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Abstract The nonlinear dynamic problem of cate-

nary risers is solved by means of the rigid finite

element method. The method enables us to model

slender systems such as lines, cables and risers

undergoing large base motions. The formulation

allows elimination of large values of stiffness coef-

ficients: shear, longitudinal and torsional (dependent

on permissibility of the system analyzed). The

analysis presented in the paper is concerned with

the dynamics of a riser initially bent and undergoing

heave excitation. Comparison of the results with

those obtained using the finite difference and finite

element methods shows good compatibility and

indicates the correctness of the models obtained by

means of the rigid finite element method. Numerical

effectiveness of the method enables it to be applied in

solving the dynamic optimization problem. The

problem described is the compensation of the hori-

zontal vibrations of the vessel or a platform by

vertical displacements of the upper end of the riser.

Bending moments which arise during the motion of a

platform or a vessel can seriously influence and in

some cases damage the structure. Thus the aim of the

optimization is to ensure that the maximum bending

moment at a given point does not exceed its static

counterpart. The results of numerical simulations

show that the systems enabling heave compensation

can be used to minimize the difference between the

bending moment caused by displacements of the

platform or a vessel and the static moment.
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1 Introduction

Considerable deformation and change of shape is one

of the inherent features of slender structures such as

lines, cables and risers. Much research has been

carried out into both linear and nonlinear dynamics of

such systems. Benedettini et al. [1, 2] intensively

studied linear and nonlinear vibrations of cables and

devoted their attention especially to the problem of

coupling “in-plane” and “out-of plane” vibrations.

Two further papers [3, 4] present the experimental

set-up which enables such coupling to be investigated

for a cable with eight lumped masses. Results of

experimental measurements are compared with those

of numerical simulations. Moreover, the authors
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assumed that nonlinear vibrations can be induced by

motion of the supports.

Slender systems undergoing large base motion

occur in offshore engineering systems where there is

a coupling between the dynamics of a vessel or

platform and attached risers or mooring lines and

cables. In such cases not only bending and longitu-

dinal flexibilities of slender systems but also large

deflections have to be considered. Moreover, in the

marine environment uplift pressure, drag force, added

mass water and, in the case of risers, internal flow of

hydrocarbons (petroleum and gas) has to be taken

into account. An extensive discussion on the state of

the art in modeling and on problems in total dynamic

analysis of offshore systems is presented by Chakra-

barti [5]. Although Patel and Seyed [6] report many

different modelling methods, the most popular meth-

ods used are the lumped mass [7, 8] and the finite

element methods [9–11]. Those methods are used in

commercial packages not only specialized in offshore

engineering (Riffex, Orcaflex or Offpipe) but also of

general use such as Abaqus. The Flexible Segment

Model (FSM) presented in [12] is another similar

approach. Nevertheless, new methods of modeling

slender systems used in offshore engineering are still

being sought [13–15], and this paper follows this

trend by presenting a modified formulation of the

rigid finite element method (RFEM).

The RFEM has been successfully used for

dynamic analysis of flexible systems containing

beam-like links [16, 17] or plates and shells

[18, 19]. Considerations of both bending and longi-

tudinal flexibilities of slender links are presented in

[20]. This paper presents the model which is derived

using a modified formulation of RFEM in absolute

coordinates [20, 21]; this model is supplemented with

relations describing the influence of hydrodynamic

forces. The validation of the method concerned with:

deflections of a catenary line; vibrations with large

amplitudes of a line several hundred meters long;

frequencies of free vibrations of a vertical riser

additionally loaded with tension; vibrations of a

vertical riser with the upper end moving periodically,

is presented in [21]. The comparisons indicate the

correctness of the models obtained by means of the

rigid finite element method even when the influence

of the water environment (drag forces, hydrodynamic

resistance or added mass and currents) is considered.

This paper is concerned with dynamics of risers,

especially vibrations due to which there is a signif-

icant increase in bending moments. First, the results

are compared with those presented by Chatjigeorgiu

[22] obtained by means of the finite element and

finite difference methods. Numerical simulations

show that acceptable exactness of the results is

obtained even when the riser is divided into less than

a hundred elements, so due to the numerical effec-

tiveness of the method it is possible to use it in order

to solve a dynamic optimization task. The aim of the

optimization is such a choice of vertical displacement

of the upper end of the riser attached to a vessel or

platform that despite its horizontal displacements the

magnitude of the bending moment in the riser does

not exceed its static counterpart. The solution of the

optimization problem requires integration of the

nonlinear equations of motion at each optimization

step. The solution consists of the parameters defining

the function describing the motion of the upper end of

the riser. The results can be used when at a certain

point of the riser the bending moment has to be

restricted to a certain value, for example when there

is a risk of failure.

2 Model of a riser

The Rigid Finite Element Method (RFEM) is used in

order to formulate the model of a riser. Detailed

description of the modified formulation of RFEM

used for modelling is presented in [21]. A flexible

link is divided into rigid elements (rfe) reflecting

mass features of the link connected by means of

dimensionless spring-damping elements (sde) reflect-

ing bending ⊗ and longitudinal ⊠ flexibilities

(Fig. 1). The vector of generalized coordinates takes

the following form:

qi ¼ xi yi Di ui½ �T ð1Þ
where xi; yi are coordinates of point Ai, Di is the

elongation of sde ⊠, φi is the declination angle of rfe

i towards the axis x of the global coordinate system.

In the paper the hydrodynamic forces are taken

into account according to Morison’s law. This

approach is appropriate for nonlinear analysis pre-

sented in this paper, although more complicated fluid-
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structure interaction can be also considered [23].

Having omitted the detailed derivations [21], the

equations of motion describing the dynamics of the

system can be written in the form

M€q� DR ¼ F ð2Þ
DT €q ¼ G ð3Þ
where q ¼ qT0 qT1 . . . qTn

� �T
is the vector of

generalized coordinates of the system with 4(n + 1)

elements, R ¼ RT
0 RT

1 . . . RT
n

� �T
is the vector

of constraint reactions with 2(n + 1) elements, M ¼
M qð Þ ¼ diag M0 M1 . . . Mi . . . Mnð Þ is

the mass matrix with variable elements together with

the mass of added water, and D ¼ D qð Þ,
F ¼ F t; q; _qð Þ, G ¼ G t; q; _qð Þ, and xA(t), yA(t) are

known functions defining the motion of point A0.

Equations (2) and (3) are nonlinear due to large

deflections and nonlinear terms when forces caused

by the water environment are considered.

Since matrix M has a block diagonal form, it is

easy to calculate the inverse matrix M�1. The

following can be obtained from (2)

€q ¼ M�1 Fþ DRð Þ ¼ f t;qð Þ ð4Þ
where M is calculated by solving the system of linear

algebraic equations:

DTM�1D
� �

R ¼ G� DTM�1F ð5Þ

3 Numerical simulations

Dynamics of a catenary riser (Fig. 2) are analysed in

[22] by means of the finite difference method. Three

Fig. 1 System of rigid

finite and spring-damping

elements

Fig. 2 Catenary riser
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models of risers with different lengths are considered

in order to investigate the influence of heave motion

on bending moments and tension or shear forces.

Axial excitations can have a considerable influ-

ence on dynamic behaviour of risers and catenary

moorings and are especially important in practical

applications. For the purpose of comparative analysis

presented in this section only one of the models is

used. The parameters of the analysed model of the

riser are presented in Table 1.

Two types of harmonic motion are analysed:

W1—vertical motion with period 60 s and ampli-

tude 5 m.

W2—vertical motion with period 12 s and ampli-

tude 2 m.

It is assumed that horizontal motion of a vessel or

platform is described by the following function:

xE ¼ �aþ a cosxt ð6Þ
where a is the amplitude of motion, ω = 2π/T, T is

the period of the harmonic motion.

Comparison of maximal and minimal values of

bending moments as well as tension at the top of the

riser and static top tension are presented in Table 2.

The results obtained with the rigid finite element m

method (RFEM) are compared with those presented

in [22] obtained using RIFLEX (RF) and the finite

difference method (FD).

The results obtained using the rigid finite element

method for n = 101 elements are very close to those

obtained with a nonlinear model (FD). More dis-

crepancies can be seen when the results by the RFEM

are compared with those from the linear model (RF

—by commercial package RIFLEX). Figure 3a

shows the static configuration of the riser and static

bending moment obtained using the authors’ model

and those presented by [22]. It is important to note

that the rigid finite element method takes into

account rotational inertia of the elements and this

explains the differences in maximal values of bend-

ing moments presented in Table 2. Consideration of

rotational inertia results in larger hydraulic damping.

Courses of the tension and shear forces, and of the

bending moment along the riser are presented in

Fig. 3b–d.

The rigid finite element method enables us to

calculate displacements, inclination angles of the

elements and forces at discrete points. Values at

intermediate points (for an arbitrary s) can be

calculated by means of spline functions. Figure 4

shows the influence of the number of elements n into

which the riser is divided on the results of the

bending moment calculated at selected points for

harmonic motion W2.

It can be seen that even for n = 40 the results are

acceptable. The simulation time for one instance of

simulations does not exceed 5 s on a medium class

personal computer.

4 Optimisation

Numerical effectiveness of the method enables it to

be used in solving dynamic optimisation problems

[24, 25]. In the papers the method is used for

modelling ropes in order to solve the problem

of stabilisation of a load at a given depth despite

vertical and horizontal movements of the base vessel.

Table 1 Parameters of the catenary riser

Parameter Denotation Value Unit

Riser Suspended length L 2022 m

Outer diameter diout 0.429 m

Inner diameter din 0.385 m

Young modulus E 2.07 9 1011 N/m2

Mass density ρr 7758 kg/m3

Water Mass density ρw 1025 kg/m3

Added mass coefficient CM 2

Normal drag coefficient Cn 1

Tangential drag coefficient Ct 0

Fluid inside riser Mass density ρF 200 kg/m3
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The task is solved by definition of the rotation angle

of a hoisting winch, which is responsible for keeping

the load at a set distance from the seabed.

For the purpose of this paper the optimisation task

is formulated as follows (Fig. 5).

The horizontal motion of a vessel (platform) is

defined by (6). Such movements cause a significant

increase in bending moments in the riser presented in

Fig. 2, which finally can lead to damage of the

structure. This means that the problem is very

important from the practical point of view. Thus, the

vertical motion of point E (the upper end of the riser)

should be chosen in such a way that the bending

moment at a given point of the riser is as close as

possible to the static bending moment. For further

analysis it is assumed that the riser parameters are the

same as those presented in Table 1. The course of the

bendingmoment calculated at given points for a= 3m

and T = 12 s in formula (6) is presented in Fig. 6.

Table 2 Comparison of results obtained by RFEM and those presented in [22]

W1 W2

RF [22] FD [22] RFEM RF [22] FD [22] RFEM

Static top tension (kN) 1860 1860 1864 1860 1860 1864

Max tension (kN) 1895 1894 1893 2193 2261 2269

Min tension (kN) 1825 1825 1817 1542 1451 1446

Max bending moment (kNm) 542 517 507 575 555 530

Min bending moment (kNm) 428 401 399 406 375 368

Fig. 3 Comparative

analysis for static

equilibrium: a configuration

of the riser, b tension force,

c bending moment, d shear

force

Fig. 4 Maximal and minimal values of the bending moment at

selected points (W2)
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Courses of minimal and maximal values of the

bending moment along the riser for the second type

of harmonic motion (W2) are presented in Fig. 7.

The optimisation task is formulated using the

spline functions of the third order as follows:

Find function yE(t) for t ∊ 0, T defined by means of

parameters:

p1 ¼ yE t1ð Þ
..
.

pi ¼ yE tið Þ
..
.

pm ¼ yE tmð Þ

8>>>>>><
>>>>>>:

ð7Þ

where ti ¼ iDt for i = 1, 2,…,m, Dt ¼ T
m
, so that the

function:

X p1; . . .; pmð Þ ¼ 1

T
r
t

0

M s�; tð Þ �M�
stat

� �2
dt ð8Þ

where M(s*, t) is the bending moment at the selected

point of the riser, Mstat* is the value of this moment

for the static equilibrium problem, reaches its min-

imum while fulfilling the following:

yEmin � pi � yEmax ð9Þ

Fig. 5 Riser configuration during optimisation: a without compensation, b with compensation

Fig. 6 Courses of the bending moment at selected points Fig. 7 Course of the maximal and minimal values of the

bending moment
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where yEmin; yEmax are minimal and maximal accepted

values of function yE(t).In order to calculate the value

of functional (8) for a specific combination of

parameters pi (i = 1,…,m), bending moment M
(s*, t) has to be known. Thus, the equations of motion

of the riser have to be integrated at each optimisation

step. The downhill simplex method is used for

solving the optimisation task.

The parameters occurring in the optimisation

problem have to be chosen properly in order to

obtain correct results, especially the number of time

intervals m in formula (7), and yEmin and yEmax in

inequalities (9). A large number of decisive variables

m significantly increases simulation time, but too

small a number leads to a limitation of function

classes describing vertical displacements of point

E of the riser. Figure 8 presents the courses of

function yE(t) for m = 5, 10, 15.

It can be seen that the difference between values of

yE obtained for m = 5 and 10 is large, while for

m = 10 and 15 it is small. Calculation times were

T* = 202 s for m = 5, T� = 1220 s for m = 10 and

T* = 1825 s for m = 15. The calculations were

carried out for s* = 75 m, yEmin = 1.5 m and

yEmax = 1.5 m. The simulations did not show that

values yEmin and yEmax have a significant influence on
the exactness of results obtained. The choice of yEmin
and yEmax was made on the assumption that they

should be proportional to the amplitude of the input

motion a, but should not exceed ±50 % of this value.

Fig. 8 Courses of function yE(t) with respect to number of

time intervals m

Fig. 9 Courses of:

a moment M(s*, t), b top

tension T(L, t) before and

after the optimisation,

c function yE(t)
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Figures 9, 10 and 11 present the results of

optimisation for a = 3, 4, 5 m. It can be seen that,

by means of technically possible vertical motion of

the upper end of the riser, the bending moment at any

selected point of the riser can be stabilized despite the

horizontal movements of the base (vessel or plat-

form). The numerical simulations were carried out for

s� ¼ 75; 150m, and the number of discretization

points of function yE(t) m = 10.

It can be seen that the reduction of maximal values

of bending moments down to the value of Mstat
* at a

selected point of the riser is correctly realised. As a

result of the optimisation task, the courses of the

bending moments are close to the values of bending

moment at initial time t ¼ 0s. Table 3 presents

maximal and minimal values of the bending moments

and top tension force before and after optimisation.

Reduction of the bending moment at a chosen point

and top tension of the riser was achieved by the use of

function (8) for the optimisation task. The difference

between the maximal and minimal values of the

bending moment on average was about 25 kNm and

after optimisation this difference was \10 kNm.

Realizing optimal displacements yE(t) involves

applying the appropriate top tension at point E of the

riser. From Figs. 9b, 10b and 11b it can be seen that

realization of displacements of point E requires a

characteristic force which is not larger than ±5 % of

the tangential force. Special devices are necessary for

technical realization of the optimal displacement

(yE(t) or force T L; tð Þ) Information about the method

of realizing displacements at point E and about

devices used can be found in papers dealing with

“heave compensation systems” [26, 27].

5 Final remarks

The paper presents an application of the modification

of the rigid finite element method to modeling of

dynamics of ropes and risers. The basic advantage of

the method is its simple physical interpretation. A

flexible link is divided into rigid segments which

represent mass features of the link and spring-

damping elements responsible for its flexible and

damping features. The essential aspect of the method

Fig. 10 Courses of:

a moment M(s*, t), b top

tension T(L, t) before and

after the optimisation,

c function yE(t)
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is the possibility of accounting for large deflections of

links. The formulation using absolute coordinates

gives reliable results both in the range of static and

dynamic analysis. The static analysis concerned with

a catenary line shows that the largest differences

obtained using the RFEM are less than 0.5 % in

comparison to the analytically calculated values of

deflections. Free vibrations can be also calculated

using the method without the necessity of special

formulations. The results obtained using the modified

rigid finite element method are compared with those

presented by other authors and obtained using

commercial software, and very good compatibility

is obtained. Thus the models and programs formu-

lated are reliable and numerically efficient.

Calculation time is considerably shorter than that

necessary for simulations by means of commercial

software. The simple physical interpretation and the

numerical efficiency of the method enables the

method to be applied in engineering design of

Table 3 Maximum and minimum of values of the bending moment and top tension before and after optimisation

a (m) 3 4 5

s* (m) 75 150 75 150 75 150

Optimisation B A B A B A B A B A B A

Mmax (kNm) 438 426 374 365 442 427 377 365 446 428 379 368

Mmin (kNm) 413 424 355 363 409 424 353 363 404 423 351 360

Tmax (kN) 1940 1885 1940 1955 1962 1890 1962 1969 1989 1896 1989 1892

Tmin (kN) 1785 1851 1785 1813 1757 1843 1757 1805 1726 1831 1726 1819

B before, A after

Fig. 11 Courses of:

a moment M(s*, t), b top

tension T(L, t) before and

after the optimisation,

c function yE(t)
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offshore equipment, especially in dynamic analysis of

flexible structures, dynamic optimization problems

and control. An exemplary optimisation problem is

presented and solved in the paper. However, the

problem can be generalized by including several

points along the riser in the functional Ω. Since the

method enables us to calculate forces in the connec-

tions of the elements (as constraint reactions) it is

possible to formulate tasks in which the limitations

are imposed not only on the bending moment but also

longitudinal or transversal forces. Solution of several

optimisation tasks (for example for different param-

eters of waves, length of risers) can be used for

training an artificial neural network, which then can

be used in control.
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