic type and governed by a set of differential-algebraic
equations (DAEs) is studied. The classical approach of the multiple scales method (MSM)
in time domain has been employed and appropriately modified to solve the governing
DAEs of two systems, i.e. with one- and two degrees-of-freedom. The approximate ana-
lytical solutions have been verified by numerical simulations.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The massless springs connected in parallel and in series are widely applied in theory and applications of mechanisms and
machines, in classical mechanics from regarding both static and dynamical cases, in civil engineering, various mechatronical
devices, and more recently in micromechanical systems.

From a point of view of Classical Mechanics application of this massless springs in series element seems to be simple and
well understood. However, the situation may change surprisingly, if this spring in series element occurs either as a structural
or machine/mechanism member while a studied physical object is either composed of many such elements or it works in
nonlinear regimes due to geometry, design or natural types non-linearity like those introduced by friction and/or impacts.

Our research presented in this paper is two-folded. We consider two relatively simple mass-spring in series systems,
where springs possess a cubic type stiffness. The first studied system has one degree-of-freedom (1-DoF) and exhibits a
horizontal movement (translation), whereas the second one, though having only one particle, it has 2-DoF, due to long-
itudinal (radial) movement of the springs and rotation around a pivot. We show not only novel non-linear phenomena
exhibited by both studied systems, but we also present the modified multiple scale method to fit dynamics appropriately,
which is further also validated numerically.

Another important goal of our paper is oriented on applications of the studied mass-spring in series systems in modeling
and simulation of the physical systems beyond the classical applications associated with Mechanics.

Weggel et al. [1] employed the basic physics of a spring and elementary structural analyses principle to produce a
powerful procedure to study structural behavior. Namely, structural members are modeled as springs assembled in parallel
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and/or series configurations to describe structural equivalent stiffness.
On the other hand the modeling of numerous produced machines and mechanisms governed by ordinary differential

equations require introduction of rigid bodies linked by massless spring-damper elements. For instance, vehicle suspensions
require lumped mass modeling of oil damper mounted either in parallel or in series with helical springs as well as Kelvin–
Voigt models of dashpots and elastic elements (see [2,3]). It is evident that a proper construction of the vehicle suspensions
including spring series elements has an important impact on the vibration transmissibility from the rough road to the
vehicle, and hence to passengers.

The studied by us models can be directly included to extend the classical analysis of dynamics of two spring-connected
masses in a central gravitational field [4]. The latter system serves as a simplified model for the tethered satellite systems,
where the tether can be modeled by a linear/nonlinear one or two connected springs.

On the other hand mass-spring systems have been widely used in computer graphics, as it has been pointed out in
reference [5]. The author claims that it is often possible to simulate the motion of a real physical body by lumping the mass
into a set of points. In spite of that the exact coupling between the motions of different points on a body can be very
complex, it can be approximated by a collection of springs.

Another challenging direction of application of connected in series springs is associated with modeling and simulation
dynamics of particles undergoing Brownian motions, which are usually based on direct application of the Newton Second
Law for a particle.

Ma and Hu [6] have used molecular dynamics approach to study the aggregation processes of systems composed of
polymer chains and molecules. The neighborhood located monomers are linked by springs of five different strengths for five
different systems. The non-equilibrium aggregation processes have been investigated with respect to the monomer-
monomer connecting springs. It has been shown that several stages of clustering may exist while the spring's stiffness is
increased.

A series of beads connected by springs is employed in Brownian dynamics modeling for a polymer [7]. In addition, in
recent years an attempt to model single polymer molecule dynamics in flow using double stranded DNA, where DNA stands
for a unique polymer with force-extension relation understood as an entropic spring-like force has been reported by Chu [8].

In soil dynamics and earthquake engineering the soil nonlinearity is modeled by a hybrid spring configuration consisting
of nonlinear springs connected in series to an elastic spring-damper model [9]. Remarkably, the applied nonlinear springs
captured the near spring-damper systems represented by Kelvin–Voigt elements, which model the for-field viscoelastic
character of the soil.

Springs in series are also applied in micromachines design, as it is presented in reference [10]. A nonlinear suspended
energy harvesting device composed of a permanent magnet (mass), springs in series, and two coil sets have been employed
for a five pressure monitoring system. Kinematic system behavior is governed by the stiffness in two directions of the two
suspended springs, whereas electromagnetic damping allows for estimation of the power output.

Therefore, nonlinear models and among them also nonlinear oscillators have been widely investigated in physics and
engineering, and many interesting issues arise in relation to the oscillators having springs connected in series. In addition to
the already discussed importance of systems composed with springs in series, they have potentially wide spectrum of
application in tuning or suppressing vibration. However, nonlinear oscillators with serially connected springs were in-
vestigated by many authors mostly numerically. The systems consisting of two serially connected springs, where one of
them is linear and the second one is nonlinear, is discussed among other, in papers [11–13].

The method of averaging is used in paper [14] to obtain an asymptotic solution of the equation of motion of a nonlinear
oscillator along a rough straight line considered the motion of a system of two equal mass points along a straight line under
the action of a small non symmetric Coulomb dry friction force. The mass points are connected by a non linear spring with
cubical non linearity.

Telli and Kopmaz [11] showed that the motion of a mass mounted via linear and nonlinear springs connected in series, is
described by a set of differential-algebraic equations. Similar situation occurs in our investigation. The one dimensional
oscillator with two nonlinear springs connected in series and the spring pendulum with two nonlinear springs arranged in
the same manner are investigated in this paper. The specific form of the governing equations that include apart from the
differential equations also the algebraic ones causes that the standard approach in MMS should be modified in order to deal
with the mathematical model of such systems. The appropriately adopted MMS has been briefly described in reference [15].
In this paper the procedure applied to solve the considered problems has been described more precisely. Unlike the ap-
proach presented in [15], three times scales are used to solve both issues considered here. Moreover, the discussion con-
cerning the obtained results has been extended. The paper is organized in the following way. In Section 2 one-dimensional
oscillator is studied analytically and numerically. Section 3 deals with the spring in series pendulum, where the asymptotical
solution has been found and compared with the direct numerical simulation. Concluding remarks regarding the obtained
results are outlined in Section 4.
2. One-dimensional oscillator

Let us consider one-dimensional motion of a body of mass m attached by two massless nonlinear springs to an im-
movable wall shown in Fig. 1.
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Fig. 1. Oscillator with series connection of two nonlinear springs.
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The restoring force exerted by the spring with cubic nonlinearity has the following form

( )Λ= + = ( )F k Z Z i, 1, 2 1i i i i i
3

where Zi is the elongation of the ith spring, ki is its stiffness coefficient, and Λi stands for the nonlinearity parameter. Lengths
of not tensioned springs are L10 and L20, respectively.

Such type of nonlinear elasticity is widely discussed in the papers concerning nonlinear dynamics [11,15]. When Λ > 0i

the characteristics of the spring is called “hard”, while for Λ < 0i the characteristics is called “soft”. Hereafter we consider
only the case Λ > 0i .
2.1. Mathematical model

Two equations describe behavior of the system. One of them is the differential equation of the body motion

( ) ( )Λ¨ + ¨ + + = ( )m Z Z k Z Z1 0, 21 2 2 2 2 2
2

whereas the second one is the algebraic equation describing equilibrium at the massless connection point S (see Fig. 1):

( ) ( )Λ Λ+ − + = ( )k Z Z k Z Z1 1 0. 31 1 1 1
2

2 2 2 2
2

The above equations are supplemented by the initial conditions

( ) + ( ) = ̇ ( ) + ̇ ( ) = ( )Z Z Z Z Z V0 0 , 0 0 , 41 2 0 1 2 0

where Z0 and V0 are initial displacement and velocity of the body, respectively.
Transformation to the more convenient dimensionless form of the governing equations yields

( )( )λ α¨ + ¨ + + + = ( )z z z z1 1 0, 51 2 2 2 2
2

( ) ( )λ α α+ − + = ( )z z z z1 1 0, 62 2 2
2

1 1 1
2

( ) + ( ) = ̇ ( ) + ̇ ( ) = ( )z z z z z v0 0 , 0 0 , 72 1 0 2 1 0

where =z Z L/0 0 , =v V L/0 0 , =z Z L/i i , α Λ= Li i
2 for =i 1, 2, = +L L L10 20, λ = k k/2 1.

Dimensionless time τ ω= t ,1 where ω = k m/e1 and = ( + )k k k k k/ ,e 1 2 2 2 plays a role of the characteristic quantity.
Observe that the additional relations between derivatives of the functions z1(τ) and z2(τ) are obtained by differentiating

once and twice Eq. (6), i.e. we have

( ) ( )α λ α+ ̇ − + ̇ = ( )z z z z1 3 1 3 0, 81 1
2

1 2 2
2

2

( ) ( )α α λα λ α̇ + + ¨ − ̇ − + ¨ = ( )z z z z z z z z6 1 3 6 1 3 0. 91 1 1
2

1 1
2

1 2 2 2
2

2 2
2

2

Formulas (8) and (9) allow to eliminate the function z1(τ) from Eq. (5).
2.2. Approximate analytical solution

The problem defined by Eqs. (5)–(7) can be solved directly using MSM [4], though the approach requires some significant
modifications. The assumptions concerning smallness of the nonlinearity parameters are proposed in the following form

α α ε α α ε= ˜ = ˜ ( ), , 101 1
2

2 2
2

where ε is a small perturbation parameter.
The solution is searched in the form of series with respect to the small parameter. Namely, we have
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where the time scales are defined in the following manner: τ τ=0 is the “fast” time, whereas τ ετ=1 and τ ε τ=2
2 serve as the

“slow” time. The differential operators follow:

⎛
⎝⎜

⎞
⎠⎟ ( )

τ τ
ε

τ
ε

τ

τ τ
ε

τ τ
ε

τ τ τ
ε

= ∂
∂

+ ∂
∂

+ ∂
∂

= ∂
∂

+ ∂
∂ ∂

+ ∂
∂

+ ∂
∂ ∂

+
( )

d
d

d
d

o

,

2 2 .
12

0 1

2

2

2

2

2

0
2

2

0 1

2
2

1
2

2

0 2

3

Introducing (10) and (11) into (5) and (6) and replacing the ordinary derivatives by the differential operators (12), we
obtain the differential equations with small parameter ε. These equations should be satisfied for any value of the small
parameter, so after rearranging them with respect to the powers of ε, we get:

– equations of order of ε0

( )λ
τ τ

+ + ∂
∂

+ ∂
∂

=
( )

z
z z

1 0,
13

20

2
10

0
2

2
20

0
2

λ − = ( )z z 0, 1420 10

– equations of order of ε1

( )λ
τ τ τ τ τ τ

+ + ∂
∂ ∂

+ ∂
∂ ∂

+ ∂
∂

+ ∂
∂

=
( )

z
z z z z

1 2 2 0,
15

21

2
10

0 1

2
20

0 1

2
11

0
2

2
21

0
2

λ − = ( )z z 0, 1621 11

– equations of order of ε2

( )( )λ α
τ τ τ τ τ τ

τ τ τ τ τ τ

+ + ˜ + ∂
∂ ∂

+ ∂
∂ ∂

+ ∂
∂ ∂

+

∂
∂ ∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

=
(

z z
z z z

z z z z z

1 1 2 2 2

2 0,
17

2 20
2

20

2
10

0 2

2
20

0 2

2
11

0 1
2

21

0 1

2
10

1
2

2
20

1
2

2
12

0
2

2
22

0
2

λα λ α˜ + − ˜ − = (z z z z 0. 182 20
3

22 1 10
3

12

In this way the original equations of motion have been approximated by the system of the partial differential and
algebraic equations. This system of equations is solved recursively. Then we apply the classical way of finding solution.
Namely, solutions of the equations of successive approximations, starting from the first ones, are inserted into the equations
of higher order approximations.

The solution of Eqs. (13)–(14) follows

( )λ τ τ τ τ= ( ) + ¯ ( ) ( )τ τ−z e B e B, , , 19i i
10 1 2 1 20 0

τ τ τ τ= ( ) + ¯ ( ) ( )τ τ−z e B e B, , , 20i i
20 1 2 1 20 0

where τ τ( )B ,1 2 is unknown complex-valued function. Introducing (19) and (20) into equations of the second order (15) and
(16) and zeroing secular terms yields

τ τ
τ

τ τ
τ

∂ ( )
∂

=
∂ ¯ ( )

∂
=

( )
B B,

0,
,

0,
21

1 2

1

1 2

1

which means that the function B depends only on the slowest time scale τ2.
The solutions of the Eqs. (13)–(14) of order of ε2 are =z 011 and =z 021 .
Elimination of secular terms from the equations of order of ε2 yields

( ) ( )
( ) ( )

τ
τ

τ τ λ α α
λ

τ
τ

τ τ λ α α
λ

( )
=

( ) ¯ ( ) ˜ + ˜
+

¯ ( )
= −

¯ ( ) ( ) ˜ + ˜
+ ( )

dB
d

iB B dB
d

iB B3

2 1
,

3

2 1
.

22
2

2

2
2 2

3
1 2 2

2

2
2 2

3
1 2

Using solutions of the equations of order of ε0 and ε1, the solutions of Eqs. (17)–(18) are as follows

( )τ λ α α λα
λ

= ( ) ˜ + ˜ − ˜
+

+
( )

τz e B CC
9 8

8 1
,

23
i

22
3 3

2

3
1 2 20
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( )( )
( )λ τ

α α λ λ
λ

λ τ τ λ α α= ( )
˜ + ˜ −

+
− ( ) ¯ ( ) ˜ − ˜ +

( )
τ τz e B e B B CC

9 8

8 1
3 ,

24
i i

12
3 3

2
2 1

2
2

2 2
2

1 20 0

where CC means complex conjugates.
It is convenient to express the function τ( )B 2 in the polar form

τ
τ

τ
τ

( ) =
( ) ¯ ( ) =

( )
( )

ψ τ ψ τ( ) − ( )B
b

e B
b

e
2

,
2

, 25
i i

2
2

2
22 2

where τ( )b 2 and ψ τ( )2 are real-valued functions.
Introducing definitions (25) into the solvability condition (22) leads to the following modulation equations

( )
( )

τ
τ

ψ τ
τ

τ λ α α
λ

( )
= ( ) =

( ) ˜ + ˜
+ ( )

db
d

d
d

b
0,

3

8 1
.

26
2

2

2

2

2
2

3
1 2

The solution of the system (26), assuming initial conditions in the form

ψ ψ( ) = ( ) = ( )b b0 and 0 , 270 0

is as follows

( )
( )τ ψ τ ψ
λ α α

λ
τ( ) = ( ) = +

˜ + ˜
+ ( )

b b
b

,
3

8 1
.

28
2 0 2 0

0
2 3

1 2
2

On the other hand, the solutions of the Eqs. (13)–(18) are introduced into the power series (11). Then using the solution
(28) of the modulation problem (26) and (27) the following approximate analytical solution of the problem (5)–(7) are
obtained

( )

( )
( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( )

τ λ Γτ ψ
λ α λ α λ λ

λ
Γτ ψ

λ α α λ λ

λ
Γτ ψ Γτ ψ

= + +
+ − +

+
+

+
+ −

+
+ +

( )

z b
b

b

cos
3 5 8 16 25

32 1
cos

2 9 8

32 1
cos cos 2 2 ,

29

1 0 0
0
3

2 1
2

0

0
3

2 1
2

0 0

( )( ) ( ) ( )τ Γτ ψ
α α λ α λ

λ
Γτ ψ( ) = + +

− +
+

+
( )

z b
b

cos
8 9

32 1
cos 3 3 ,

30
2 0 0

0
3

2 2 1
3

0

where ( ) ( )Γ α α λ λ= + + +b1 3 /8 10
2

2 1
3 is the shortening denotation, while b0 and ψ0 are the initial values of the amplitude

and the phase, respectively.
The relationships between the initial values b0, ψ0 in (27) and the initial values of the position z0 and the velocity v0

appearing in (7) are as follows

( )( ) ( )( ) ( )ψ λ α α λ α λ α α λ ψ= ( ) + − − + + + ( )z
b

b b
32

cos 32 1 24 25 2 cos 2 , 310
0

0 10
2

2 2 1
3

10
2

2 1
3

10

( )
( )

( ) ( )
( )

( ) ( )
( ) ( ) ( )

λ α α λ α λ α α λ ψ

λ α α λ ψ λ

= − + + + − + +

× + + + ( + ) ( )

v b b b

b

32 1 3 8 7 6 cos 2

8 1 3 sin / 256 1 . 32

0 0 0
2

2 2 1
3

0
2

2 1
3

0

0
2

2 1
3

0

Since the solutions of the equations of the order ε1 are equal to zero, only two time scales are required. It should be
mentioned that the approximate analytical solution (31) and (32) obtained using three time scales has the same form, when
only two time scales are adapted while solving this problem [15].

2.3. Results

The time history of the generalized coordinates and their sum (describing position of the body) are presented in Fig. 2.
The comparison between the numerical and the analytical solutions confirms correctness of the employed asymptotic

approach. Needless to say that the obtained the explicit form of the approximate solution allows for a deeper analysis of the
motion of the studied mechanical system.

The derived analytic form of the solution yields a period of vibration

( )
( )

π λ
α λ α λ

=
+

+ + + ( )
T

b b

16 1

3 3 8 1
.

331 0
2 3

2 0
2

Expression (31) describes dependence of the period versus initial value of the amplitude of oscillations. Both nonlinearity
parameters α1, α2 as well as the parameter λ remarkably effect the character of this dependence. Since the springs are



Fig. 2. Time history of the system motion: (a) α = 0.81 α = 1.42 λ = 8, =b 0.10 , ψ = 00 ; (b) α = 1.91 α = 1.42 λ = 0.1, =b 0.50 , ψ = 00 (dashed line corresponds
to numerical solution).
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nonlinear with hard characteristics (α > 0i ), the period of oscillations is smaller than π2 . In Fig. 3 the value of the oscillations
period versus nonlinearity parameters α1 and α2 is shown.

The dependences of the period T and amplitude b0 of the body oscillations versus λ obtained from Eqs. (29) and (30) are
presented in Fig. 4.

The position and value of the both extrema values observed in Fig. 4 strongly depend on the nonlinearity α1, α2 of the
applied springs.

The analytical form of the asymptotic solution allows to perform a detailed analysis of the relationships between the
kinematic aspects of the vibration and the physical parameters.
3. Spring pendulum

The dynamics of the nonlinear spring pendulum presented in Fig. 5 is investigated in this section. Though the system is
relatively simple, it can serve as a good example for studying non-linear phenomena of physical and geometrical nature
which occur in two degrees-of-freedom mechanical systems.

The investigated pendulum-type system consists of the small body of mass m suspended at a fixed point via two
nonlinear springs of the nominal length L01, and L02, whose elastic constants are denoted by k1, Λ1 and k2, Λ2, respectively.
The lumped mass body can move only in the fixed vertical plane due to the introduced constraints. Moreover, we assume
that the springs are collinear. We are interested in free motion of the system, thus neither external force nor damping are
admitted. The total spring elongations Z1, Z2 and the angle φ describe unambiguously the position of the studied system.

3.1. Mathematical model

The equations of motion are obtained using the Lagrange equations of the second kind. Similarly as in previous section,
the differential equations are supplemented by algebraic one, which describes the equilibrium state of the massless point S
connecting the massless springs.

The restoring forces in the springs are of the same nonlinear type as previously, and they are governed by Eq. (1). The
dimensionless form of the mathematical model follows

( )( ) ( ) ( ) ( )
( )

α λ α λ α λ φ

φ

¨ + ¨ + + + + + + + − −

− + + ̇ = ( )

z z z z z z z w

z z

1 3 1 3 1 1 cos 1

1 0, 34

r r1 2 2
2

2 2 2 2 2
2

2 2
3 2

1 2
2

Fig. 3. Period T versus nonlinearity parameters α1, α2 for λ = 1.0, =b 0.80 .
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Fig. 5. The pendulum with two nonlinear springs connected in series.
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( )( ) ( ) ( )φ φ φ+ + + + ¨ + ̇ + ̇ ̇ + = ( )z z z z z z w1 1 2 sin 0, 351 2 1 2 1 2
2

( ) ( )( ) ( )λ α α α α+ + + − + + + = ( )z z z z z z z z z z3 3 1 3 3 1 0. 36r r r r2 2 2 2 2 2 2
2

1 1 1 1 1 1 1
2

The initial conditions are introduced in the following way

φ φ φ ω( ) + ( ) = ̇ ( ) + ̇ ( ) = ( ) = ̇ ( ) = ( )z z z z z v0 0 , 0 0 , 0 , 0 . 372 1 0 2 1 0 0 0

The dimensionless parameters are defined in the same way as in the previous Section 2. The elongations of the springs at
the static equilibrium position z r1 and z r2 satisfy the following additional conditions:

( ) ( )α λ α λ λ+ = ( + ) + = ( + ) ( )z z w z z w1 / 1 and 1 / 1 . 38r r r r2 2
2

2
2

1 1
2

2
2

The trivial solution of Eq. (34), satisfying the algebraic equations + + =z z 1 01 2 , will be omitted in our further
investigations.
3.2. Approximate analytical solution

The problem (34)–(37) can be solved analytically using the multiple scale method [16], but with an introduction of the
significant modification. The assumptions of smallness of the nonlinearity parameters are proposed in the form

α α ε α α ε= ˜ = ˜ ( ), . 391 1
2

2 2
2

The employed solving procedure is similar to that one presented in the previous section. However, in this problem also
three time scales are employed, and the solutions are searched in the form of the power expansions with respect to small
parameter as follows
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=
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Then the expansions (40) and the assumptions (39) are introduced into the equations of motion (34)–(36) and the
definitions of differential operators (12) are applied. Afterwards the differential equations of the subsequent orders of the
approximation are solved and then, after excluding secular terms, they are introduced into the equations of the higher order
approximation, recursively. In this way the following asymptotic analytical solution is obtained:
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where ψ ψa a, , ,10 20 10 20 are the initial values of the amplitudes and the phases of z2 and φ, respectively. They are related to the
initial values z0, v0, ϕ0 and ω0 by the conditions (37) and solutions (41)–(43) at instant τ = 0.

3.3. Results

Time histories of the coordinates describing position of the analyzed particle are presented in Fig. 6. In both graphs, the
solid curve represents the asymptotic solution according to (41)–(43), while the dashed curve describes the solution ob-
tained numerically.

The period of oscillations depends, among other, on the parameters λ and w. These relations can be derived from the
asymptotic solutions. The period of the longitudinal Tz and the swing Tφ oscillations versus parameter λ is presented in
Fig. 7, whereas both periods are presented in Fig. 8 as functions of the parameter w.
4. Conclusions

The mechanical lumped mass systems containing two nonlinear springs connected in series have been investigated. The



Fig. 6. Time history of the particle position for α = 0.351 , α = 0.252 , λ = 2.5, =a 0.0710 , =a 0.2720 , ψ = 010 , ψ = 020 (dashed curve corresponds to numerical
solution).

Fig. 7. Period T versus λ of longitudinal and swing oscillations for α = 0.351 , α = 0.252 , =a 0.0710 , =a 0.2720 , ψ = 010 , ψ = 020 .

Fig. 8. Period T versus w of longitudinal and swing oscillations for α = 0.351 , α = 0.252 , =a 0.0710 , =a 0.2720 , ψ = 010 , ψ = 020 .
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mathematical model of that kind of objects consists of the differential and algebraic equations. Properly modified multiple
scales method in time domain have been applied to solve this problem effectively, and to obtain the approximate analytical
solutions. The range of the parameters responsible for the physical type nonlinearity is limited according to the assumptions
of the MSM. The correctness of the results has been confirmed by direct numerical simulations.

The approximate analytical solution obtained using appropriately modified MSM allows to analyse the influence of the
system parameters on the motion. The influence of some parameters on the period and amplitude has been discussed in the
case of regular oscillations.

It turned out that in the case of one dimensional oscillator the approximate analytical solutions obtained using three
time scales has the same form when only two time scales are adapted while solving this problem. Hence, introducing the
intermediate time scale does no influence the quality of the received solution and application of only “slow” and “fast” time
scales are sufficient, in fact. In more sophisticated systems, in which geometrical nonlinearity appears, each of the three time
scales used in MSM may play a significant role.

All presented results, both analytical and numerical, has been obtained using the Wolfram Mathematica software.
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