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Abstract Some special cases of a larger class of smooth models of the resultant friction force occurring on a
planar contact area are developed and presented. These models are constructed under assumptions of classical
Coulomb’s law of friction on each element of contact and instantaneous transition between two modes: fully
developed sliding and rigid stick state without local slips and deformations of the contact area. They are able to
model cases of different values of static and kinetic friction factors. The considered models are very effective
tools for fast and reliable numerical simulations of mechanical systems with frictional contacts. They are
applied in modelling and numerical analysis of a special kind of mechanical system, i.e. a kind of a pendulum
with special frictional driving. The rotational joint of the pendulum is elastically suspended in the motion
plane. The pendulum is driven by circular frictional contact with a rotating disk. Examples of self-excited
bifurcation and chaotic dynamics as well as stick–slip behaviour of the pendulum are presented.

Keywords Friction modelling · Coulomb–Contensou model · Circular contact · Stick–slip

1 Introduction

There are plenty of examples of mechanical systems, in dynamical properties and behaviour of which friction
plays a crucial role. Friction can be a desired phenomenon or not, but in both cases, its appropriate and efficient
mathematical modelling is a key part of analysis and synthesis of mechanical systems with frictional contacts.
The classically understood friction model is a relation between a single component of the friction force and
the one-dimensional relative displacement of the contacting bodies. This relation can have different levels of
complexity, beginning with the classical Coulomb’s law of friction and ending with advanced relations, where
additional state variables are often defined. These kinds of models can be directly applied in a mathematical
description and analysis of dynamical systemswith frictional contacts, where at each element of the contact, the
same relative motion of the contacting surfaces occurs. However, in real life, one can encounter many examples
of mechanical systems, where the above assumption cannot yield correct results. As examples, dynamics of
rolling bearings, billiard balls, different kinds of tops, the wobblestone, polishing machine, disk clutches and
many others can be given. Exact and correct results can always be obtained by detailed physical modelling and
space discretisation in the vicinity of contact. Nonetheless, this approach leads to a computation cost increase
and is inappropriate in fast numerical simulations. This is the reason of interest of many researchers in looking
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for simple approximate models of contact forces, which would be suitable for fast and realistic simulations of
certain classes of mechanical systems with frictional contacts.

Contensou [1] has noticed that if the product of the normal component of relative angular velocity of the
contacting bodies and the size of contact is sufficiently large, one should take the coupling between the friction
force and moment into account. He has proposed an integral model of the resultant friction force under the
assumption of fully developed sliding and Coulomb’s law of friction valid on each element of the circular
contact. The results obtained by Contensou were then significantly developed by Zhuravlev [2], who presented
an exact analytical solution to Contensou’s integral model and also proposed the corresponding approximant
models based on the Padé expansions. Further developments and generalisations of the approximant models of
the contact forces, including rolling resistance and assuming elliptical contact area, are proposed in the work
[3]. An integral model of the friction force and moment was constructed under the assumption of classical
Coulomb’s law and fully developed sliding over the planar contact zone of an arbitrary shape and general
contact stress distribution. In the next step, a special model of contact distribution over the elliptic area was
constructed, which can be understood as a kind of generalisation of Hertzian normal stress distribution, where
a special distortion related to the rolling resistance was modelled. Certain original approximate models of the
resultant friction force and moment, which are based on Padé approximants and their generalisations, have
been presented in [3]. Special regularisations of these models, which enable to avoid singularities for vanishing
relative motion as well as to take into account different values of static and kinetic friction coefficients, can be
also found in [4,5].

The topic of the present work is a part of the larger field concerning modelling and simulation of multibody
systems with frictional contacts. The modelling methods dealing with those kinds of problems can be divided
into two main branches, i.e. non-smooth models and regularised models [6]. In the regularised approaches,
known also as penalty or complaint methods, the contact force is assumed as a continuous function of pen-
etration of contacting bodies [7–9]. The frictional forces are then often formulated by the use of regularised
Coulomb’s model of friction [10–13]. The regularisation can be a result of a need of simplification of the model
but also very often corresponds to the physical nature of a real object (compliance of the bodies, microslips,
etc.).

Stamm and Fidlin [14] have proposed a regularised two-dimensional model of friction forces appearing
on a finite plane area based on elasto-visco-plastic theory, but requiring discretisation of the contact area.
The authors have applied their model in modelling and analysis of a disk-on-a-disk system being, to a certain
extent, a counterpart of a disk clutch, where alternating sliding and sticking solutions can occur [15]. The work
[16] presents results of analytical studies of a similar system, where the approximations based on Taylor’s
expansion of the friction force and moment for fully developed sliding are used.

In the present work, the authors apply their earlier developed models of the resultant friction force and
moment in modelling and numerical simulations of the mechanical system being a certain modification of
the disk-on-a-disk system analysed in the works [15,16]. The present work is an extended version of the
conference publication [17]. In comparison with the work [17], analysis of solution’s accuracy as a function
of the “smoothing parameter” ε is included.

2 Modelling of friction forces

Let us consider a circular contact area of dimensionless form depicted in Fig. 1, where (i) the fully developed
sliding; (ii) classical Coulomb’s law of friction valid on each element of the contact; (iii) constant friction
coefficient; (iv) the fact that the relative motion of the contacting surfaces is a planar motion of rigid bodies is
assumed.Aside from the aforementioned, also the following relations between real anddimensionless quantities
describing the contact are assumed: ̂Ts = μ̂NTs, ̂Ms = μ̂NâMs, σ̂ (x, y) = (̂N /̂a2)σ (x, y), v̂s = âvs and
ω̂s = ωs , wherêTs and ̂Ms are the real resultant friction force and moment of contact reduced to the centre A
of contact F,Ts and Ms—the corresponding dimensionless resultant friction force and moment, μ—friction
coefficient, ̂N—real normal loading of contact, â—characteristic dimension of contact (in this case, the real
radius of the contact F), σ̂ and σ—real and dimensionless contact pressures, v̂s and vs—relative real and
dimensionless relative linear velocities at the point A, ω̂s = ωs—relative angular velocity in the plane of
contact. Note that in all the introduced quantities, time is real.

Assuming that Ts = −Tsxex − Tsyey ,Ms = −Msez , vs = vsxex + vsyey and ωs = ωsez , where eξ is the
unit vector along the axis ξ , one can find the following integral expressions:



Application of a special class of smooth models

Fig. 1 Contact area

Tsx =
∫∫

dF
n(x, y)(vsx − ωs y)dxdy,

Tsy =
∫∫

dF
n(x, y)(vsy + ωs x)dxdy,

Ms =
∫∫

dF
n(x, y)

(

ωs(x
2 + y2) + vsy x − vsx y

)

dxdy, (1)

where

n(x, y) = σ(x, y)
(
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2 + (

vsy + ωs x
)2

)−1/2
.

Since themodel (1) requires integration over the contact area at each time step, it is not a suitable tool for fast
and reliable numerical simulations. Based on the results presented in the previous works of the authors [3] and
assuming a constant dimensionless contact pressure distribution on the circular contact area σ(x, y) = 1/π ,
one can derive the following two sets of the integral model (1) approximations
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The approximations (2–3), after the replacements vsx = vscosϕs and vsy = vssinϕs , fulfil the following
properties of the integral model (1)

∂ i f (In1,n2)
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where f = Tsx , Tsy, Ms , while m and b are arbitrary constants. Note that the above approximations possess
the same denominators, which, in general, is not necessary (see [3]), but allows for application of the later
presented special form of regularisation.

In order to make comparison of the functions (1–3) simpler, one introduces the spherical coordinates

vsx = λs cos θs cosϕs, vsy = λs cos θs sin ϕs, ωs = λs sin θs . (5)

The parameters m and b are optimised by searching for the best fitting of the corresponding functions on
the representative (in the case of circularly symmetric contact pressure distribution) field θs ∈ [0,π/2] and
ϕs = 0. For the functions (2), b = 1.744 and m = 0.674 are found, while for the approximations (3), one
obtained b = 0.765 and m = 0.452. The corresponding plots are presented in Fig. 2. In the further modelling
process, the approximations (3) will be used.

In the works [4,5], a special kind of regularisation of the models of the types (2–3) has been proposed,
allowing not only to avoid singularity for vanishing relativemotion of the contacting surfaces, but also tomodel
the situation in which the static friction coefficient is greater than the kinetic one. Applying that approach to
the components (3), one gets
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and where ε is a small numerical parameter. The coefficient η′ is a function of the parameter η equal to the
maximummagnitude of the resultant dimensionless friction force (or η = μ0/μ, whereμ0 is the static friction
coefficient). This function can be approximated as η′ (η) ≈ −13.607 + 30.893η − 22.01η2 + 5.878η3 for
η ∈ [1, 1.3] and η′(η) ≈ −2.41+3.985η−0.3581η2+0.0493η3 forη ∈ [1.3, 2.7], with the error |�η| < 0.001
(see [5]). Figure 3 presents exemplary plots of the model (6) near-zero relative motion, for θs = π/4, ϕs = 0,
η = 2 and ε = 10−3.



Application of a special class of smooth models

Fig. 2 Comparison of the approximate components T
(I0,0)
sx (a), M (I0,0)

s (b), T (I1,1)
sx (c), M (I1,1)

s (d) of the friction model (grey
curves) with the corresponding full integral components Tsx and Ms (black curves), for ϕs = 0

Fig. 3 Approximations T
(I1,1)
sxε (a), M (I1,1)

sε (b) near-zero relative motion—for θs = π/4, ϕs = 0, η′(2) = 4.479 and ε = 10−3

3 Mathematical model of the pendulum

In Fig. 4, a physical conception of the special mechanical system, being a certain modification of the disk-
on-a-disk system analysed in the works [7,8], is presented. A physical pendulum of a mass M and a moment
of inertia B with respect to the mass centre C is rotationally connected with the use of the joint A to a light
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Fig. 4 Physical concept of the mechanical system

platform. The platform is mounted on the support with the use of elasto-damping elements in such a way that
it cannot rotate. The origin O of the introduced coordinate system OXY is defined as a position of the point A
of the pendulum in its equilibrium position in the case of no friction forces acting on the mechanical system.
The pendulum is equipped with a flat disk of a radius R centred in the point A. The disk is in contact with a
larger rotating rigid body performing pure rotational motion with angular velocity ω0 about the centre S. A
constant contact pressure distribution and Coulomb’s law of friction on each element of the circular contact
between the bodies are assumed.

The governing equations of the presented mechanical system read

MẌC + kX (XC − e cosϕ) + cX
(

ẊC + eϕ̇ sin ϕ
) + μ̂NT (I1,1)

sxε = 0,

MŸC + kY (YC − e sin ϕ) + cY
(

ẎC − eϕ̇ cosϕ
) + μ̂NT (I1,1)

syε = 0

Bϕ̈ + e
(

Mg + kX (XC − e cosϕ) + cX
(

ẊC + e ϕ̇ sin ϕ
) + μ̂NT (I1,1)

sxε

)

sin ϕ +
−e

(

kY (YC − e sin ϕ) + cY
(

ẎC − e ϕ̇ cosϕ
) + μ̂NT (I1,1)

syε

)

cosϕ + cϕϕ̇ + μ̂N RM(I1,1)
sε = 0 (7)

where XC and YC are the coordinates of the mass centre C ; ϕ—angular position of the pendulum; e =
AC—distance between the point A and the mass centre C; kX and kY—stiffness coefficients of the elements
supporting the rotational joint A; cX and cY—the corresponding damping coefficients; cϕ—the coefficient
of damping in the rotational joint A; μ—kinetic friction coefficient; ̂N—normal loading of contact; XS and
YS—coordinates of the point S; g—gravitational acceleration. As a model of the resultant friction force and
moment, the relations (6) are applied.

The kinematic arguments of the functions (6) read

ωs = ϕ̇ − ω0,

vsx = ẊC + e ϕ̇ sin ϕ + ω0 (YC − e sin ϕ − YS)

R
,

vsy = ẎC − e ϕ̇ cosϕ − ω0 (XC − e cosϕ − XS)

R
. (8)
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In some of the figures, we present motion of the point A, the coordinates of which read

XA = XC − e cosϕ,

YA = YC − e sin ϕ. (9)

4 Numerical simulations

In all the numerical simulations presented in this section, the following parameters are fixed: g = 9.81m/s2,
b = 0.452,m = 0.765 and ε = 10−3.

In Fig. 5a, a bifurcation diagram of the system exhibited in Fig. 4, with constant angular velocity ω0
playing a role of a bifurcational parameter, is presented. The remaining system parameters read: M = 1.2 kg,
B = 0.01 kgm2, e = 0.1m, kX = kY = 1000N/m, cX = cY = 0.1N s/m, cϕ = 0.1Nm s, Xs = 0m, Ys =
0m, R = 0.02m, ̂N = 25N, μ = 1 and η = 1 (the static friction coefficient is equal to the kinetic one). For
low angular velocities, one observes a stable equilibrium position—see Fig. 6a, where for ω0 = 30rads , the
corresponding time history of the angle ϕ is presented. For greater values of ω0, a stable periodic attractor
appears—see Fig. 6b. A further increase in ω0 leads to rich bifurcational and irregular dynamics with full
rotations of the pendulum—see Fig. 7. Figure 5b exhibits another example of a bifurcation diagram, where the
following system’s parameters are changed: e = 0.025m, kX = kY = 2000N/m, ̂N = 25N. In this case, the
system dynamics is drastically different. For example, one cannot observe stable periodic solutions for low
angular speeds of the disk. Instead of this, there is a sudden jump from stable equilibrium to a chaotic region.

Figure 8 presents examples of periodic stick–slip oscillations of the investigated mechanical system, where
the following parameters are assumed: M = 1.2 kg, B = 0.01 kgm2, e = 0.1m, kX = kY = 100N/m, cX =
cY = 0.1N s/m, cϕ = 0.1Nm s, Xs = 0m, ω0 = 0.6 rad/s, R = 0.1m, N = 6N, μ = 1 and η = 2.5. The
position of the joint S along the axis X is different for each of the presented solutions: Ys = −0.1m (a, b),
Ys = 0m (c, d), Ys = 0.1m (e, f).

Fig. 5 Two examples of a bifurcation diagram with angular frequency ω0 as a control parameter



G. Kudra, J. Awrejcewicz

Fig. 6 Examples of system behaviour corresponding to the bifurcation diagram presented in Fig. 5, for ω0 = 30 rad/s (a),
ω0 = 40 rad/s (b)

In Fig. 9, the results of analysis of solution’s accuracy as a function of the parameter ε are depicted.
In order to make two solutions comparable in the time domain, one introduced the synchronising element,

i.e. periodically varying angular velocity of the driving disk ω0(t) = cos
(

1rads t
)

rad
s . Other parameters are

the same as in the case of analysis presented in Fig. 8. The corresponding stick–slip solution, obtained for
ε = 10−4, is presented in Fig. 8a. Then, the difference between the same solution obtained with ε = 10−3 (b),
10−3, (c), 10−1 (d) and the solution for ε = 10−4 treated as a pattern is shown in the remaining subplots of
Fig. 9.

For all the numerical computations presented in this study, Wolfram Mathematica 10.3 package has been
used. For numerical solution to the differential equations, the method NDSolve with the default settings has
been implemented.

5 Conclusions

In the present work, examples of models of the resultant friction force and moment based on previous works of
the authors have been presented. They are simple functions, which can be an effective substitute for the exact
integral model, suitable for fast and realistic computer simulations of a certain class of mechanical systems
with frictional contacts.

These models, in their primary form, concern the case of a fully developed sliding on the contact area
and possess singularity for the case of lack of the relative motion. The applied regularisation occurred to be
an effective method to avoid that problem and take into account different values of static and kinetic friction
coefficients. The drawbacks include stiff differential equations and the change in physical properties of the
system near the stick mode.

In order to test the developed models of friction forces, a mathematical model of a special mechanical
system is built, which is some modification of the disk-on-a-disk system analysed in the works [15,16], being
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Fig. 7 Trajectory of the system (a, b) and Poincaré section (c, d) corresponding to the bifurcation diagram presented in Fig. 5
for ω0 = 61.5 rad/s

a strongly simplified disk clutch. It is expected that the proposed model can exhibit much richer bifurcational
dynamics, allowing for testing different aspects of friction models. It should be noted that the presented work is
in progress, and only preliminary results are reported. Future construction of the corresponding experimental
rig is also considered.

One has to pay his attention to the problem of accuracy of approximation (3). Since there is a difference
between this approximation and original integral model (1) seen in Fig. 2, one has to expect the corresponding
difference between the bifurcation dynamics (observed in Fig. 5) of the pendulum with the friction force and
moment described by these two models. Since numerical simulations with the full integral model (1) are very
inconvenient and time-consuming, we do not present this comparison on bifurcation diagrams. On the other
hand, one has to bear in mind that the main goal of modelling and numerical simulations is to predict and
explain dynamics of real objects. Since both the integral friction model and its approximation can describe
the real friction phenomenon most approximately, the differences between the models (1) and (3) become less
important. Their usefulness can be eventually validated by experiments. Note that a more general class of these
models was successfully verified during experimental investigations of the wobblestone dynamics [18].
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Fig. 8 Examples of stick–slip oscillations for Ys = −0.1m (a, b), Ys = 0m (c, d), Ys = 0.1m (e, f)
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Fig. 9 Stick–slip solution computed with ε = 10−4 (a) and the difference between the same solution obtained with ε = 10−3

(b), 10−3, (c), 10−1 (d) and the solution for ε = 10−4 treated as a pattern
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