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Abstract A mathematical model of contact interac-
tion between two plates is presented, considering cer-
tain types of nonlinearity of each of the plates. Stress–
strain state (SSS) of the interacting structural members
is analyzed by the method of variational iterations, and
the theorem of convergence of this method is provided.
An iterative procedure for solving contact problems is
developed and its convergence is also proved. Physi-
cal nonlinearity is considered by means of the method
of variable parameters of elasticity. The SSS of a two-
layer system of rectangular plates, depending on a type
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of boundary conditions as well as distances between
plates, is investigated and supplemented with stress–
strain curves σ

(i)
i (e(i)

i )for each of the plates.
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1 Introduction

Webeginwith a brief historical overview of the sources
and state of the art of the papers/books devoted to the
problem of impact phenomena and contact interaction
of the rigid/flexible structural members. The assess-
ment of strength of elements of plate/shell structures,
i.e., damageability of their external layers, requires for-
mulating and solving problems of a unilateral mechan-
ical interaction of thin plates and shells with absolutely
rigid bodies (stamps) as well as problems of an inter-
action of flexible bodies understood further as the 2D
objects represented by shells and plates. On the con-
trary to a bilateral interaction in which contacting bod-
ies form a single object that is obtained, for example,
bywelding, reaction relations of a one-sided interaction
preserve a sign or are equal to zero. On the contrary to
the latter approach, in this paper a contact is understood
only as a unilateral contact interaction. At a unilateral
movement of contact points of the contacting bodies,
a condition should be fulfilled that these bodies do not
penetrate each other.
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The problem of point contact of elastic bodies was
formulated and solved for the first time by Hertz [1]
in 1882. Later development of technology has put a
problem of the contact interaction in a row of actual
problems of modern Solid Mechanics. Complexity of
considered problems has led to a large number of
approaches and mathematical methods developed to
solve these problems.

Single-layer and multilayer plate models have been
studied by Carrera [2] following the earlier introduced
Reissner’s mixed variational theorem [3,4]. Thin, thick
aswell as symmetric/asymmetric laminated plates have
been analyzed. Matsunaga [5] has applied a two-
dimensional, higher-order theory for thick rectangu-
lar plates on elastic foundation, and the governing
equations have been derived using Hamilton’s prin-
ciple. The employed approximate theories allowed to
estimate the natural frequencies and buckling stress
of thick plates located on elastic foundations. Kant
and Swaminathan [6] have analyzed free vibration
of isotropic/orthotropic as well as the multilayer the-
ories. In particular, analytical solutions for the free
vibration analysis of laminated composite and sand-
wich plates have been presented. The natural fre-
quencies and the stress/displacement mode shapes of
simply supported, cross-ply laminated and sandwich
plates have been evaluated using the propagator matrix
method and a semianalytical solution basedon ahigher-
order mixed procedure by Rao et al. [7]. The obtained
results have been validated using a 3D elasticity the-
ory.

A novel method to solve free vibration problems for
arbitrary shaped orthotropic multilayer plates using the
R-functions and Ritz methods have been proposed and
applied by Kurpa and Timochenko [8]. Andrews et al.
[9] employed theory of bending of beams and plates to
studymultiply delaminated plate subjected to static, out
of plane loading and deforming in cylindrical bending.
The authors assumed non-frictional contact along the
delamination surfaces and themodel has been validated
through FEM.

Axisymmetric bending of a package of transversely
isotropic two identical plates simply supported has
been studied by Zubko and Shopa [10]. The SSS (stress
strain state) of the layers has been defined in an ana-
lytic way. A similar like analysis has been carried out
by Zubko [11], where a thick plate has been divided
in an arbitrary number of equally thick layers. Vibra-
tion of plates composed of stiff layers and an isotropic

viscoelastic core under thermal loads have been inves-
tigated by Pradeep and Ganesan [12]. Fiber/angle, ply
lay-up and core thickness served as control parame-
ters while studying shifting ofmodes with temperature.
Both authors extended their studies to analyze the ther-
mal buckling and the critical buckling temperature of
the multilayer viscoelastic sandwich plates [13].

Loredo and Castel [14] have investigated vibrations
of a package of inhomogeneous anisotropic multilay-
ered plates taking into account transverse shear varia-
tion through the plate thickness using thewarping func-
tions. The developed by themmodel is suitable for both
static and dynamics analysis, and its efficiency has been
proven. Altukhov et al. [15] have studied vibrations of a
two-layer plate of arbitrary thickness with rigidly fixed
plane faces and sliding contact of layers. The problem
has been reduced to the 2D boundary value problem,
and influence of themechanical and geometric parame-
ters on the phase/group velocities, as well as the prob-
lem regarding cutoff frequencies have been analyzed.
Pull-in instability of nanoswitchesmade of two parallel
plates subjected to electrostatic force has been investi-
gated in reference [16]. The nanoplates with opposite
charges have been modeled based molecular dynamics
technique. Influence of different initial gaps between
nanoplates, and geometric/physical parameters, have
been taken into account while evaluating pull-in volt-
ages.

Malekzadeh et al. [17] have investigated influence
of some geometrical, physical and material parame-
ters on free vibration response of the composite plates
embedded with shape memory alloy wires. Transverse
shear and rotary inertia effects have been taken into
account. Akoussan et al. [18] have analyzed vibra-
tions of orthotropicmultilayer sandwich structureswith
viscoelastic core. The finite element-based numerical
study aimed on variation of the damping properties of
the structures versus the faces material fibers orien-
tation. Pietrzakowski [19] has studied random vibra-
tions of an actively damped laminated plate with func-
tionally graded piezoelectric actuator layers. The ran-
dom input has been assumed as a Gaussian station-
ary and ergodic process, whereas the actuators have
been arrays of piezofibers composite sublayers. The
power spectral density, autocorrelation function, and
variances have been numerically estimated to recog-
nize the influence of the applied random excitation on
the characteristics of the stochastic field of active plate
deflection.
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The carried out brief review of the state of the art of
the composite/laminate plates aswell asmultilayer/two-
layer packages of plate shows importance of the novel
theoretical approaches for modeling and analysis of the
mentioned structuralmembers. Problems of the contact
interaction between thin shells/plates are especially dif-
ficult as, while solving them, it is necessary to define
simultaneously both the SSS and zones of contact of
two or more contacting thin-walled objects. Generally,
these structural members may have also various shape
and design-type nonlinearity.

It should be emphasized that this problem has a long
history also in Eastern oriented literature. The simplest
linear problemdefinition is the one for cylindrical shells
of varying length,mountedwith a tight fit.Without con-
sidering compression, i.e., when the solution concerns
transverse forces concentrated on the contact zone bor-
der, the problem has been studied in references [20–
22], and the derived differential/integral equations have
been solved. Compression was introduced to the Win-
kler model in the work [23], and to amodel of an elastic
cylinder and a layer – in references [24,25]. In the two
latter works contact pressure becomes infinite on bor-
ders of contact zones. This problem was investigated
with the use of the Timoshenko theory in [26].

An interaction of two spherical shells has been ana-
lyzed with the help of the Kirchhoff–Love theory in
[27]. It was found that the contact reaction is in fact
the concentrated force distributed along the circumfer-
ence. The solution based on Timoshenko theory was
given in [28]. The contact pressure at the boundary of
the contact zone was equal to zero, although it was to
have taken a finite nonzero value.

The problem of contact between two rectangular
plates was solved by the variational differential method
in paper [29]. The above-mentioned studies are based
on the linear shell theory.Geometrically nonlinear shell
theory is applied in work [30] to study contact between
the layers of goffer membranes by means of the finite
elementmethod. Contact conditions are physically rep-
resented by special nonlinear elements between the
nodes of the contacting layers.

Mechanical behavior of laminated shells with a non-
ideal interface of layers constitutes a separate class of
contact problems. To create a theory of such thin shells
and methods of their calculation, discrete approach is
usually used. Complete system of relations of the cho-
sen shell theory is recorded for each of the layers and
then closed by kinematic and static layer interference

conditions (both equalities and inequalities). The order
of a system of differential equations obtained in this
way is N times (N—number of layers) the order of the
layer.

If normal displacement and tension of the layer con-
tact surfaces coincide, and shear stress is equal to zero,
we come to the problem for a shell with layers that slip
without friction. Thus, contact zones are known, which
significantly simplifies the problem. In thismanner, sta-
tic problems of layered cylindrical [31] and spherical
[32] shells have been solved. The method of consecu-
tive approximations, based on the “principle of sequen-
tial continuity”, according towhich boundary problems
for the layers are solved independently at each itera-
tion, was applied in references [33,34] to study lay-
ered cylinders and cylindrical shells. Problems of the
contact interaction between thin plates and shells are
difficult since, while solving them, it is necessary to
simultaneously define the SSS and contact zones of
two and more plates and shells. The considered plates
and shells are generally of various shapes. Contact of
two circular plates separated with a gap, in the case
when one of them is loaded, was studied by Artyukhin
and Karasev [35] with the use of the Kirchhoff theory.
At the boundary of the contact zone, the concentrated
force and momentum were found. Applying the Timo-
shenko theory to solve axisymmetric problems allows
to obtain the finite value of the contact pressure at the
boundary [36]. Discrete approach using Timoshenko
theory for layered plates is implemented in [37] by
means of the matrix method proposed by the authors.
Thismethod yields a system of integral equations of the
contact pressure in a priori unknown zones. It also takes
into account the possibility of ruptures of the interface
layers.

However, our approach presented in this paper goes
beyond the literature reports and opens a novel chal-
lenging research topic matching bifurcation/chaotic
vibrations with non-smooth contact dynamics exhib-
ited by 2D continuous systems of infinite dimen-
sion. Our research is main motivated by two reasons.
First, laminated composite plates and multilayer plates
are widely applied in numerous industrial branches,
including civil engineering, ship building, aeronautics,
aerospace, as well as in the developing fields of mod-
ern technology. In the latter case in the used navigation
devices and electronics techniques, the multilayer flat
micromechanical accelerometers are applied. They are
usuallymodeled bypackages of plates andbeam,where
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the plate(s) are reinforced by a set of plates/beams with
constraints. Appearance of even small constraints/gaps
between the structuralmembers (plates–beams, plates–
plates) exhibits a various interesting and sometimes
unexpected nonlinear behavior [38,39].

On the other hand, an important role in applica-
tions play micromechanical gyroscopes including fiber
optic, spherical resonator gyroscopes as well as Corio-
lis vibratory gyroscopes [40–43]. The industrial needs
attracted recently observed interest in modeling and
a study of gyroscopes and other nano-electrostatically
activated cantilever and fixed–fixed beams have been
studied taking into account the beams length, width
and thickness as well as the gap between the beams
and ground plate [44].

A doubly clamped suspended beams coupled to one
adjacent stationary electrode has been analyzed both
theoretically and experimentally by Buks and Roukes
[45]. Three continuous mass sensors composed of par-
allel interdigital comb finger banks and two sets of non-
interdigitated comb fingers on each side supplemented
by four folder beams, served as an auto-parametric
amplificatory, have beenmodeled and studied byZhang
et al. [46].

The earlier described design of gyroscopes and other
micro-mechanical devices can be directly modeled by
the structural members like plates and beams within
gaps between them. In this case, however, as the exist-
ing literature review shows, only reduced orderedmod-
els are derived mainly, and hence the obtained results
may be not valid in the whole working regimes of
those devices (for example, in this case the multi-
mode interactions are neglected). In the case of the ear-
lier described state of the art of laminated composite
plates and packages of multilayer plates the previously
welded or glued layers may lose their permanent con-
tact due to the mentioned object long working regimes,
and hence the problem of contact/non-contact between
structural members while their vibrations plays a cru-
cial role.

In addition, in spite of the technological inspired
motivation of our research, there is a challenging inter-
est in modeling and analysis of the mentioned objects
from a theoretical point of view since we do not know
papers dealing with this research topic.

The analysis of a current state of solving contact
interaction problems shows that the case of two rectan-
gular plates has not been considered taking into account
nonlinear relationship between stress and strain. The

present paper is devoted to this subject, and it is orga-
nized in the following way. The problem is defined
and theoretically founded in Sect. 2. The applied itera-
tive algorithms are validated in Sect. 3, whereas Sect. 4
presents numerical results regarding contact interaction
of two squared plates. The paper is finished by giving
concluding remarks in Sect. 5.

2 Problem statement

We consider the problem of a unilateral mechanical
interaction between two rectangular plates (Fig. 1). The
plates are assumed to be thin and their stress–strain state
(SSS) is described with the classical Kirchhoff theory
supplemented with physical nonlinearity according to
the theory of small elasto-plastic deformations.Wewill
assume that the contact pressure (normal to surface
stress) is much less than normal stresses occurred in the
cross sections of the plates.Moreover, it is assumed that
the plates slip freely in contact zones. (In other words,
friction phenomena are not taken into account here).

The choice of the classical plate theory is motivated
by that fact that the SSS and the contact pressure distri-
bution of the effect of transverse shear deformation is
much weaker than transverse compression in the con-
tact zone [47]. Consideration of the latter factor is one
of the foundations of the proposed approach. We con-
struct an initial system of differential equations for two
contacting plates in the following form [48]:

{
A1w1(x, y) = q1(x, y) − qkψ,

A2w2(x, y) = q2(x, y) + qkψ,
(1)

where wi (x, y)—vector function, qi (x, y)—vector of
external load, i—number of a plate, counted in the
positive direction of the normal, �1,�2—areas of the
plates, ∂�i (i = 1, 2) - boundary regions.

The operator Ai (i = 1, 2) takes the following form
for physically linear problems:

Aiwi (x, y) = D
∂2

∂x2

(
∂2wi

∂x2
+ ∂2wi

∂y2

)

+ ∂2

∂y2

(
∂2wi

∂x2
+ ∂2wi

∂y2

)
, (2)

where D = Ei h3

12
(
1−ν2i

) - cylindrical stiffness; Ei—

Young’s modulus, νi—Poisson ratio.
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Fig. 1 Two interacting
plates of thickness h with
the normal loads qi (x, y)
and the gap h1

On the other hand, the operator Ai (i = 1, 2) takes
the following form for physically nonlinear problems:

Aiwi (x, y) = ∂2

∂x2

(
B11,i

∂2wi

∂x2
+ B10,i

∂2wi

∂y2

)

+ ∂2

∂y2

(
B10,i

∂2wi

∂x2
+ B11,i

∂2wi

∂y2

)

+ 2
∂2

∂x∂y

((
B11,i − B10,i

) ∂2wi

∂x∂y

)
,

(3)

where

Bmn,i

= 1

2

[
E11,i

E01,i
+(−1)n+1 E10,i

E00,i
−E21,i +(−1)n E20,i

]
,

Emn,i

=
bi (x,y)∫

ai (x,y)

Ei zm

1+(−1)nνi
dz, (n=0, 1;m= i =1, 2) .

Here z = ai (x, y), z = bi (x, y), (x, y) ∈ �i are
equations of external surfaces of the plates, allowing to
consider the thickness variability of each of the plates in
further performedcomputations; Ei (x, y, z, e

(i)
i ), νi (x,

y, z, e(i)
i ) stand for the variable elasticity modulus and

Poisson’s ratio of the plates, e(i)
i is the intensity of defor-

mation (i) of the plate (i = 1, 2).
Two types of boundary conditions are taken into

account:

(a) simple support:

wi

∣∣∣
∂�

= ∂2wi

∂n2

∣∣∣
∂�

= 0, i = 1, 2; (4)

(b) clamping:

wi

∣∣∣
∂�

= ∂wi

∂n

∣∣∣
∂�

= 0, i = 1, 2. (5)

Contact pressure in the contact zone is proportional
to transverse compression w1 − h1 − w2, and hence

qk(x, y) = k
E

h
(w1 − h1 − w2). (6)

In addition, the functionψ can be written as follows

ψ = [1 + sign(w1 − h1 − w2)]
/
2, (7)

where h1 stand for the gap between plates, and k
denotes stiffness coefficient of transverse compression
of plates.

Equation (6) is valid for the case of contact of plates
of identical thickness h and identical values of k. For
contact problems within the Kirchhoff theory of plates,
Winkler relationship between compression and contact
pressure is applied [49].

If the initial arrangement of plates (gap function h1)
and the load are such that during deformation the plates
do not come into contact, thenψ ≡ 0 and the system of
Eq. (1) is separated into two independent systems. Oth-
erwise, (1) creates a coupled system. After substituting
(6) to (1) one gets:

{
A1w1(x, y) = q1(x, y) − k E

h (w1 − h1 − w2)ψ,

A2w2(x, y) = q2(x, y) + k E
h (w1 − h1 − w2)ψ.

(8)
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The system (8) of the eighth order should be consid-
ered together with boundary conditions 4, 5. It should
be emphasized that it constitutes both structurally and
physically nonlinear problem of the eighth order [49].

In order to solve a structurally nonlinear problem
(8), one can construct an iterative process that allows
to consistently solve only one of the system equations
(8) at each step of loading. Such an approach makes
it possible to reduce twice the order of the system of
equations for a two-layer problem. In general, the order
can be reduced n times for n layers. The iterative pro-
cedure can be written in the following form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1(w
(n)
1 ) + k E

h ψ(n−1)w
(n)
1

= q1(x, y) + k E
h

(
h1 + w

(n−1)
2

)
ψ(n−1),

A2(w
(n)
2 ) + k E

h ψ(n−1)w
(n)
2

= q2(x, y) + k E
h

(
w

(n−1)
1 − h1

)
ψ(n−1).

(9)

It is necessary to supplement the system (9) with the
corresponding boundary conditions 4 or 5 for the i-th
plate.

The algorithm for solving (9) consists of the fol-
lowing steps: The procedure of the variational iteration
method (VIM) is constructed at the fixed contact zone
to obtain a solution to the given accuracy and supple-
mented with the method of variable elasticity parame-
ters followed by the specification of the contact zone by
means of the simple iteration method. The procedure is
then repeated, i.e., there are three iterative procedures,
nested one inside the other.

As an example, let us consider an iterational proce-
dure of the contact pressure estimation in the case of
two-layer rectangular isotropic plate. In this case, the
operators Ai in Eq. (1) take the form (2), whereas PDEs
(1) are cast to the following form

D�2w1 = q − c (w1 − w2) ψ,

D�2w2 = q + c (w1 − w2) ψ, (10)

where: ψ = [1 + sign(w1 − w2)/2].
Simple reformulation of Eq. (10) yields

D�2(w1 + w2) = 2q,

D�2(w1 − w2) + 2c (w1 − w2) ψ = 0, (11)

where c = k E
h .

If we take ψ = 1, both of Eq. (11) are decoupled.
The first one presents a solution regarding summed
stiffness of the twoplates,whereas the seconddescribes

the contact pressure between them. The iterations
are only needed to improve the function ψ . It has
been shown through numerous numerical experiments
that the presented algorithm yields fast convergence,
whereas the introduced parameter c does not influence
the convergence.

Formally, the VIM scheme consists of the following
steps. At first, let us find the solution to the equation:

Aw(x, y) = q(x, y); x, y ∈ �(x, y), (12)

where: A—an operator defined on a set D(A) of the
Hilbert space L2(�); q(x, y)—given function of two
variables x and y; w(x, y)—the unknown function of
the same variables; �(x, y)—domain of variables x
and y.

If �(x, y) = X × Y (X—a limited set of variables
x , Y—bounded set of y), then the solution to (10) takes
the form:

wN (x, y) =
N∑
i=1

ui (x)vi (y), (13)

where functions ui (x) and vi (y) are derived from the
system of equations

∫
X

(AwN − q) u1 (x) dx = 0,
∫
Y

(AwN − q) v1 (y) dy = 0,

. . . . . .∫
X

(AwN − q) uN (x) dx = 0,
∫
Y

(AwN − q) vN (y) dy = 0,
(14)

in the followingmanner: A system of N functions is set
for one of the variables, e.g., u01(x), u

0
2(x), . . . , u

0
N (x),

and from the first N equations of the system (14),
the system of N functions v11(x), v

1
2(x), . . . , v

1
N (x) is

defined. Then, the obtained functions create a new sys-
tem of functions for the variable x−u21(x), u

2
2(x), . . . ,

u2N (x), from which new functions are defined for the
variable y − v31(x), v

3
2(x), . . . , v

3
N (x), etc.

The following theorems have been proved being a
theoretical justification of VIM convergence for prob-
lems of the plate theory [49].

Theorem 1 If A is a positive definite operator of a
domain D(A) ⊂ HA, then the sequence of elements
αk = ∥∥wk

1(x, y) − w0
∥∥
HA

monotonically decreases,
i.e., for all i and j such that i ≥ j , we have

∥∥∥wi
1 − w0

∥∥∥
HT

≤
∥∥∥w j

1 − w0

∥∥∥
HT

. (15)
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Theorem 2 Let each of the elements of the space
Ẇm

2 (X × Y ) have the form

θi (x, y) = ϕi (x) ψi (y) , (16)

where {ϕi (x)} is a basis system in Ẇm
2 (X) space and

{ψi (y)}—in a Ẇm
2 (Y ) space. For any N-th approxi-

mation of the VIM, constituent elements of the basis
system {θi (x, y)} are taken as primary functions. In
this manner, for sufficiently large N, the VIM results in
an approximation ωN , and in the space Ẇm

2 (X × Y )

a sequence {wN } converges to the exact solution ω0,
regardless of the number of steps k that can be done
for each N-th approximation, i.e.,

∥∥wk
N − w0

∥∥
Wm

2
0 →

0, N → ∞.

Ordinary differential equations (ODEs) obtained
with the use of variational iteration method at each
step of the iterative procedure can be solved in dif-
ferent ways. For example, the finite difference method
(FDM) can be used and followed by a solution to the
resulting system of algebraic equations with the use of
the Gauss method.

The variational iteration method allows not to con-
struct the system of approximating functions, on the
contrary to the Bubnov–Galerkin and Ritz methods.
At the beginning, a system of functions is arbitrarily
chosen (it must meet some well-known conditions of
smoothness). Then, it is specified during computations
with theVIM, based on the solutions of the original sys-
tem of differential equations of the plate theory. Thus,
the VIM automatically builds the approximating func-
tions both at the boundaries and within the region of
interest. The disadvantage of the method is that the
temporarily unknown function of two variables is rep-
resented as a product of two functions, and each of
these functions depends on a single argument, as in the
Fourier method. This leads to the need to solve two
ordinary differential equations instead of one. In fact,
the variational iteration method is a generalization of a
Fourier method.

To illustrate the above-mentioned idea, we present
the solution to the biharmonic Eq. (2) with the bound-
ary conditions 4 and 5 for the domain �=(0, a) × (0,
b), where ∂� stands for the boundary of �. Both the
differential equation and the boundary conditions are
transformed into a dimensionless form using follow-
ing relations: x = x̄a, y = ȳb, w = w̄h, λ = a

b = 1,

q̄(x, y) = q(x,y)
12(1−ν2)

a4

Eh4
, ν = 0.3.

Table 1 Deflection of the plate center estimated by VIM versus
exact solution

1 Name of
the method

w(0, 5; 0, 5)

Boundary
conditions 4

Boundary
conditions 5

1 Variational
iteration
method (VIM)

0.2030 0.06483

2 Exact
solution

0.2028 0.0631

Table 1presents deflections at the centerw(0, 5; 0, 5)
of a one-layer plate, implied by constant load q(x, y) =
50 action.

Two types of the boundary functions w1(x), w2(y)
satisfying boundary conditions 4 and 5 were taken in
the form: w1(x) = 1;w2(y) = 1 as an initial approx-
imation. The VIM procedure has ended at the fourth
iteration. In this case, one can observe an almost com-
plete agreement of the exact solutionwith the boundary
condition 4: The difference was equal to 0.1%, while
for the boundary condition 5 the difference was equal
to 0.6%.

The method of variable elasticity parameters [50] is
used for the solution to physically nonlinear problems,
assuming that Ei (x, y, z, e

(i)
i ),vi (x, y, z, e

(i)
i ) are not

constant, but depend on the strain state at the point
determined by the following formulas [50]:

Ei = 9K1i Gi

3K1i + Gi
, νi = 1

2

3K1i − 2Gi

3K1i + Gi
. (17)

Here we assume that the volume deformation
K1i = const. In the deformation theory of plasticity
shear modulus is determined by the following relation:

Gi = 1

3

σ
(i)
i (e(i)

i )

e(i)
i

, (18)

where σ
(i)
i , e(i)

i denotes intensity of stresses and strains
(i = 1, 2) of the plate, respectively, and

e(i)
k =

√
2

3

[(
e(i)
xx − e(i)

yy

)2 +
(
e(i)
yy − e(i)

zz

)2

+
(
e(i)
xx − e(i)

zz

)2 + 1.5
(
eixy
)2]1/2

,
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e(i)
xx = −z

∂2wi

∂x2
, e(i)

yy =−z
∂2wi

∂y2
, e(i)

xy = −2z
∂2wi

∂x∂y
.

(19)

In formula (19), e(i)
zz is derived from the condition of

plane stress (σzz = 0), i.e.:

e(i)
zz = − νi

1 − νi

(
e(i)
xx + e(i)

yy

)
. (20)

In the next section we prove a theorem of the con-
vergence of the iterative procedure (9).

3 The proof of convergence of iterative algorithms
of the solution to the studied contact problems

Let R2 be an Euclidean plane with a Cartesian basis,
and �i ∈ R2—the area of the plate including the
boundaries ∂�i (i = 1, 2), �̄i = �i ∪ ∂�i (x, y) ∈ �i ,
�∗—subdomain of �i , ∀i , �∗ ⊆ �i , ni—normal
external to ∂�i .

Let us consider a spatial plate system consisting of
two plates being in contact. The system is described
with the Kirchhoff’s hypotheses, and the following
governing equations hold:

⎧⎪⎪⎨
⎪⎪⎩

A1(w1(x, y)) + k E
h w1ψ(x, y)

= q1 + k E
h (w2 + h1)ψ(x, y),

A2(w2(x, y)) + k E
h w2ψ(x, y)

= q2(1 − ψ(x, y)) + k E
h (w1 − h1)ψ(x, y),

(21)

with the boundary conditions 5. The function defining
contact zones �∗of plates has the following form:

ψ(x, y) =
{
1, (x, y) ∈ �∗,

0, (x, y) /∈ �∗,

whereas q1(x, y), q2(x, y) are functions of the exter-
nal loads acting on the first and second plate, respec-
tively; operators Ai (wi ) have the form (3), which for
the elastic problem takes the form (2); || · ||A—norm
in a normed vector space A; (·, ·)B—scalar product in
Hilbert space L2. Identification of functional spaces
corresponds to that described in monograph [51].

In order to solve the problem (21), (5), the following
iterative algorithm is used:

A1(w
(n+1)
1 (x, y)) + k

E

h
w

(n+1)
1 ψ(x, y)

= q1 + k
E

h
(w

(n)
2 + h1)ψ(x, y),

A2(w
(n+1)
2 (x, y)) + k

E

h
w

(n)
2 ψ(x, y)

= q2(1−ψ(x, y))+k
E

h
(w

(n)
1 −h1)ψ(x, y), (22)

w
(n+1)
1

∣∣∣
∂�1

= ∂w
(n+1)
1

∂n1

∣∣∣
∂�1

= 0, w(n+1)
2

∣∣∣
∂�2

= ∂w
(n+1)
2

∂n2

∣∣∣
∂�2

= 0. (23)

Theorem 3 Let �i , (i = 1, 2) be a restricted area,
whose boundaries ∂�i satisfy the Sobolev embed-
ding theorem [51], �∗—measurable area, qi (x, y) ⊆
L2(�i ) and, apart from that, physical constants ci >

0, Di > 0 are such that

D1 ‖�(wi )‖2L2(�∗)

≤
(
B11,i

∂2wi

∂x2
+ B10,i

∂2wi

∂y2
,
∂2wi

∂x2

)
L2(�2)

+
(
B10,i

∂2wi

∂x2
+ B11,i

∂2wi

∂y2
,
∂2wi

∂y2

)
L2(�2)

+
[(

B11,i + B10,i
) ∂2wi

∂x∂y
,

∂2wi

∂x∂y

]
L2(�2)

≤ ci ‖�(wi )‖2L2(�i )
.

Then:

(1) ∀n, w
(n)
i ∈ W 4

2 (�i )
⋂

Ẇ 2
2 (�i ), i = 1,2;

(2) There exist functions w∗
i (x, y) ∈ Ẇ 2

2 (�i ), i =
1, 2, being a solution to (20), (3), and at the same

time lim
n→∞

∥∥∥w(n)
i − w∗

i

∥∥∥
W 2

2 (�i )
= 0.

Proof We describe main stages of the proof. Imple-
mentation of the first conclusion of the theorem is pro-
vided under the condition that the initial approxima-
tions w0

i ∈ L2(�i ), i = 1, 2, follow from the theory of
resolvability of the elliptic Eq. [51].

The second conclusion of the theorem proves the
existence of a generalized solution to (20), (3) in the
space Ẇ 2

2 (�1)×Ẇ 2
2 (�2) and strong convergence of the

sequence of approximate solutions {w(n)
i } to the exact

solution w∗
i in the norm Ẇ 2

2 (�i ), i = 1, 2. To justify
the second conclusion of the theorem, the following
operations are implemented:

(1) subtraction of corresponding equations defining
functions w

(n)
i (i = 1, 2) from each of the equa-

tions of the system (22);
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(2) multiplication of the first equation of the result-
ing system by (w

(n+1)
1 − w

(n)
1 ), and of the second

equation by (w
(n+1)
2 − w

(n)
2 );

(3) integration of the first of the obtained equations
over the area �1, and the second—over �2. As a
result, after using Green formula, we get:

⎛
⎝B10,1

∂2
(
w

(n+1)
1 − w

(n)
1

)
∂x2

+ B10,1

∂2
(
w

(n+1)
1‘ − w

(n)
1

)
∂y2

,
∂2
(
w

(n+1)
1 − w

(n)
1

)
∂x2

⎞
⎠

L2(�2)

+
⎛
⎝B10,1

∂2
(
w

(n+1)
1 − w

(n)
1

)
∂x2

+B11,1

∂2
(
w

(n+1)
1‘ − w

(n)
1

)
∂y2

,
∂2
(
w

(n+1)
1 − w

(n)
1

)
∂x2

⎞
⎠

L2(�2)

+
⎛
⎝[B11,1−B10,1

] ∂2
(
w

(n+1)
1 −w

(n)
1

)
∂x∂y

,
∂2
(
w

(n+1)
1 −w

(n)
1

)
∂x∂y

⎞
⎠

L2(�1)

+ kE

h
(ψ (x, y)

(
w

(n)
2 − w

(n−1)
2

)
,

kE

h

(
ψ (x, y)

(
w

(n+1)
1 − w

(n)
1

)
,
(
w

(n+1)
1 − w

(n)
1

))
L2(�1)

= kE

h

(
ψ (x, y)

(
w

(n)
2 − w

(n−1)
2

)
,
(
w

(n+1)
1 − w

(n)
1

))
L2(�1)

, (24)
⎛
⎝B11,2

∂2
(
w

(n+1)
2 − w

(n)
2

)
∂x2

+B10,2

∂2
(
w

(n+1)
2 − w

(n)
2

)
∂y2

,
∂2
(
w

(n+1)
1 − w

(n)
1

)
∂x2

⎞
⎠

L2(�2)

+
⎛
⎝B10,2

∂2
(
w

(n+1)
2 − w

(n)
2

)
∂x2

+B11,2

∂2
(
w

(n+1)
2 − w

(n)
2

)
∂y2

,
∂2
(
w

(n+1)
2 − w

(n)
2

)
∂y2

⎞
⎠

L2(�2)

+
⎛
⎝[B11,2−B10,2

] ∂2
(
w

(n+1)
2 −w

(n)
2

)
∂x∂y

,
∂2
(
w

(n+1)
2 −w

(n)
2

)
∂x∂y

⎞
⎠

L2(�2)

+ kE

h

(
ψ (x, y)

(
w

(n+1)
2 − w

(n)
2

)
,
(
w

(n+1)
2 − w

(n)
2

))
L2(�2)

= kE

h

(
ψ (x, y)

(
w

(n)
1 − w

(n−1)
1

))
. (25)

Given the definition of the function ψ(x, y), we
rewrite (23), (24) into following form:⎛
⎝B11,1

∂2
(
w

(n+1)
1 − w

(n)
1

)
∂x2

+ B10,1

∂2
(
w

(n+1)
1 − w

(n)
1

)
∂y2

,
∂2
(
w(n+1) − w(n)

)
∂x2

⎞
⎠

L2(�1)

+
⎛
⎝B10,1

∂2
(
w

(n+1)
1 − w

(n)
1

)
∂x2

+ B11,1

∂2
(
w

(n+1)
1 − w

(n)
1

)
∂y2

,
∂2
(
w

(n+1)
1 − w

(n)
2

)
∂y2

⎞
⎠

L2(�1)

+
⎛
⎝[B11,1 − B10,1

] ∂2
(
w

(n+1)
1 − w

(n)
1

)
∂x∂y

,

∂2
(
w

(n+1)
1 − w

(n)
1

)
∂x∂y

⎞
⎠

L2(�1)

+ kE

h

∥∥∥(w(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�∗)

= kE

h

((
w

(n)
2 − w

(n−1)
2

)
,
(
w

(n+1)
1 − w

(n)
1

))
L2(�∗)

(26)
⎛
⎝B11,2

∂2
(
w

(n+1)
2 − w

(n)
2

)
∂x2

+ B10,2

∂2
(
w

(n+1)
2 − w

(n)
2

)
∂y2

,
∂2
(
w

(n+1)
1 − w

(n)
1

)
∂x2

⎞
⎠

L2(�2)

+
⎛
⎝B10,2

∂2
(
w

(n+1)
2 − w

(n)
2

)
∂x2

+ B11,2

∂2
(
w

(n+1)
2 − w

(n)
2

)
∂y2

,
∂2
(
w

(n+1)
2 − w

(n)
2

)
∂y2

⎞
⎠

L2(�2)

+ kE

h

∥∥∥(w(n+1)
2 − w

(n)
2

)∥∥∥2
L2(�∗)

= kE

h

((
w

(n)
1 − w

(n−1)
1

)
,
(
w

(n+1)
2 − w

(n)
2

))
L2(�∗)

(27)

Using the Young’s inequality [51], from (26), (27)
and conditions of the theorem, we find:

D1

∥∥∥� (
w

(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�∗)

+kE

h

∥∥∥(w(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�∗)

≤ kE

2h

∥∥∥(w(n)
2 − w

(n−1)
2

)∥∥∥2
L2(�∗)

+kE

2h

∥∥∥(w(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�∗)

,

D2

∥∥∥� (
w

(n+1)
2 − w

(n)
2

)∥∥∥2
L2(�2)

+kE

h

∥∥∥(w(n+1)
2 − w

(n)
2

)∥∥∥2
L2(�∗)

≤ kE

h

∥∥∥(w(n)
1 − w

(n−1)
1

)∥∥∥2
L2(�∗)

+kE

2h

∥∥∥(w(n+1)
2 − w

(n)
2

)∥∥∥2
L2(�∗)

.

Finally, we obtain:

D1

∥∥∥� (
w

(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�∗)
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+kE

2h

∥∥∥(w(n)
2 − w

(n−1)
2

)∥∥∥2
L2(�∗)

≤ kE

2h

∥∥∥(w(n+1)
2 − w

(n)
2

)∥∥∥2
L2(�∗)

, (28)

D2

∥∥∥� (
w

(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�∗)

+kE

2h

∥∥∥(w(n+1)
2 − w

(n)
2

)∥∥∥2
L2(�∗)

≤ kE

2h

∥∥∥(w(n)
1 − w

(n−1)
1

)∥∥∥2
L2(�∗)

. (29)

We rewrite (28) and (29) into the following form:

D1

∥∥∥� (
w

(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�∗)

+kE

2h

∥∥∥(w(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�∗)

≤ (1 − α)
kE

2h

∥∥∥(w(n)
2 − w

(n−1)
2

)∥∥∥2
L2(�∗)

+α
kE

2h

∥∥∥(w(n)
2 − w

(n−1)
2

)∥∥∥2
L2(�∗)

, (30)

D2

∥∥∥� (
w

(n+1)
2 − w

(n)
2

)∥∥∥2
L2(�2)

+kE

2h

∥∥∥(w(n+1)
2 − w

(n)
2

)∥∥∥2
L2(�∗)

≤ (1 − α)
kE

2h

∥∥∥(wn
1 − w

(n−1)
1

)∥∥∥2
L2(�∗)

+α
kE

2h

∥∥∥(w(n)
1 − w

(n−1)
1

)∥∥∥2
L2(�∗)

. (31)

where α ∈ R1, 0 < α < 1.
Furthermore, we implement the Friedrichs’ inequal-

ity [51] in the followingmanner. There exists a constant
ci ∈ R1, such that∀ f (x, y) ∈ Ẇ 2

2 (�i ), i = 1, 2 and the
following inequalities:

‖ f ‖2L2(�∗) ≤ ci ‖� f ‖2L2(�∗) ≤ ci ‖� f ‖2L2(�) ,

i = 1, 2, (32)

where it is believed that �∗ ⊆ �i and satisfies the
conditions of applicability of the Friedrichs’ inequality.
Then, taking into account (32), the inequalities (30) and
(31) are reduced to the following ones:

D1

∥∥∥� (
w

(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�i )

+kE

2h

∥∥∥(w(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�∗)

≤ (1 − α)
kE

2h

∥∥∥(w(n)
2 − w

(n−1)
2

)∥∥∥2
L2(�∗)

+αC2kE

D22h
D1

∥∥∥� (
w

(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�)

, (33)

D2

∥∥∥� (
w

(n+1)
2 − w

(n)
2

)∥∥∥2
L2(�2)

+kE

2h

∥∥∥(w(n+1)
2 − w

(n)
2

)∥∥∥2
L2(�∗)

≤ (1 − α)
kE

2h

∥∥∥(wn
1 − w

(n−1)
1

)∥∥∥2
L2(�∗)

+αC1kE

D12h
D1

∥∥∥� (
w

(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�)

. (34)

In inequalities (33) and (34) we take α that fulfills the
following conditions

αC2kE

2hD2
< 1,

αC1kE

2hD1
< 1, 0 < α < 1,

and

ρ = max

{
(1 − α),

αC2kE

2hD2
,
αC1kE

2hD1

}
.

Obviously, we consider the case 0 < ρ < 1. Now
the inequalities (33) and (34) can be transformed into
the following form:

D1

∥∥∥� (
w

(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�1)

+ kE

2h

∥∥∥(w(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�∗)

≤ ρ

{
D2

∥∥∥� (
w

(n)
2 − w

(n−1)
2

)∥∥∥2
L2(�2)

+kE

2h

∥∥∥(w(n)
2 − w

(n−1)
2

)∥∥∥2
L2(�∗)

}
, (35)

D2

∥∥∥� (
w

(n+1)
2 − w

(n)
2

)∥∥∥2
L2(�2)

+kE

2h

∥∥∥(w(n+1)
2 − w

(n)
2

)∥∥∥2
L2(�∗)

≤ ρ

{
D1

∥∥∥� (
w

(n)
1 − w

(n−1)
1

)∥∥∥2
L2(�1)

+kE

2h

∥∥∥(w(n)
1 − w

(n−1)
1

)∥∥∥2
L2(�∗)

}
. (36)

Summing (35) and (36), we get:{
D1

∥∥∥� (
w

(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�1)

+ D2

∥∥∥� (
w

(n+1)
2 − w

(n)
2

)∥∥∥2
L2(�2)

+ kE

2h

∥∥∥(w(n+1)
1 − w

(n)
1

)∥∥∥2
L2(�∗)

+ kE

2h

∥∥∥(w(n+1)
2 − w

(n)
2

)∥∥∥2
L2(�∗)

}

≤ ρ

{
D1

∥∥∥� (
w

(n)
1 − w

(n−1)
1

)∥∥∥2
L2(�1)
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+D2

∥∥∥� (
w

(n)
2 − w

(n−1)
2

)∥∥∥2
L2(�1)

+kE

2h

∥∥∥(w(n)
1 − w

(n−1)
1

)∥∥∥2
L2(�∗)

+kE

2h

∥∥∥(w(n)
2 − w

(n−1)
2

)∥∥∥2
L2(�∗)

}
, (37)

or

∥∥∥w̄(n+1) − w̄(n)
∥∥∥2
H

≤ ρ

∥∥∥w̄(n) − w̄(n−1)
∥∥∥2
H

, (38)

where w̄(n) = (w
(n)
1 , w

(n)
2 ), H—normed space with

the norm equivalent to the norm of Ẇ 2
2 (�1)× Ẇ 2

2 (�2)

and determining the left (or right) side of the inequality
(36). From (38) we have:∥∥∥w̄(n+1) − w̄(n)

∥∥∥
H

≤ ρ

∥∥∥w̄(n) − w̄(n−1)
∥∥∥
H

,

ρ1 = √
ρ < 1,

∥∥∥w̄(n+1) − w̄(n)
∥∥∥
H

≤ θρn
1 ,

where θ = ∥∥w̄(1) − w̄0
∥∥
H .

Then, for any positive integer we obtain:∥∥∥w̄(n+p) − w̄(n)
∥∥∥
H

≤
∥∥∥w̄(n+p) − w̄(n+p−1)

∥∥∥
H

+
∥∥∥w̄(n+p−1) − w̄(n+p−2)

∥∥∥
H

+
∥∥∥w̄(n+1) − w̄(n)

∥∥∥
H

≤ θρ
(n+p−1)
1

+ θρ
(n+p−2)
1 + ... + θρ

(n)
1 =

θ
(
ρ

(n)
1 + ρ

(n+p)
1

)
1 − ρ1

≤ θρ
(n)
1

1 − ρ1
. (39)

From (39), the fundamental sequence
{
w̄(n)

}
fol-

lows, and, owing to the completeness of H , a conver-
gence

{
w̄(n)

}
to a certain function w̄∗ = (w∗

1, w
∗
2) in

H is achieved.
Thus, by virtue of equivalence of norms in the spaces

H and Ẇ 2
2 (�1) × Ẇ 2

2 (�2) we get:

lim
n→∞

∥∥wn
i − w∗

i

∥∥
Ẇ 2

2 (�i )
= 0, i = 1, 2, (40)

We rewrite systems (22), (23) into the following
form:(
B11,1

∂2w
(n+1)
1

∂x2
+ B10,1

∂2w
(n+1)
1

∂y2
,
∂2ϕ1

∂x2

)
L2(�1)

+
(
B10,1

∂2w
(n+1)
1

∂x2
+B11,1

∂2w
(n+1)
1

∂y2
,
∂2ϕ1

∂y2

)
L2(�1)

+
([

B11,1 − B10,1
] ∂2w

(n+1)
1

∂x∂y

∂2ϕ1

∂x∂y

)
L2(�1)

+ kE

h

(
ψ (x, y) w

(n+1)
1 , ϕ1

)
L2(�1)

= (q1ϕ1)L2(�1)

+ kE

h

(
ψ (x, y)

[
w

(n)
1 + h1

]
, ϕ1

)
L2(�∗)

, (41)
(
B11,2

∂2w
(n+1)
1

∂x2
+ B10,2

∂2w
(n+1)
2

∂y2
,
∂2ϕ2

∂x2

)
L2(�2)

+
(
B10,2

∂2w
(n+1)
2

∂x2
+B11,2

∂2w
(n+1)
2

∂y2
,
∂2ϕ2

∂y2

)
L2(�2)

+
([

B11,2 − B10,2
] ∂2w

(n+1)
2

∂x∂y

∂2ϕ2

∂x∂y

)
L2(�2)

+ kE

h

(
ψ (x, y) w

(n+1)
2 , ϕ2

)
L2(�2)

= (q2 [1 − ψ (x, y)] , ϕ2)L2(�2)

+ kE

h

(
ψ (x, y)

[
w

(n)
1 + h1

]
, ϕ1

)
L2(�∗)

,

∀ϕ1 ∈ Ẇ 2
2 (�1), ∀ϕ2 ∈ Ẇ 2

2 (�2). (42)

The condition (40) allows theEqs. (41), (42) to reach
the limit for n → ∞ and thus the following relations
are obtained:(

B11,1
∂2w∗

1

∂x2
+ B10,1

∂2w∗
1

∂y2
,
∂2ϕ1

∂x2

)
L2(�1)

+
(
B10,1

∂2w∗
1

∂x2
+ B11,1

∂2w∗
1

∂y2
,
∂2ϕ1

∂y2

)
L2(�1)

+
([

B11,1 − B10,1
] ∂2w∗

1

∂x∂y

∂2ϕ1

∂x∂y

)
L2(�1)

+kE

h

(
ψ (x, y) w∗, ϕ1

)
L2(�1)

= (q1ϕ1)L2(�1)

+kE

h

(
ψ (x, y)

[
w∗
2 + h1

]
, ϕ1

)
L2(�∗) , (43)(

B11,2
∂2w∗

1

∂x2
+ B10,2

∂2w∗
1

∂y2
,
∂2ϕ1

∂x2

)
L2(�2)

+
(
B10,2

∂2w∗
1

∂x2
+ B11,2

∂2w∗
1

∂y2
,
∂2ϕ1

∂y2

)
L2(�2)

+
([

B11,2 − B10,2
] ∂2w∗

1

∂x∂y

∂2ϕ1

∂x∂y

)
L2(�2)

+kE

h

(
ψ (x, y) w∗

2, ϕ2
)
L2(�2)
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= (q2 [1 − ψ (x, y)] , ϕ2)L2(�2)

+kE

h

(
ψ (x, y)

[
w∗
1 + h1

]
, ϕ1

)
L2(�∗) , (44)

which, in turn, proves the second conclusion of Theo-
rem 3. ��

4 Contact interaction of two elastic rectangular
plates

Below some examples of the iterative procedure (22)
used to study contact problems for two rectangular
plates are presented (E1 = E2 = E = const, ν1 =
ν2 = 0.3).

We introduce the following dimensionless notation:

x = x

a
, y = y

b
, w j = w j

h
, h1 = h1

h
, λ1 = a

h
,

λ2 = b

h
, λ = a

b
,

q j = 12(1 − ν2)λ21λ
2
2
q j

E
, k = 12(1 − ν2)λ21λ

2
2k. (45)

Then, the iterative procedure, including dimension-
less variables, has the following form (dashes are omit-
ted):

A1(w
(n+1)
1 (x, y)) + kw(n+1)

1 ψ(x, y)

= q + k(w(n)
2 + h1)ψ(x, y),

A2(w
(n+1)
2 (x, y)) + kw(n)

2 ψ(x, y)

= q(1 − ψ(x, y)) + k(w(n)
1 − h1)ψ(x, y), (46)

where q = q1 = q2
Operators A j are derived for both linear and non-

linear problems. For example, for a linear problem we
have

Ai =
(

1

λ2

)
∂4wi (x, y)

∂x4
+ 2

∂4wi (x, y)

∂x2∂y2

+ λ2
∂4wi (x, y)

∂y4
, i = 1, 2

4.1 Contact interaction of two square plates
of constant thickness

Let us assume that both plates have constant thickness
and that a/h = 10. The stiffness coefficient of trans-
verse compression in the contact zone k = 4 · 103.
Plates are square, λ = a/b = 1. The applied load is
uniformly distributed over the plate surface.

Fig. 2 Dependence q(w1) for the boundary condition 5

Fig. 3 Dependence q(w1) for the boundary condition 4

We investigate the impact of the gap between plates
h1 and the boundary conditions 4, 5 on the stress–strain
state (SSS).Graphs of q(w1) are presented in Fig. 2 (for
the boundary condition 5), and Fig. 3 (for the boundary
condition 4 for both plates).

Circles indicate the specified values of deflection
for which the contact between plates is established. In
Fig. 2, 3 the numbers correspond to the following dis-
tances between plates: 1 − h1 = 1 · 10−4; 2 − h2 =
2 ·10−2; 3−h3 = 4 ·10−2; 4−h4 = 6 ·10−2; 5−h5 =
1 · 10−2. Dashed lines indicate the results regarding
one-layer plates.

The figures show the effect of the size of the gap
between plates on the function q(w1). The curve 1 in
Fig. 2 and Fig. 3 presents the results for a two-layer
plate with a gap of 100 times smaller size than the
one considered for the curve 5. In this case, during
the initial stages of loading, two-layer plate carries two
times higher load than does the one-layer plate. Com-
paring the dependences shown in Figs. 2 and 3, it can
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Fig. 4 Dependence q(w1) for different types of boundary con-
ditions. (h1 = 0, 02)

Fig. 5 Dependence q(w1) for different types of boundary con-
ditions (h1 = 0, 04)

be noticed that for the boundary condition 4 the differ-
ence between results obtained for different gap sizes is
greater than in the case of the boundary condition 5.
Similar phenomenon can be observed for the contact
interaction of two plates with the boundary condition
4, shown in Fig. 3.

Let us consider the influence of the boundary con-
dition type on q(w1). These results are presented in
Figs. 4 and 5 for four types of boundary conditions for
a three-layer system of square plates with a clearance
between themequal toh1 = 0.02 andh1 = 0.04.Curve
A corresponds to a set of boundary conditions ((5)–(5)),
curve B to a set of boundary conditions ((4)–(4)), curve
C to the set of boundary conditions ((5)–(4)), and the
curve D to the set of boundary conditions ((4)–(5)).
Dashed lines in both figures indicate the results for the
one-layer plates.

Based on the analysis of the above results, it can be
concluded that the boundary conditions of the upper
plate substantially influence the SSS of the whole
system. Thus, the q(w1) curves are similar for the

Fig. 6 Contact pressure distribution between layers for bound-
ary conditions (4)–(5)

Fig. 7 Contact pressure distribution between layers for bound-
ary conditions (5)–(5)

clamped–clamped ((5)–(5)) and clamped–simply sup-
ported ((5)–(4)) combinations as well as for combina-
tions ((4)–(4)) and ((4)–(5)).

Distribution of contact pressure between layers for
three types of combinations of boundary conditions for
the gap h1 = 0, 02 is shown in Fig. 6—for boundary
conditions ((4)–(5)), Fig. 7—for boundary conditions
((5)–(5)) and in Fig. 8—for boundary conditions ((5)–
(4)). The diagrams show the contact pressure for a quar-
ter of the area in view of symmetry of the solution. The
values of deflection for the plates for which the contact
pressure diagrams were obtained are also presented in
Figs. 6, 7 and 8.

The above figures clearly indicate that the nature and
the magnitude of the contact pressure depends on the
type of boundary conditions. Maximum contact pres-
sure is found for the diagonals of the plates. Increasing
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Fig. 8 Contact pressure
distribution between layers
for boundary conditions
(5)–(4)

Fig. 9 Dependence q(w1) for different boundary conditions for
h1 = 0.01 (see text for more details)

load results in pressure that greatly varies on the bound-
aries of the contact zones,where the characteristic value
of max qk(x, y) is observed for the contact problems of
the plate theory. For the pair of the boundary conditions
((5)–(4)), such a pattern is not observed.

Although at the first glance the problem seems to
be easy to solve, obtaining the solution with the use
of conventional approaches is rather difficult. Indeed,
for this purpose, a system of 8th order differential equa-
tions should be solved along with kinematic conditions
of contactw1 = w2+h1 and defined boundaries of the
contact zone. If the transverse deformation of layers
in the contact zone is not taken into account, the con-
centrated shear forces at the zone boundaries are also
unknown.

4.2 Contact interaction of two square plates with
varying thickness

Let the thickness of two plates vary according to the
following formula:

h(x, y) = 1.0 + 0.1 · sin πx · sin πy. (47)

The gap between the plates at the edge of the sys-
tem is fixed h1 = 0.01, whereas according to the

plane (x, y) it is a variable quantity. We will consider
the problem for four combinations of boundary con-
ditions: A—the upper and lower plates are clamped—
boundary conditions (5)–(5); B—both plates are sim-
ply supported—boundary conditions (4)–(4); C—the
upper plate is clamped—boundary condition (5), and
the lower is simply supported—boundary condition
(4);D—the upper plate is simply supported—boundary
condition (5), and the lower is clamped—boundary
condition (4).

The graph of q(w1) is presented in Fig. 9. Dashed
lines correspond to the results obtained for one-layer
plates in linear consideration (L is the lower plate).
Circles in the plot of q(w1) indicate the deflection for
which the contact between plates is established.

The analysis of the dependencyq(w1) shows that the
main factor affecting q(w1) is the type of the boundary
condition of the upper plate. For the same load, two
times bigger contact has been observed for the case
the boundary condition (5), than for the condition (4).
Note also that for high loads the difference is smaller
in graphs A–C than in graphs B–D.

The nature of changes of contact pressure f (x, y)
zones for the simply supported plate—type B and the
clamped plate—type A on the plate contour for h1 =
0.001 is shown in Fig. 10 and 11, respectively.

With the increase in the area of contact pressure
(from w1 = 0.015 to w1 = 0.04), the character of
the pressure significantly changes. There are “bound-
ary peaks”, indicating more complex, wavy nature of
contact. Here the forces concentrated at the border
appear significantly more vivid than for plates of con-
stant thickness.

4.3 Interplay of physically nonlinear two square
plates of constant thickness

Let two-layer plates bemade of differentmaterials hav-
ing identical elastic moduli, but different stress–strain
σ

(i)
i (e(i)

i ) diagrams. Boundary conditions (4) and (5)
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Fig. 10 Contact pressure
zones for different w1
(simply supported plate)

Fig. 11 Contact pressure
zones for different w1
(clamped plate)

Fig. 12 Functions q(w1) for boundary conditions (5)–(5)

Fig. 13 Functions q(w1) for boundary conditions (4)–(4)

are considered. In the following examples, two types
of diagrams σ

(i)
i (e(i)

i )are studied. Nonlinear stress is
governed by the following equation

σi = σS
[
1 − exp(−ei/eS)

]
, (48)

Fig. 14 Functions q(w1) for boundary conditions (5)–(4)

Fig. 15 Functions q(w1) for boundary conditions (4)–(5)

where: σs = 1023 bar, G0 = 0.3483×10−6 bar, eis =
0.98 × 10−3, a/h = 10, es = eis(a/h) = 0.098,
ν0 = 0.28.

Linear stress obeys the Hooke’s law, i.e.

σ
(i)
i = 3G0(e

(i)
i ). (49)
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Fig. 16 Functions q(w) for different boundary conditions (h1 =
0.01)

The stiffness coefficient of transverse compression
of a plate in a contact zone k = 1000. Dependences

q(w1) for the considered problems are given inFigs. 12,
13, 14 and 15 for h1 = 0.02, and for h1 = 0.01—in
Fig. 16.

Each of the above four figures describes “load—
deflection at the center of the plate” dependence for
one type of boundary conditions depicted in the draw-
ing. Roman numerals denote the corresponding solu-
tion to problems, depending on the distribution ofmate-
rial diagrams for each of the plates: I—the upper plate
(σi(ei)—nonlinear), the lower plate (σi(ei)—linear);
II—the upper plate (σi(ei)—linear), the lower plate
(σi(ei)—nonlinear); III—the upper and the lower plates
(σi(ei)—linear); IV—the upper plate and the lower
plates (σi(ei)—nonlinear).

Distribution of elastic–plastic zones for the 1/4 of
the upper plate of a two-layer system is reported in
Fig. 17 for h1 = 0.02, in Fig. 18 for h1 = 0.01 and

2
1 102 −⋅=w 2

1 5.2 10w −= ⋅ 2
1 102 −⋅=w 2

1 5.2 10w −= ⋅ 2
1 8.4 10w −= ⋅

2
1 5.2 10w −= ⋅ 2

1 8.4 10w −= ⋅ 2
1 5.2 10w −= ⋅

2
1 5.2 10w −= ⋅

The 1st plate   The 2nd plate

0

0,5

0,5 0

0,5

0,5 0

0,5

0,5 0

0,5

0,5 0

0,5

0,5

0

0,5

0,5 0

0,5

0,5
0

0,5

0,5

0

0,5

0,5 0

0,5

0,5

(a) (b)

(c)

(e)

(d)

Fig. 17 Elastic–plastic zones distribution for the quarter of a plate: a First plate; problem CI; b First plate; problem CII; c Second plate;
problem AII; d First plate; problem BII; e problem AIV for two plates
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Fig. 18 Elastic and plastic
zones distribution: a
problem BIV; b First plate;
problem DI; c problem DII;
d First plate; problem L

2
1 4.2 10w −= ⋅ 2

1 4.2 10w −= ⋅

2
1 4.2 10w −= ⋅

2
1 7.4 10w −= ⋅

The 1st plate      The 2nd plate

The 1st plate      The 2nd plate

The 1st plate      The 2nd plate

2
1 2 10w −= ⋅ 2

1 5.2 10w −= ⋅

0

0,5

0,5 0

0,5

0,5 0

0,5

0,5

0

0,5

0,5 0

0,5

0,5

0

0,5

0,5 0

0,5

0,5

0

0,5

0,5 0

0,5

0,5

(a) (b)

(c)

(e)

(d)

in Fig. 19 for h1 = 0.01. Plastic zones are indicated in
gray color. In the same figures the following parame-
ters, for which the calculations of a design are made,
are specified: deflection at the center of the upper plate
w1(0.5, 0.5), the value of the gap between the plates
h1, the type of nonlinearity and boundary conditions.
The crosshatched contour indicates the boundary con-
dition (5), while the dashed one is associated with the
boundary condition (4).

The above-mentioned considerations are made for
the clearance equal to h1 = 0.02. In the case when the
upper plate is nonlinear (Problem I), and the boundary
conditions (5)–(4) are taken into account, small deflec-
tions plastic zones are located along the perimeter of
the plate and at its center. With increasing deflection of
the zones, elastoplastic deformation occupies almost
the entire area of the plate, except for the corners (Fig-
ure 17a). For the same boundary conditions, for the

linear upper plate—Problem II (see Figure 17b), the
distribution of elastic–plastic zones is different. In this
case, zones of elastoplastic deformation are located in
the middle and on the corners of the plate. Note that
with the increase in the deflection, plastic zones tend
to occupy almost the whole area of the plate, and rigid
zones can be observed on the corners and in the middle
part of the plate. Note also that the plastic deforma-
tion zone has a larger deflection value than it was in
Problem I. Thus, it can be concluded that the change
in the type of a problem (I–II) significantly affects
the arrangement of the elastic–plastic deformation
zones.

For a case when both plates are clamped, bound-
ary conditions (5)–(5) are considered and both plates
are physically nonlinear (Problem IV), the zones of
elasto-plastic deformations given in Fig. 17e qualita-
tively coincide for the first and the second plate, what
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Problem BI             Problem BII             Problem BIV

0

0,5

0,5 0

0,5

0,5 0

0,5

0,5

Fig. 19 Elastic–plastic deformations the First plate for different
w1 and different B problems

follows from compatibility of both the boundary con-
ditions and the type of the plate.

In the casewhen the type of the problemchanges and
becomes “asymmetrical,” i.e., the upper plate is linear
and the lower one—nonlinear (Problem II), zones of
elastic–plastic deformations for the 2nd plate are as
shown in Fig. 17c. These zones are qualitatively con-
sistent with the results for the 1st plate (for the Problem
CI). Thus, for the lower (second) plate, the main con-
dition of a qualitative arrangement of plastic zones is
the type of the plate: physically linear or physically
nonlinear.

For the combination of boundary conditions (4)–(4),
in the case when the upper plate is linear, and the bot-
tom is nonlinear, the distribution of plastic deformation
zones of the first plate, shown in Fig. 18a, coincides in
size with the zones of elastic deformation.

As the distance between the plates h1 = 0.01
decreases, the following results are obtained. For the
boundary conditions (5)–(4), the size and arrange-
ment of zones of the elastic–plastic deformation do not
depend on the type of the problem. This is confirmed by
Fig. 18b which shows the results for the Problem I and
Figure 18c—for the Problem II, respectively. With the
increase in the deflection in the Problem II (Fig 18c),
the elastic zones become reduced for both plates and
are located in different places—for the 1st plate in the
middle part, and for the 2nd—on the corners.

For the case when both plates are simply supported
(4)–(4) and nonlinearity of both plates and the gap
h1 = 0.02 is provided, the zones of elastic–plastic
deformation of both plates qualitatively coincide with
the results shown in Fig. 18a. The solution for one plate
with the boundary conditions (4) is given in Fig. 18d.
The results are qualitatively similar to the results for
the 1st plate, shown in Fig. 17b.

Figure 19 presents zones of elastic–plastic deforma-
tion of the first plate for one type of boundary condi-

tions (4)–(4), but with different types of the considered
plates. Note that the results are qualitatively identical.
For the type II the arrangement of zones of elastic–
plastic deformation differs from the results for the other
two cases. This is due to difference in the problem for-
mulation for the upper plate. For Problem II the upper
plate is physically linear.

5 Concluding remarks

The following main conclusions of our research can be
formulated

1. We present an iterative procedure of the solution to
structurally nonlinear problems for twoplates being
in contact with each other. Each of the plates can
be describedwith amathematicalmodel combining
displacements and deformations in the form of von
Kármán, i.e., geometrical nonlinearity is consid-
ered. Taking into account the relationship between
stress and strain, the model considers also physical
nonlinearity. In other words both geometrical and
physical nonlinearities can be taken into account.

2. The theorem of convergence of the iterative pro-
cedure proposed by the authors is proved for the
boundary conditions of clamping. Justification of
convergence of the iterative algorithm can be eas-
ily extended in the case of other boundary condi-
tions. For example, the proposed scheme of proof
remains unchanged if one or both of the contacting
plates is simply supported.

3. The proposed iterative algorithm can be used in
problems of contacting plates, taking into account
physical nonlinearity (combinedwith themethodof
elastic solutions, the scheme of the proof remains
unchanged).

4. Each of two contacting plates that are considered in
the work is one-layer, but the proposed algorithm,
can be extended to the case where each of plates is
multilayer.

Acknowledgments This work has been supported by the Pol-
ish National Science Centre, MAESTRO 2, No. 2012/04/A/ST8/
00738. The project has been also supported by the Grants RFBR
16-08-01108a and RFBR 16-01-00721a.

References

1. Hertz, H.: Gesammelte Werke. Bd. 1. Leipzig (1895)

123

Author's personal copy



Contact interaction between two rectangular plates

2. Carrera, E.: Single vs multilayer plate modellings on the
basis of Reissner’s mixed theorem. AIAA J. 38(2), 342–352
(2000)

3. Reissner, E.: On a certainmixed variational theory and a pro-
posed applications. Int. J. Numer. Methods Eng. 20, 1366–
1368 (1984)

4. Reissner, E.: On a mixed variational theorem and on a shear
deformable plate theory. Int. J. Numer. Methods Eng. 23,
193–198 (1986)

5. Matsunaga, H.: Vibration and stability of thick plates on
elastic foundations. J. Eng. Mech. 1(27), 27–341 (2000)

6. Kant, T., Swaminathan, K.: Free vibration of isotropic,
orthotropic, and multilayer plates based on higher order
refined theories. J. Sound Vib. 241(2), 319–327 (2001)

7. Rao, M., Scherbatiuk, K., Desai, Y., Shah, A.: Natural
vibrations of laminated and sandwich plates. J. Eng. Mech.
130(11), 1268–1278 (2004)

8. Kurpa, L.V., Timochenko,G.N.: Studying the free vibrations
of multilayer plates with a complex planform. Int. Appl.
Mech. 42(1), 103–109 (2006)

9. Andrews, G.M., Massabo, R., Cox, B.N.: Elastic interaction
of multiple delaminations in plates subject to cylindrical
bending. Int. J. Solids Struct. 43, 855–886 (2006)

10. Zubko, V.I., Shopa, V.M.: Calculation of simply supported
circular plates in the statement of the problem of contact
interaction in a package of two plates. Mech. Compos.
Mater. 43(5), 409–418 (2007)

11. Zubko, V.I.: Calculation of rigid clamped circular plates
in the statement of the problem on contact interaction in
a two-layer package. Mech. Compos. Mater. 43(1), 63–74
(2007)

12. Vangipuram, P., Ganesan, N.: Buckling and vibration of rec-
tangular composite viscoelastic sandwich plates under ther-
mal loads. Compos. Struct. 77, 419–429 (2007)

13. Pradeep, V., Ganesan, N.: Thermal buckling and vibration
behavior of multi-layer rectangular viscoelastic sandwich
plates. J. Sound Vib. 310, 169–183 (2008)

14. Loredo, A., Castel, A.: Amultilayer anisotropic plate model
with warping functions for the study of vibrations reformu-
lated fromWoodcock’swork. J. SoundVib. 332(1), 102–125
(2013)

15. Altukhov, E.V., Simbratovich, E.V., Fomenko, M.V.:
Steady-state vibrations of two-layer plates with rigidly fixed
end faces and imperfect contact of the layers. J. Math. Sci.
18(1), 39–53 (2014)

16. Hoshyarmanesh, S., Bahrami,M.:Molecular dynamic study
of pull-in instability of nano-switches. Adv. Nanoparticles
3, 122–132 (2014)

17. Malekzadeh, K., Mozafari, A., Ghasemi, F.A.: Free vibra-
tion response of a multilayer smart hybrid composite plate
with embedded SMA wires. Lat. Am. J. Solids Struct. 11,
279–298 (2014)

18. Akoussan, K., Boudaoud, H., Daya, E.-M., Carrera, E.:
Vibrationmodelling of multilayer composite structures with
viscoelastic layers. Mech. Adv. Mater. Struct. 22, 136–149
(2015)

19. Pietrzakowski,M.: An active functionally graded piezocom-
posite plate subjected to a stochastic pressure. Arch. Acoust.
40(1), 101–108 (2015)

20. Bloch, M., Tsukrov, S.Y.: Axisymmetric contact thin cylin-
drical shells. Calc. Spat. Syst. Constr. Mech. 79–82 (1972)
(in Russian)

21. Detinko, F.M., Fastovsky, V.M.: Contact problem of two
cylindrical shells of different lengths. Bull. USSR Acad.
Sci. Mech. Solids 3, 118–121 (1974). (in Russian)

22. Detinko, F.M., Fastovsky,V.M.:On the contact on the shroud
cylindrical shell. J. Appl. Mech. 11(2), 124–126 (1975). (in
Russian)

23. Bloch, M.B., Tsukrov, S.Y.: The effect of changes in wall
thickness on the axisymmetric contact of thin cylindrical
shells. J. Appl. Mech. 10(4), 31–37 (1974). (in Russian)

24. Konveristov, G.B.: Axisymmetric contact problem for a
cylindrical shell. Resist. Mater. Thorium Constr. 27, 119–
124 (1975). (in Russian)

25. Konveristov, G.B., Spirina, N.I.: Contact stresses interaction
of a cylindrical shell with a bandage. J. Appl. Mech. 15(2),
65–70 (1979). (in Russian)

26. Pankratova, N.D.: Inhomogeneous deformation of the thick-
walled spherical shells at the hard contact layers. Bull. Ukr.
Acad. Sci. Ser. A 6, 49–52 (1984). (in Russian)

27. Stepanov, R.D.: On the bending of the flat rectangular plate,
reinforced by parallel ribs or legs. Ing. Sat. 68–79 (1950) (in
Russian)

28. Petrushenko, Y.Y.: Variational methods of investigation of
strength, stability and dynamic response of spatial structures
composed of laminated shells of complex geometry. Appl.
Probl. Mech. Shells 76–64 (1989) (in Russian)

29. Drumev,V.K.: Some studies on the stability of circular plates
with elastic foundation top. Theor. Appl. Mech. 11(3), 94–
101 (1980)

30. Varvak, P.M., Medvedev, N.M., Perel’muter, A.V., Pinsker,
A.G.: Axisymmetric contact problem for several thin shells
under finite displacements. Struct. Strength 3, 35–41 (1978)

31. Vasilenko, A.T., Grigorenko, A.M., Pankratova, N.D.: Prob-
lem solving of static thick-walled cylindrical shells with
non-rigid contact layers. Bull. Ukr. Acad. Sci. Ser. A 11,
40–43 (1983). (in Russian)

32. Paimushin, V.N.: The variational methods for solving non-
linear problems of spatial coupling of deformable bodies.
Bull. USSRAcad. Sci. 273, 1083–1086 (1963). (in Russian)

33. Pit’ko, V.V.: Solution of some problems for a spherical shell.
Build. Mech. Calc. Struct. 6, 21–26 (1973)

34. Fomina, N.I.: The problem of determining the lowest nat-
ural frequency of the cylindrical shell reinforced by annu-
lar transverse and longitudinal rectangular plates. Bull. Ukr.
Acad. Sci. Ser. Nat. Techno. Mat. Science 8(4), 55–59
(1987). (in Russian)

35. Artyukhin, Y.P., Karasev, S.N.: Some contact problems of
the theory of thin plates. Issled. Theory Plates Shells 10,
159–166 (1973)

36. Bloch, M., Tsukrov, S.Y.: On the axisymmetric contact of
thin cylindrical shells. Appl. Mech. 9(11), 23–28 (1973)

37. Pelekh, B.L., Sukhorolsky, M.A.: Contact Problems of the
Theory of Elastic Anisotropic Shells. Naukova Dumka,
Moscov (1980). (in Russian)

38. Martynenko, YuG: Trends of development of today’s gyro-
scopes. Soros J. Educ. 11, 120–127 (1997)

123

Author's personal copy



A. V. Krysko et al.

39. Awrejcewicz, J., Krysko-jr., V.A., Yakovleva, T.V.,
Krysko,V.A., Noisy contact interactions of multi-layer
mechanical structures coupled by boundary conditions. J.
Sound Vib. (2016) (accepted)

40. Sheremetev, A.G.: Fibre optical gyroscope. Radio Connect.
152, 1–8 (1987)

41. Zhuravlev, V.F., Klimov, D.M.: Wave Hemispherical Gyro-
scope. Nauka, Moscow (1985)

42. Merkur’ev, V.V., Podalkov, V.V.: Dynamics of Microme-
chanical and Wave Hemispherical Gyroscope. Fizmatlit,
Moscow (2009)

43. Brozgul, I.I., Smirnov, E.L.: Vibrational Gyroscopes.
Mashinostroyeniye, Moscow (1970)

44. Li, G., Aluru, R.: Linear, nonlinear andmixed-regime analy-
sis of electrostaticMEMS. Sens. Actuators A Phys. 91, 278–
291 (2001)

45. Buks, E., Roukes, M.L.: Metastability and the casimir effect
in micromechanical systems. Europhys. Lett. 54, 220–226
(2001)

46. Zhang,W., Baskaran, K.L.: Turner effect of cubic nonlinear-
ity on auto-parametrically amplified resonant MEMS mass
sensor. Sens. Actuators A Phys. 102, 139–150 (2002)

47. Kantor, B.J.: Nonlinear Problems of the Theory of Inhomo-
geneous Shallow Shells. Science. Dumka, Kiev (1971). (in
Russian)

48. Kantor, B.J.: Contact Problems of the Nonlinear Theory of
Shells. Science. Dumka, Kiev (1990). (in Russian)

49. Kirichenko, V.A., Krysko, V.A.: Substantiation of the vari-
ational iteration method in the theory of plates. Sov. Appl.
Mech. 17(4), 366–370 (1981)

50. Birger, I.A., Mavlyutov, R.R.: The Resistance of Materials.
Nauka, Moscow (1986). (in Russian)

51. Ladyzenskaja, O.A., Ural’ceva, N.N.: Linear and Quasilin-
ear Elliptic Equations. Academic, New York (1968)

123

Author's personal copy


	On the contact interaction between two rectangular plates
	Abstract
	1 Introduction
	2 Problem statement
	3 The proof of convergence of iterative algorithms of the solution to the studied contact problems
	4 Contact interaction of two elastic rectangular plates
	4.1 Contact interaction of two square plates  of constant thickness
	4.2 Contact interaction of two square plates with varying thickness
	4.3 Interplay of physically nonlinear two square plates of constant thickness

	5 Concluding remarks
	Acknowledgments
	References




