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a b s t r a c t

Mathematical models of continuous structural members (beams, plates and shells) sub-
jected to an external additive white noise are studied. The structural members are con-
sidered as systems with infinite number of degrees of freedom. We show that in
mechanical structural systems external noise can not only lead to quantitative changes in
the system dynamics (that is obvious), but also cause the qualitative, and sometimes
surprising changes in the vibration regimes. Furthermore, we show that scenarios of the
transition from regular to chaotic regimes quantified by Fast Fourier Transform (FFT) can
lead to erroneous conclusions, and a support of the wavelet analysis is needed. We have
detected and illustrated the modifications of classical three scenarios of transition from
regular vibrations to deterministic chaos. The carried out numerical experiment shows
that the white noise lowers the threshold for transition into spatio-temporal chaotic
dynamics. A transition into chaos via the proposed modified scenarios developed in this
work is sensitive to small noise and significantly reduces occurrence of periodic vibra-
tions. Increase of noise intensity yields decrease of the duration of the laminar signal
range, i.e., time between two successive turbulent bursts decreases. Scenario of transition
into chaos of the studied mechanical structures essentially depends on the control
parameters, and it can be different in different zones of the constructed charts (control
parameter planes). Furthermore, we found an interesting phenomenon, when increase of
the noise intensity yields surprisingly the vibrational characteristics with a lack of noisy
effect (chaos is destroyed by noise and windows of periodicity appear).
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1. Introduction

It is well known that in deterministic physical systems there are several scenarios of transition from regular to chaotic
oscillations. Ruelle and Takens [1] have shown that chaos can be achieved via combination of only three frequencies. "Noisy"
behavior in this scenario is associated with a strange attractor arisen after three consecutive Hopf bifurcations [2]. Simple
deterministic systems are able to generate internal chaotic response. It can be realized via a sequence of Hopf bifurcations,
and the period doubling scenario through intermittency [2–4]. On the other hand, a random nature of the input may induce
much richer variety of non-linear phenomena than those regarding purely deterministic cases. It is expected that noisy
transitions from regular to chaotic dynamics exhibited by structural members are similar to the phase transitions, and to the
transitions occurring in non-equilibrium systems with deterministic external inputs. We are aimed to show that it is
possible to extend the classical transition scenarios and associated non-linear phenomena to physical systems in which the
noise plays an important role. Thus, it becomes possible to carry out the theoretical study of noisy induced transitions into
chaotic regimes of the studied continuous mechanical systems. Theory of deterministic multidimensional systems has been
already introduced in references [5–15]. The present work aims to apply and extend these studies in the event of noise-
induced transitions.

Though a study of chaotic vibrations of structural systems attracted a large attention within community of applied
mathematicians and engineers usually, the problem has been strongly reduced to that of non-linear dynamics of either one-
or two-degrees-of-freedom lumped systems. For example, fluctuations in distributed systems are often replaced by a study
of the single-mode non-linear vibrations of Bernoulli–Euler beams, taking into account the geometric nonlinearity. The
results of these studies should be considered as qualitative, since the increase in the number of modes often leads to
substantially different non-linear dynamics. In reference [16] global bifurcations and chaotic dynamics in nonlinear plane
vibrations of a cantilever beam under axial harmonic excitation and transverse excitations at the free end of the beam are
studied. Finite element method for the study of forced nonlinear oscillations of the beam has been applied in work [17].
Chaos exhibited by vibrations of plates and shells with geometric nonlinearities has been extensively analyzed in references
[5–13]. In the case of beams, the new stochastic linearization method has been applied to investigate the non-linear mean
square response of a beam under time-dependent stationary random excitation [18]. It has been shown, that the proposed
technique can yield more accurate results for the mean square response of the beam in comparison to the standard sto-
chastic linearization approach. Dahlberg [19] has applied the model analysis to study the influence of modal cross-spectral
densities versus the spectral densities of simply supported beams. The response power spectral density and mean-square
response have been used by Jacquot [20] while studying beam structures excited by a stationary random process. The effect
of axial loads on transverse vibrations of an Euler–Bernoulli clamped-pinned beam under random vibration has been
analyzed in reference [21]. The concepts of the moment Lyapunov exponent and the Lyapunov exponent of a Timoshenko
beam under bounded noise excitation have been used in reference [22]. Both almost-sure stability and moment stability of
the stationary solutions of the elastic beam subjected to the stochastic axial load have been investigated. The so called shape
memory alloy beams non-linear dynamics have been studied including bifurcation and chaotic phenomena [23–25]. The
superelastic shape memory alloy systems under random stationary excitations have been analyzed in reference [26].
Recently, the shape memory alloy beam under narrow band noise excitations (harmonic function with constant amplitude
and random frequency) has been investigated by Ge [27]. However, a strong Galerkin-based truncation of the governing
PDEs reduced the consideration to non-linear one-degree-of freedom mechanical systems. The electromechanical response
of the pre-buckled inverted cantilevered beam subjected to a combination of harmonic and broadband random excitation
has been studied by Friswell et al. [28]. Since the pre-buckled beam stiffness is low, the displacement response yielded
multiple solutions being exploited in the harvesting device. The amplitude of random noise excitation, where the harvester
is unable to sustain the high amplitude solution, has been investigated and validated experimentally.

In the case of plates, active control of noise radiation from vibrating plate excited by a harmonic line moment has been
proposed by Lee and Chen [29]. The control has been achieved by various configurations of piezoelectric actuators and the
optimal control unit voltage has been utilized. It has been shown, among other, that the model suppression and modal
restructuring play a key role in radiated power attenuation. Numerical prediction of noise transmission loss through
sandwich plates subjected to an acoustic plane wave or a diffuse sound field excitation has been reported by Assaf and
Guerich [30]. The diffuse sound field has been modeled as a superposition of uncorrelated plane waves with equal
amplitude, whereas the vibroacoustic equations have been discretized by a triangular finite element. A stochastic non-linear
model has been proposed to describe vibrations of a rectangular thin plate under axial inplane excitation with random
environment factors, and the stochastic Hopf bifurcation of the vibration model has been investigated [31]. Wiciak [32] has
investigated reduction of plate vibrations and radiated noise by using piezoelectric actuators in an asymmetric configura-
tion. In particular, influence of the actuators activation and shape form on the plate response has been studied, and the
experimental results have been compared with the numerical approach based on the finite element method. Both motion
and sound of a thin elastic plate subjected to uniform low-Mach flow and actuated at its leading edge, has been studied by
Manela [33]. Periodic and non-periodic actuations have been investigated.

In the case of shells we report only a few works. White [34] investigated the transmission of an acoustic wave through an
infinite, nonhomogeneous closed cylindrical shell. It has been shown that the presence of stiffening corrugations and
irregularities in the shell leads to a random-vibration field, and hence the transmission of random sound through flat panels
can be used for noise-reduction estimates. Durant et al. [35] established a comparison between the measured and the



Fig. 1. Scheme of the investigated beam.
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modeled vibroacoustic response of a thin cylindrical pipe excited by a turbulent internal flow. In spite of the experimental
investigation, the paper offers a numerical technique based on a boundary integral formulation and a matched asymptotic
expansion. Experimental and theoretical analysis of circular cylindrical shells under seismic-like base excitation has been
carried out by Pellicano [36]. The developed model takes into account geometric shell nonlinearities, electrodynamic shaker
equations and the shell shaker interaction.

The paper is organized in the following way. In Section 2 mathematical models of flexible beams are introduced, the non-
dimensional PDEs are given, and the numerical analysis of the system of non-linear ODEs has been carried out. The similar
like study has been reported in Section 3, where two non-linear PDEs governing flexible rectangular plate dynamics have
been analyzed. Section 4 reports bifurcational and chaotic dynamics of spherical shells using polar coordinates, whereas
Section 5 summarizes the obtained results.
2. Beam model

The object of our study is a single-layer beam which occupies a two-dimensional region of space R2 with a Cartesian
coordinate system Ox1x2x3 introduced in the following way: axis Ox1 is directed from left to right along the beam midline,
whereas axis Ox3 is directed downward and is perpendicular to axis Ox1 (see Fig. 1). In the introduced system of coordinates,
the beam two-dimensional domainΩ is defined as follows:Ω¼ x1A 0; a½ �; �hrx3rh

� �
, 0rtr1. Here and below we use

the following notation: 2h denotes the beam height, and a is the length of the beam.
The mathematical model of the beam is based on Bernoulli–Euler's hypothesis which takes into account the non-linear

relationship between stresses and strains in the Kármán form [37]. The system of differential equations regarding dis-
placements and governing the beam motion, including dissipation effect, is as follows [38]:

E ∂2u
∂x21

þL3ðw;wÞ
n o

� γ
g
∂2u
∂t2 ¼ 0;

E L1ðu;wÞþL2ðw;wÞ� 2hð Þ2
12

∂4w
∂x41

þqþ _q
n o

�γ
g
∂2w
∂t2 �εγg

∂w
∂t ¼ 0;

L1ðu;wÞ ¼ ∂2u
∂x21

∂w
∂x1

þ ∂u
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∂2w
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; L2ðw;wÞ ¼ 3
2
∂2w
∂x21

∂w
∂x1

� �2
; L3ðw;wÞ ¼ ∂2w

∂x21
∂w
∂x1

:

ð1Þ

We have applied the following notation: wðx1; tÞ – beam deflection; uðx1; tÞ – beam movement along the axis Ox1; ε –

dissipation coefficient; q¼ qðx1; tÞ – transverse load; _qðtÞ – white noise generated by the function wn�(2.0 � rand
()/(RAND_MAXþ1.0)-1.0), E – Young's modulus, γ – volume weight of beam material; g – acceleration of gravity. We
introduce the following dimensionless variables

w¼ w
2h

; u¼ ua

ð2hÞ2
; x1 ¼

x1
a
; λ¼ a

2h
; q¼ q

a4

ð2hÞ4E
; t ¼ t

τ
; τ¼ a

c
; c¼

ffiffiffiffiffiffi
Eg
γ

s
; ε¼ ε

a
c
; ð2Þ

and two partial differential equations called further PDEs (1) governing dynamics of the beam are given in the following
non-dimensional counterpart form:

∂2u
∂x21

þL3 w;wð Þ� ∂2u
∂t2 ¼ 0;

1

λ2
L2ðw;wÞþL1 u;wð Þ� 1

12
∂4w
∂x41

þqþ _q

( )
�∂2w

∂t2
�ε

∂w
∂t

¼ 0; ð3Þ

where dashes above the dimensionless parameters are omitted for simplicity. The following boundary conditions are
introduced

wð0; tÞ ¼wð1; tÞ ¼ uð0; tÞ ¼ uð1; tÞ ¼ ∂2wð0; tÞ=∂x21 ¼ ∂2wð1; tÞ=∂x21 ¼ 0: ð4Þ
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We also apply the following initial conditions

wðx1; tÞjt ¼ 0 ¼
∂wðx1; tÞ

∂t
jt ¼ 0 ¼ uðx1; tÞjt ¼ 0 ¼

∂uðx1; tÞ
∂t

jt ¼ 0 ¼ 0: ð5Þ
3. Method of solution of PDEs

In what follows we replace differential operators in space variable x1 by difference operators for functions

wðx1; tÞ; uðx1; tÞ with the help of FDM (Finite Difference Method) with approximation O Δ2
� �

. Difference operators in

approximation OðΔ2Þ, where Δc denotes the step along the spatial coordinate, are as follows: Λx1 ðU iÞ ¼ ðUÞiþ1�ðUÞi�1
� �

=2Δ,

Λx21
ðU iÞ ¼ ðUÞiþ1�2ðU ÞiþðUÞi�1

� �
=Δ2, Λx41

ðU iÞ ¼ ðUÞiþ2�ðUÞiþ1þ6ðUÞi�ðUÞi�1þðUÞi�2
� �

=Δ4.

Therefore, partial differential Eq. (3) are reduced to the following ordinary differential equations (ODEs) of the second
order regarding the time coordinate:

€uτ ¼Λx21
ðuiÞþΛx1 ðwiÞΛx21

ðwiÞ;
€wtþε _wt ¼ 1

λ2
� 1

12Λx41
ðwiÞþΛx21

ðuiÞΛx1 ðwiÞþΛx21
ðwiÞΛx1 ðuiÞþ3

2 Λx1 ðwiÞ
� �2Λx21

ðwiÞþqþ _q
n o

:
ð6Þ

The obtained system of the second order ODEs (6) with appropriate boundary (4) and initial (5) conditions, yielded by
the second order finite-difference approximation, is then reduced to a system of ordinary first order differential equations.
The latter is solved by the 4th order Runge-Kutta method. In references [39–41] a few ben order Runge-Kutta method
instead of 6th order Runge-Kutta method while solving the Cauchy problem have been discussed. Since numerical results
obtained by the two mentioned methods are identical, preference is given to the 4th order Runge–Kutta method which
requires less computational time in comparison to the 6th order Rungeutta method.
Fig. 2. Chart of the beam vibrations type: wn ¼ 0; ωpA 0:0003; 12ð Þ; q0A 100; 60000ð Þ.



Fig. 3. Chart of the beam vibrations type: wn ¼ 0:01; ωpA 0:0003;12ð Þ; q0A 100;60000ð Þ.
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4. Numerical analysis

In order to study dynamic behavior of nonlinear beams under the action of harmonic lateral load q¼ q0 sin ðωptÞ, we
have used a software package focused on a study of vibrations of beams as a function of the control parameters q0;ωp;wn

� �
.

The developed algorithm allows us to detect and locate the zones of periodic vibrations, period doubling bifurcation zones,
quasi-periodic zones as well as the zones of chaos. In order to get further reported charts of the beam vibration regimes,
time histories of beam deflection wðtÞ in the middle of the beam, where x1A 0; 1½ � interval is divided into 40 parts, have been
studied (not reported here). The time history/signal is computed over time interval tA 0; 1024½ � for boundary conditions
(4) and it may exhibit either regular or chaotic vibrations of the system (data concerning the type of vibrations are presented
in Figs. 2–4). It is worth mentioning that to get maps/charts of the beam vibration regime versus two control parameters:
q0A ½100;60000� (mesh consisting of 600 parts) and forωpA 0:0003; 12½ � (mesh consisting of 350 parts) it is necessary to
analyze 2:1U105 variants of the solution of the derived mathematical model. Each variant is accompanied by a study of the
signals, power spectra constructed using FFT, Morlet wavelets, phase and modal portraits, autocorrelation functions, as well
as signs of maximum Lyapunov exponents (to identify the kind of non-linear dynamics). The Lyapunov exponents are
calculated by the method of neural networks [42] and the method proposed by Wolf [43]. The vibration regimes including
periodic and chaotic attractors, bifurcations, damped vibrations and undefined system states have been identified (further
results are given only for fixed λ¼ 50). In Figs. 2–4 eight points are chosen: for wn ¼ 0 (the lack of white noise), and for two
values of the amplitude of external noise wn ¼ 0:01 and wn ¼ 1. The overall analysis of the maps shows that the presence of
even small noise magnitude significantly reduces the zones of periodic vibrations. However, an increase of the intensity of
white noise yields a negligible effect on the change in the location of periodicity zones.

The coordinates of the mentioned eight points are shown in Figs. 2–4 and their further numerical analysis is conducted
using two-dimensional spectra obtained via the Morlet wavelet, Fourier power spectra, phase 2D and 3D portraits, pseudo
Poincaré maps, as well as by a few (up to four) Lyapunov exponents (they are not reported here). If four values of the
Lyapunov exponents are given, they are obtained via neural networks procedure, whereas the largest Lyapunov exponent is
estimated by the Wolf algorithm [43].



Fig. 4. Chart of the beam vibrations type: wn ¼ 1; ωpA 0:0003;12ð Þ; q0A 100;60000ð Þ.
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At point 1 (Fig. 5) two-frequency oscillations (ω1/ωp is irrational number) and the presence of two Hopf bifurcations are
observed (we have subharmonicsωp=2; ωp=4 and 3

4ωp) for wn ¼ 0. White noise intensity of 0.01 shifts the system in the state
of chaos spanned on the mentioned before frequencies. Increasing the intensity of external noise for the same external
parameters wn ¼ 1ð Þ, we also get chaos spanned on the same frequencies, but chaotic vibrations vary significantly and
“switch on” and “switch off” of the lower frequencies can be observed. In other words, the transition of the system into state
of chaos is very sensitive to the applied noise intensity.

Point 2 (Fig. 6), in the absence of external noise, corresponds to almost harmonic vibrations with the frequency ωp. The
presence of external noise (wn ¼ 0:01) pushes the system into a subharmonic vibration regime via only one Hopf bifurcation.
In addition, the system does not exhibit any sensitivity regarding low and high amplitude of the white noise action (increase
of the noise intensity wn ¼ 1 does not change the subharmonic regime qualitatively). The Feigenbaum scenario yielding
chaos via period doubling bifurcations has not been detected in this case, and surprisingly the frequency spectrum is smooth
without any noisy components.

At point 3 (Fig. 7), in the absence of white noise, a slightly chaotic dynamics (LLE¼0.01819) and associated with five Hopf
bifurcations is detected. Small presence of white noise pushes the system into chaotic state with the same fundamental
frequencies, but with noisy components and more developed chaotization (LLE¼0.01405). The obtained chaotic attractor is
robust, since we have not observed the qualitatively change while increasing wn up to the value 1.0. At point 4 (Fig. 8), in the
absence of noise the beam exhibits slightly developed quasi-periodic vibrations with two-frequencies ðω1;ωpÞ, and a period
three bifurcation is detected (occurrence of ωp=3). For wn ¼ 0:01 and wn ¼ 1:0, the beam vibrates chaotically with noisy
frequency spectrum. Point 5 (Fig. 9) for wn ¼ 0 (ωp=3 and 2ωp=3) is associated with chaos (LLE¼0.04005) on the dominant
frequencies regarding the third Hopf bifurcation, and exhibits the beam buckling phenomena observed even for the
transverse load action. The beam subjected to the white noise (wn ¼ 0:01; 1.0) is in a chaotic regime after five Hopf
bifurcations. Dynamics of the point 6 (Fig. 10) is similar to that of the point 2. Point 7 (Fig. 11) is characterized by additional
fluctuations, exhibiting two-frequency quasi-periodic vibrations (ω1 and ω2), two Hopf bifurcations, and the intermittency
phenomena. In the latter case, surprisingly the action of the noise excitation does not bring anything qualitatively new to
the chaotic vibrations of the beam. Namely, when taking into account white noise of wn ¼ 0:01 and wn ¼ 1, it appeared that
the beam chaotic vibrations are robust and the frequency spectra do not exhibit noisy effects.



Fig. 5. The beam dynamical characteristics (2D Morlet wavelets, time histories wð0:5; tÞ; FFT, Poincaré map, 3D phase plot, beam deflection w(x)) for
point 1.
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Fig. 6. Same as in Fig. 5 (point 2).
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Fig. 7. Same as in Fig. 5 (point 3).
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Fig. 8. Same as in Fig. 5 (point 4).
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Fig. 9. Same as in Fig. 5 (point 5).
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Fig. 10. Same as in Fig. 5 (point 6).
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Fig. 11. Same as in Fig. 5 (point 7).
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Fig. 12. Same as in Fig. 5 (point 8).
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Fig. 13. The 2D Morlet wavelet spectrum, time history of the beam center, power spectrum based on FFT, Poincaré map, and 2D and 3D phase plots
(ωp ¼ 4:0603; q0 ¼ 53600).
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Fig. 13. (continued)
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Fig. 13. (continued)
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Fig. 13. (continued)
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Fig. 14. The plate and its loadings.
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In the point 8 (Fig. 12), a transition to chaos following the earlier described scenarios has been obtained for wn ¼ 0:01 and
wn ¼ 1. Note that for wn ¼ 0 the beam exhibited periodic vibrations.

Analysis of the chart {q0;ωp} of our deterministic system (lack of white noise) shows that for low values of the frequency
of the driving load, the beam vibrates periodically (Fig. 2). Increasing q0, at low excitation frequency ωp yields occurrence of
the period-doubling bifurcations with minor zones of chaos. A change of parameter ωp yields reduction of the bifurcation
zones, and small inclusions of quasi-periodicity and chaotic zones are observed within the periodic zones. Number of
partitions n has an important influence on the obtained results: zones of chaos are reduced, and zones of period-doubling
bifurcations increase and merge with each other. Adding the white noise into the transverse load (Figs. 3 and 4) yields
increase of both quasi-periodic and chaotic zones. In addition, at some points the transitions from periodicity to chaos and
vice-versa are observed (Fig. 4). Robust dynamical states are observed at large intervals of changes regarding amplitude of
the external periodic load for certain fixed frequencies. Chaotic band located at low frequencies is shown in Fig. 2.

In Figs. 5–12 graphs of the 2D Morlet wavelets, time histories of the beam center, the beam power spectra (FFT), Poincare
maps, 3D phase plots and beam deflections are reported for different white noise input and different parameters of the
harmonic input ðωp; q0Þ: Four Lyapunov exponents are computed. As can be seen from the plots in Fig. 10 (point 6), the beam
in the absence of white noise (wn ¼ 0) vibrates periodically. Even if the noise has been added (wn ¼ 0:01; wn ¼ 1) both
wavelets revealed additional frequency (apparently half of the fundamental frequency). However, the noisy effects have
been not visible. In the chaotic regime (point 5) alternation of vibration amplitudes of around �1:5 and þ1:5 is seen for
wn ¼ 0 (Fig. 9). The beam vibrates in a quasi-period manner for a relatively long time either around of þ1:5 or in an
unpredictable manner and then migrates to vibrate around other equilibrium state. Duration of switching between stable
vibrations practically coincides with the period regarding the frequency of each vibration mode. Owing to this observation,
control of the state of geometrically nonlinear beams can be realized by adding the random component of the load in the
form of white noise. However, the most impressive and surprising results are shown in Fig. 13 (here only the largest Lya-
punov exponent (LLE) is reported).

For wn ¼ 0 (lack of white noise) the beam vibrates chaotically and chaos is spanned on ωp and ωp=2. In the vicinity of
t ¼ 700 the turbulent burst occurs (see the 2D Morlet wavelet), and the power spectrum validates occurrence of chaos after
first Hopf bifurcation. It is tempting to expect that increase of noise wn ¼ 0:01;2 should increase intensity of chaotic
dynamics. In contrary, already for wn ¼ 0:01 a subharmonic solution appears being validated by all used characteristics. This
periodic orbit is robust against increase of the noise intensity (see the reported characteristics for wn ¼ 0:01;0:1;1;1:5;2:0).
Further increase of the white noise intensity wn ¼ 2:5;3 yields a series of Hopf bifurcations, and the system transits into a
chaotic regime. For wn ¼ 3:5 the chaotic attractor collapsed, and again a subharmonic vibrations appeared with the reversed
symmetry with regard to the case of wn ¼ 0:01: Further increase of the noise intensity wn ¼ 4;4:5 causes occurrence of
chaotic vibration, but then (for wn ¼ 5) again the subharmonic regime is exhibited.

The illustrated and discussed results imply that the noisy internal system dynamics (chaos) can be canceled by an action
of the external white noise, and the systems may vibrate periodically. This shows again a possibility to control vibrations in
mechanical system with infinite numbers of degrees of freedom.
5. Flexible plates

5.1. Mathematical model

We consider non-linear vibrations of flexible rectangular plate with constant stiffness and density driven both harmo-
nically and by white noise applied along its perimeter (Fig. 14).

Plate material is assumed to be isotropic and homogeneous. The mathematical model is based on the plate Kirchhoff–
Love hypotheses, whereas the geometric nonlinearity is taken into account in the form of von Kármán [37]. In the rec-
tangular coordinate system the 3D space occupied by plate has the form: Ω¼ fx1; x2; x3jðx1; x2ÞA ½0; a� � ½0; b�; x3A ½�h;h�g,



Table 1
Estimation of the Feigenbaum constant

1 bifurcation 2 bifurcation 3 bifurcation 4 bifurcation 5 bifurcation Difference [%]

p0; n 1.7 1.82 1.8473 1.853229 1.8545
dn 4.395604 4.604486 4.657501964 0,25
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0rto1. Plate vibrations are described by a system of nonlinear non-dimensional PDEs of the form [38]:

1
12ð1�μ2Þ ∇

4
λw

� ��L w; Fð Þ�∂2w
∂t2 �ε∂w∂t �q x1; x2; tð Þ ¼ 0;

∇λ
4Fþ1

2Lðw;wÞ ¼ 0:
ð7Þ

Here Lðw; FÞ, Lðw;wÞ are known nonlinear operators, ∇4
λ1
¼ 1

λ21
∂4
∂x14

þλ21
∂4
∂x24

þ2 ∂4
∂x12∂x22

, whereas w and F are functions of

deflection and stress, respectively. The system (7) is converted to dimensionless form using the following dimensionless

parameters: λ1 ¼ a=b; x1 ¼ ax1, x2 ¼ bx2;w¼ 2hw; F ¼ Eð2hÞ3F; t ¼ t0t – time; q¼ Eð2hÞ4
a2b2

q – external normal pressure; ε¼ ð2hÞε
– environment damping coefficient. Bars over dimensionless parameters in Eq. (7) are omitted for simplicity; a; b are
dimensions of the plate in plain for x1 and for x2, respectively; μ is Poisson's ratio. Eq. (7) should be supplemented by the
boundary and initial conditions.

The system of PDEs (7) with the boundary and initial conditions is reduced by the FDM (finite difference method) to a
nonlinear system of ordinary differential equations (ODEs) with the approximation OðΔ2Þ of the spatial variables. The first
equation of the nonlinear ODEs is solved by the Runge–Kutta fourth order method with respect to the deflection function.
Further, the values of deflection are substituted into the right side of the second equation of the system (7). The second
equation of (7) becomes linear and can be solved by the inverse matrix for the function force at each computational time
step. The number of partitions while applying the method of finite differences is defined as n¼ 14.

5.2. The modified Feigenbaum scenario

In deterministic systems there are several scenarios of transition to chaotic oscillations that is, simple deterministic
systems are able to generate internal noise (numerous results are provided in the monograph [3]). The random nature of
environment is capable of inducing a much richer variety of vibration modes. It is expected to extend the classical methods
of analysis to the phenomena, in which the noise plays an important role.

In what follows we include the external noise and detect and validate the transition scenarios from regular to chaotic
vibrations of the rectangular plate under the longitudinal harmonic excitation load acting on the plate perimeter. We take
px1 ¼ px2 ¼ p0sin ωpt

� �
, whereωp, p0 are the frequency and amplitude of the external force, respectively, and the studied time

interval includes tA ½0;286� (λ1 ¼ 1, ε¼ 1, μ¼ 0:3). The inhomogeneous boundary conditions are as follow:

w¼ 0; ∂2w
∂x12

¼ 0; F ¼ 0; ∂2F
∂x12

¼ px2 þpn for x1 ¼ 0;1;

w¼ 0;
∂2w
∂x22

¼ 0; F ¼ 0;
∂2F
∂x22

¼ px1 þpn for x2 ¼ 0;1: ð8Þ

and the applied initial conditions follow

wðx1; x2Þjt ¼ 0 ¼ 0;
∂w
∂t

¼ 0: ð9Þ
Table 2
Feigenbaum scenario obtained by wavelet transforms



Table 3
Scenario without external fluctuations
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Additive noise has been added to the system in the form of random input with constant intensity
pn ¼ pn0ð2:0 U randðÞ=ðRAND_MAXþ1:0Þ � 1:0Þ, where pn0 is the intensity of the noise. It should be noted that the study of
time histories obtained for the center point of the middle plate plane can be generalized to the vibrations of the remaining
plate points.

Taking a frequency of the external longitudinal load ωp ¼ 8:74ω0 (ω0 stands for a natural frequency of the para-
metrically excited plate), the modified Feigenbaum scenario has been detected. The influence of the considered load (small
amplitudes) yields subharmonic vibrations of the plate exhibiting a frequency equal to half of the external force frequency.
Increase of the amplitude of harmonic excitation yields subharmonic plate vibrations with two frequencies, ωp and
ω1 ¼ωp=2. Further growth of the control parameter p0 turns the system into a state of chaos following the modified classical
scenario, i.e. containing the main features of the two classic scenarios reported by Feigenbaum and Pomeau-Manneville. As
the amplitude of the external longitudinal load increases, increase of the number of Hopf bifurcations has been observed.
Five consecutive doubling period bifurcations has been detected, then the time history monitored in the plate center
exhibits chaotic windows with the Pomeau-Manneville intermittencies. The numerically estimated Feigenbaum constant
(d6 ¼ 4;663004, Table 1) differs from the theoretical value (dn ¼ 4:66916224) by 0.25% ([4,44–45]).



Table 4
Noisy transition scenario to chaos (noise intensity pn0 ¼ 0:5)

Fig. 15. Shell's scheme.
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5.3. Fourier versus wavelet analysis

Wavelet theory is a powerful one being alternative to Fourier analysis, and it gives a deeper insight to the signal
monitoring. The main advantage of the wavelet-analysis relies on the ability to keep track of localized features of a signal. It
is well known that the Fourier coefficients represent the signal characteristics on the entire time interval. If Fourier analysis
is used to analyze the signal whose characteristics change significantly over time, in the output a sum of all system behavior



Table 5
The Feigenbaim scenario and the Feigenbaum constant.

n 1 2 3 4 5 6

q0; n 0.08 0.1335 0.13522 0.13563 0.135718 0.1357369
αn 13.663 4.19512 4.659091 4.656084

Table 6
EET, 2D wavelet transform and 3D phase plot of the shell center dynamics ðq0¼0.08).
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is obtained. In contrary, wavelet spectra may reveal the important features of the resulting scenario (Table 2), which cannot
be detected by the standard Fourier method. First, the power of the frequencies can change in time. For instance, low
frequency corresponding to the second bifurcation of period doubling, becomes visible on the wavelet spectrum at
p0 ¼ 1:834 (Table 2) only for time interval tAð70:286Þ. Advantages of the wavelets used to study chaotic dynamics of
structural members are widely described in references [12,39–41,43,46].

Second, the frequency corresponding to the fourth (p0 ¼ 1:853229) and fifth ðp0 ¼ 1:8556Þ bifurcations (see Table 2)
occurs only at the initial time interval. It is important to note that these frequencies with increasing amplitude of the
external longitudinal load never fill the entire spectrum. Their power seriously change over time for a fixed load. There are
clearly visible zones of their "on- off" phenomena on the spectra. Also, if at a given time the frequencies of the wavelet
spectrum are 'on' and corresponding to the third bifurcation, then the frequencies corresponding to the second bifurcation
at this time are 'off' (see Table 2 for p0 ¼ 1:8597). Wavelet analysis of the spectra suggests that the transition to chaos is
carried out via intermittency. After the fifth Hopf bifurcation, there are three chaotic windows exhibited by the wavelet
spectrum. Increasing number of control parameter pushes the system to follow the Pomeau-Manneville scenario.
5.4. Additive noise actions

In this section we study the effect of additive noise intensity on the plate transition from regular to chaotic dynamics
(Table 4). In Table 3 scenarios to chaos without noise action are presented. The presence of random fluctuations of the
classical Feigenbaum scenario has been detected. It has been observed that increasing intensity of the external noise do not
change Poincaré sections and phase portraits quantitatively. In both cases, i.e. in absence and in presence of the external
noise an increase of the excitation amplitude yields chaos already after the first bifurcation. The presence of random
fluctuations yields noisy Fourier power spectrum in locations corresponding to the successive bifurcations and, as a



Table 7
Same as in Table 6 ðq0 ¼ 0:11Þ.

Table 8
Same as in Table 6 ðq0 ¼ 0:1335Þ.
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Table 9
Same as in Table 6 ðq0 ¼ 0:13522Þ.
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consequence, to a thickening of the phase portraits. Increase of the additive external noise intensity causes the acceleration
of the emergence of the bifurcation in the plate, and consequently accelerates the transition of the system into a state
of chaos.

The Gauss wavelet of the 32nd-order spectra shows that the transition to chaos of the plate external noise is carried out
through intermittency. Wavelet transforms illustrate that the state of the system changes not only by increasing control para-
meter (amplitude of the parametric longitudinal load), but also when its value is fixed over time.

The frequencies corresponding to the successive bifurcations are not evenly distributed along the time axis. In contrary,
the power of frequencies varies over time, and windows with "on-off" frequencies are exhibited. The wavelet spectrum
constructed for the amplitude p0 ¼ 1:83 of the longitudinal load in the absence of noise shows that the frequencies cor-
responding to the second bifurcation of the system ðω2;ω3 ¼ωp=4Þ appear only on a small initial time interval tAð40;70Þ
(Table 3). However, in Table 3 the wavelet corresponding to p0 ¼ 1:83 reports the frequency range up to ω¼ 3:5 (in order to
avoid perturbations introduced by the high power frequency ωp ¼ 8:7, and to see local features for frequency ω3 ¼ωp=4 of a
much lower power). While the Fourier spectrum does not carry information about the temporal localization of these fre-
quencies, the wavelet spectrum built for the same amplitude load (p0 ¼ 1:83) but with the intensity of the external noise
pn0 ¼ 0:5 showed that the frequencies corresponding to the second bifurcation of the system ðω2;ω3Þ appear on the whole
time interval, with zone of their "on-off" effects. The frequency corresponding to the next bifurcation in this experiment
(pn0 ¼ 0:5) appears at p0 ¼ 1:85, which has been reported for the time interval tAð125;150Þ:

Taking into account the so far carried out analysis, one may conclude that the wavelet transform approach yields deeper
investigations of the features of noise-induced transitions in the considered structural members (here plate) versus the
intensity of the external additive noise. Constructed wavelets show that increasing the intensity of the noise component
involves "more sparse spectrum" exhibited by the range of the low frequencies. Power of frequencies corresponding to the
second and subsequent bifurcations are located significantly below the power of the frequency ω1 ¼ωp=2. The higher the
intensity of white noise, the smaller zones of "inclusion" of frequencies corresponding to the seconds and subsequent
bifurcations. It is worthy to mention that in the absence of external noise, as well as in it presence, if on the wavelet
spectrum at the certain time moment the frequencies corresponding to the third bifurcation are "on", then the frequencies
corresponding to the second bifurcation at this time instant are "off".

Increasing the amplitude of the longitudinal external load, the subharmonic plate vibrations ωp=2 appear in the
experiments with higher intensity noise. However, the so far mentioned non-linear effects have not been found while
monitoring of the transition into chaos in the absence of the random noise.



Table 10
Same as in Table 6 ðq0 ¼ 0:14Þ.
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6. Shells

6.1. Mathemmatical model

We consider a spherical shallow shell in a polar coordinate system, introduced as follows:
Ω ¼ ðr ; zÞ� 		r A ½0; b�; �h=2 r z r h=2g. The system of equations of the nonlinear axially symmetric vibrations of the
shell has the following form [38] (see Fig. 15):

∂2w
∂t2 þε∂w∂t ¼ � ∂4w

∂r4 �2
r
∂3w
∂r3 þ 1

r2
∂2w
∂r2 � 1

r3
∂w
∂r �Ф

r 1� ∂2w
∂r2

� �
� ∂Ф

∂r 1�1
r
∂w
∂r

� �þ4qðr; tÞ;

∂2Ф
∂r2

þ1
r
∂Ф
∂r

� 1
r2

∂Ф
∂r

¼ ∂w
∂r

1� 1
2r

∂w
∂r


 �
; Ф¼ ∂F

∂r
: ð10Þ

Here we have introduced the dimensionless quantities: t ¼ω0t; ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eg=γR2

q
; b¼ c=

ffiffiffiffiffiffi
Rh

p� �
; ε¼ εR=h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g= γE

� �q
;

F ¼ ηF=Eh3; w¼w
ffiffiffi
η

p
=h; r¼ br=c; η¼ 12ð1�ν2Þ; q¼ q3 ¼ R=h

� �2q3 ffiffiffi
η

p
= 4Eð Þ; where t – time; ε – the viscosity of the envir-

onment, in which the shell moves; F – Airy's function; w – shell deflection; R, c – main curvature radius of the shell at the
support profile and the radius of the support profile, respectively; h – shell thickness; b – flatness parameter; ν – Poisson's
ratio; r – distance from the axis of rotation to the point on a median surface; qðr; tÞ - external load excitation; ω0 – natural
frequency. Bars over dimensionless quantities in (10) are already omitted. Eq. (10) requires boundary and the initial con-
ditions, and the conditions at the shell top follow:

Ф� Ar; Φ0 � A; w� BþCr2; w0 � 2Cr; w″� 2C; w″0 � 0: ð11Þ

In order to transform the continuous system (10) to a system with lumped parameters, we use the method of finite
differences with the order of approximation O ðΔ2Þ(the applied load may vary according to any law). In this paper we have
investigated the shell vibrations under the action of the alternating load conditions in the presence of external noise,
i.e.qðr; tÞ ¼wnð2:0 � randðÞ=ðRAND_ MAX þ1:0Þ � 1:0 Þþq0 sin ðωptÞ, where wn stands for the intensity of the Gaussian
white noise, q0 is the amplitude of the driving load, ωp is the frequency of the harmonic excitation. After reducing the
problem (10) to the normal Cauchy problem, the obtained ODEs are solved by the fourth-order Runge–Kutta method. The
time step is chosen from the condition of stability of the solution ðΔt ¼ 3:90625 U 10� 3Þ.
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6.2. Classical and modified scenarios

The Feigenbaum scenario associated with transition from regular to chaotic vibrations has been detected. The Feigen-
baum model [4,44–45] has been sufficiently validated by numerous numerical experiments but devoted to simple math-
ematical models. On the other hand, it is also known that period doubling bifurcation is exhibited by the Rőssler attractor,
and many others [3]. This classical route of transition to chaos has also been found in our problem, though it has infinite
dimension. Feigenbaum scenario has been detected by noisy excitation of the spherical shell with hinged-moving support
profile and the excitation frequency ωp ¼ 0:516. For hinged-moving support in the meridional direction, the boundary
conditions can be written as follows:

Φ¼w¼ 0;
∂2w
∂r2

þν
∂w
∂r

¼ 0 r¼ b; ð12Þ

and the following initial conditions are applied:

w¼ f 1ðr;0Þ; w0 ¼ f 2ðr;0Þ: ð13Þ

Eq. (10) is supplemented by the boundary (12) and the initial conditions (13). Table 5 reports numerically estimated
period doubling bifurcation scenarios and the Feigenbaum constant versus the control parameter q0 in the absence of
external noise (b ¼ 4).

The Feigenbaum constant yielded by our numerical experiments

αn ¼
q0; n �q0;n�1

q0;nþ1�q0; n
¼ 4:65608466; n¼ 6 ð14Þ

is in very good agreement with the theoretical counterpart value α6 ¼ 4.66916224 (difference is about 0.28%).
In what follows we describe computational results obtained for the studied flexible spherical shell with the added noisy

component, depending on the increase of amplitude intensity of the external load at a fixed intensity of additive Gaussian
white noise. We have analyzed signals (time histories), phase portraits, the Fourier spectra and the wavelet transforms. It
should be emphasized that in order to get reliable results we need to analyze together the Fourier and wavelet spectra as
well as phase portraits. Fourier spectrum gives the integral characteristics, whereas the wavelet spectrum allows to carry out
more detailed analysis. Namely, to determine how the frequency change in time, to detect and observe intermittency
phenomena, to determine the length of the laminar and chaotic signal fluctuations, etc., Fourier and wavelet transforms are
applied. The obtained results are shown in Tables 6–10. First, we have investigated the effect of the intensity of additive
white noise on the classical Feigenbaum scenario. The overall analysis of the characteristics shows that our shell with noisy
excitation exhibits the Hopf bifurcation at lower load values (Table 6) than in the case without noise. The localization of
frequencies takes place around the first bifurcation (wn¼ 0.01). After the emergence of the bifurcation, localization occurs
around the next bifurcation, and so on (Tables 6–10). The structure of the phase portrait changes: the greater intensity of the
noise fluctuations, the more "scatters" at the domain of phase trajectories attraction. This is especially evident in the phase
portraits reported in the Tables 6–10 at wn ¼ 0.08 and at wn ¼ 0.11. The increase in the intensity of a Gaussian white noise
with fixed amplitude of the external excitation q0 ¼ 0.08 yields the increase of the number of frequencies in the power
spectrum (in the wavelet spectrum "on" and "off" zones are observed for wn ¼ 0.08 and wn ¼ 0.11).

At a low noise level of wn ¼ 0.01, the classical Feigenbaum scenario does not change, but it is accompanied by the noisy
spectrum components. After the first Hopf bifurcation with increasing amplitude of the external alternating load q0 ¼0.11
(Table 7) the frequencies localization appears around the second bifurcation at wn¼0.01, and the wavelet spectrum shows
constant frequencies over time. Further increase of the of the external load amplitude q0 ¼0.1335 and q0 ¼0.13522
(Tables 8 and 9) yields also localization of frequencies in the power spectrum around the third and fourth bifurcation values,
respectively, under low-intensity white noise wn¼ 0.01. Further increase of the external amplitude load q0 (in the absence of
noise) leads to new Hopf bifurcations. Addition of the white noise makes power spectrum "noisy" already under the load q0
¼0.13535, i.e. chaos occurs rapidly. In the small noise action wn¼ 0.01, four Hopf bifurcations have been detected, but the
Feigenbaum constant is several times higher than the theoretical value. A further increase of the excitation amplitude leads
to "destruction" of the period-doubling frequencies, and transition to the chaotic state via the first Hopf bifurcation.
Increasing the intensity of the additive noise (wn¼0.08 and wn¼0.11) allows to conclude that after the second bifurcation
power spectrum becomes so noisy, that the presence of the third, fourth, etc. bifurcations cannot be determined.

Phase portrait shows that the distance between the phase trajectories is influenced by low-intensity white noise.
Increasing the amplitude of the noise increases the distance between the chaotic phase trajectories (wn¼0.08, wn¼0.11 and
q0 ¼ 0:14), but the power spectra and wavelet analysis show chaotic vibrations associated with the second bifurcation. It
should be emphasized that only joint analysis of the Fourier and wavelet spectra, and spatial phase portrait, makes it possible to
characterize properly the dynamical state of our mechanical system. Further increase of the white noise intensity did not
introduce anything qualitatively new to the shell vibrations character.



J. Awrejcewicz et al. / Mechanical Systems and Signal Processing 79 (2016) 225–253252
7. Conclusions

In our previous published papers and monographs we have reported numerous advantages of the developed general
approach to study chaotic dynamics of structural members (beams, panels, plates, and shells). The given earlier and applied
here theoretical background consists of two main steps: (i) Application of a proper and economical reduction procedure of
the governing PDEs to ODEs preserving all non-linear features and correspondence of the introduced mathematical and
physical modeling of the structural members with an emphasis on validation and reliability of the obtained results; (ii)
Application of the wavelet based analysis to follow frequencies temporal behavior, which strongly improves and validates
results obtained by the applied classical numerical characteristics of the dynamical non-linear phenomena. The carried out
review of the state of art of the research devoted to the similar like problems shows that there is a lack of the similar
approaches to study non-linear dynamical behavior of structural members. This paper can be viewed as the extension of our
widely applied theoretical/numerical methods to study continuous structural members subjected to external additive
white noise.

The following general observations and results are yielded by our investigations:

1. The investigated structural members have shown a few different scenarios of transition from periodic to chaotic vibra-
tions in absence of white noise. In spite of already known and well documented scenarios, like the Feigenbaum, the
Ruelle-Takens-Newhouse and the Pomeau-Manneville routes to chaos, there exist also other scenarios being modifica-
tions of the known scenarios.

2. We have detected, illustrated and discussed the modified Feigenbaum scenario, which is a combination of the classical
Feigenbaum and Pomeau-Manneville scenarios.

3. The presence of small noise significantly reduces the area of regular zones existence in the parameter planes, which has
been reported on the charts of vibrations kind.

4. Applied random fluctuations may either destroy or amplify the scenarios of transition from regular to chaotic dynamics
structural members for the same fixed system of parameters.
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