
Mechatronics 37 (2016) 54–62 

Contents lists available at ScienceDirect 

Mechatronics 

journal homepage: www.elsevier.com/locate/mechatronics 

Shaping the trajectory of the billiard ball with approximations of the 

resultant contact forces 

Grzegorz Kudra , Michał Szewc 

∗, Igor Wojtunik , Jan Awrejcewicz 

Lodz University of Technology, Department of Automation, Biomechanics and Mechatronics, Stefanowski St. 1/15, 90-924 Lodz, Poland 

a r t i c l e i n f o 

Article history: 

Received 30 August 2015 

Revised 23 November 2015 

Accepted 3 January 2016 

Available online 21 January 2016 

Keywords: 

Friction modelling 

Coulomb–Contensou model 

Parameter’s optimization 

Shaping the ball’s trajectory 

a b s t r a c t 

This paper presents mathematical models of the contact pressure distribution on a circular contact area 

and the corresponding rolling resistance. Hertzian pressure distribution is distorted in a special way in 

order to move rolling centre outside the geometrical centre of the contact area. With the assumption of 

fully developed sliding and classical Coulomb friction law on each element of the contact, integral models 

of the total friction force and moment reduced to the contact centre are given. In order to improve the 

convenience of use of the contact models in numerical simulations of rigid body dynamics and decrease 

their computational cost, special approximations of the integral models of friction force and moment 

are proposed. Moreover, special modifications of the corresponding expressions for friction forces and 

rolling resistance are proposed, which allows avoiding their singularities for vanishing relative motion of 

the contacting bodies. The application of the proposed contact models in mathematical modelling of a 

rigid ball rolling and sliding over a deformable table is presented. Furthermore, possibilities of use of the 

developed simulation models in shaping the billiard ball’s trajectory are presented. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Classical understanding of friction model is a relation between

single component of friction force and one-dimensional relative

displacement of the contacting bodies. This relation can pos-

sess different levels of complexity, beginning from the classical

Coulomb law, ending on more advanced relations taking into ac-

count other properties of friction, including also additional state

variables. These kinds of models are applied directly in mathe-

matical descriptions and investigations of dynamical systems with

frictional contacts, where at each point of the contact area the

same relative motion of the contacting bodies takes place. There-

fore, they can be also applied in the modelling of frictional con-

tacts of bodies in three-dimensional space, if the contact can be

considered as a point contact or plane and non-deformable with-

out relative rotation of the contacting bodies in the contact plane. 

However it occurs, that in the daily life one can encounter

many examples of mechanical systems in three-dimensional space,

where the assumption of the same relative motion of the contact-

ing bodies at each point of the contact area is not fulfilled. One can

enumerate here such examples like dynamics of rolling bearing,
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illiard ball, Thompson top, Celtic stone, wheel-soil or wheel-rail

f the vehicles, and many others issues encountered in robotics.

he local deformations of the bodies can be small enough with

omparison to their dimensions, so the global motion of the bod-

es can be treated as rigid body motion. However, the shape and

ize of the contact zone can influence the global dynamics of the

ody. The full solution to this problem can be achieved with the

se of space discretization and then one of such numerical meth-

ds like finite element method or, under special assumptions, the

ntegration over the contact area. The last case corresponds to the

ssumptions used in the present paper. The space discretization

eads however to significant increase of computational time. From

he point of view of realistic and fast simulations of certain class

f mechanical systems, it is important to construct special approx-

mate models of the resultant contact forces. 

Contensou in [1] indicated that moment of friction and relative

ngular velocity around the axis perpendicular to the contact plane

an be very important in dynamics of some mechanical systems,

.e. quickly spinning tops. He presented analytical form (in terms

f elliptic integrals) of dependence of the friction force on the rel-

tive sliding linear and angular velocities, assuming the classical

oulomb friction law and fully developed sliding on a circular con-

act area, with Hertzian contact pressure distribution. Zhuravlev in

2] showed that for a parabolic contact pressure distribution and a

pecial choice of the co-ordinate system, one can find expressions

or friction force and moment including only elementary functions.

http://dx.doi.org/10.1016/j.mechatronics.2016.01.002
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Fig. 1. The circular contact area with the characteristic relative velocities and the 

resultant forces and force couples acting on the body lying above the contact patch. 
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ince these expressions are rather complicated and inconvenient

n use for modelling of real systems and numerical simulations, he

roposed special approximations of the exact expressions based on

he Padé approximants as well. More results concerning the use

f higher order Padé approximations in modelling friction force

nd moment are presented in [3] . Model of rolling resistance with

he related special contact pressure distribution on circular contact

rea and the corresponding Padé approximations of the resultant

riction force and moment were presented in [4] . Furthermore, the

ew families of models and approximations were proposed in [5] ,

hich can be understood as generalizations of the previously men-

ioned approaches. In particular, the model of contact pressure dis-

ribution and rolling resistance was extended to the case of ellipti-

al contact area. Moreover, the approximations of the friction force

nd moment were generalized and their ability to fit the integral

odels or experimental data was increased. 

The above mentioned integral models and their approximations

oncern the case of fully developed sliding. However, during simu-

ations of mechanical systems one can manage not only with fully

eveloped sliding, but also with stick mode, as well as transition

etween them. In general, there are three different approaches to

his problem: time-stepping methods, event-driven methods and

egularization methods. Kudra and Awrejcewicz in [6] presented

umerical scheme and the corresponding examples of simulation

f stick-slip oscillations, where both the linear and rotational rela-

ive motion of the contacting bodies takes place. The numerical al-

orithms were constructed as an event-driven scheme, where the

pproximations of the integral friction model for both the fully de-

eloped sliding and stick mode (determination of the end of the

tick mode) were used. In [7] the corresponding regularized ap-

roximations of the integral models of friction for fully developed

liding were presented, where the singularities (for vanishing rela-

ive motion) were removed. It was shown that the developed mod-

ls of friction lead to the same results as event-driven algorithm

resented in [6] . 

The application of the special approximate model of the resul-

ant contact forces in the billiard ball rolling and sliding on the

eformable table is considered in this paper. Time consumption

f the numerical calculation is crucial in simulation of the bil-

iard game in which the models of resultant contact forces are ex-

ected to be computationally effective. Shaping the billiard ball’s

rajectory with the consideration of the influence of shape and

ize of the contact zone on the dynamics of the ball has not been

ound in the state of the art. Most of the found applications use

he pre-prepared engines or large libraries without going into con-

tituent parts. As it is written in [8] , Open Dynamics Engine (ODE)

s used. It is an open source physics library, which allows provid-

ng a realistic environment when 3D objects are colliding. ODE is

sed to simulate collisions between objects of different shapes. An-

ther techniques and research to develop a game with reality is

irtual reality technology with Visual, Auditory and Haptic Sensa-

ion presented in [9] . In [10] the simulation of the billiard game is

ased on the marker detection. However, none of them mentioned

bout the model of contact forces considering the shape and size

f the contact zone and shaping the ball’s trajectory. They focused

n problem of collisions and communications between human and

omputer. 

Section 2 presents mathematical models of the contact pressure

istribution, rolling resistance (2.1), integral model of friction force

nd moment (2.2) for fully developed sliding on a circular contact

rea, as well as their special approximations (2.3) and regulariza-

ions (2.4). Section 3 exhibits a mathematical model of a rigid bil-

iard ball rolling and sliding over a deformable table (3.1). Addi-

ionally, this section presents the abilities of the developed models

o predict and shape the billiard ball’s trajectory. Section 4 contains

ome concluding remarks. 
. Modelling of the contact forces 

.1. Contact pressure distribution and rolling resistance 

Let us consider a dimensionless circular contact area F pre-

ented in Fig. 1 , with the Cartesian coordinate system Axyz with

xes xy lying in the contact plane. The dimensionless coordinates

f a point situated on area F equals to x = ˆ x / ̂  a and y = ˆ y / ̂  a , where x̂

nd ˆ y are the corresponding actual coordinates, while ˆ a is a radius

f real contact. 

The following form of non-dimensional contact pressure distri-

ution [5] is assumed: 

(x, y ) = ˆ σ (x, y ) 
ˆ a 2 

ˆ N 

= 

3 

2 π

√ 

1 − x 2 − y 2 ( 1 + d c x + d s y ) (1)

here 

 c = d cos γ = d 
v rx √ 

v 2 rx + v 2 ry 

d s = d sin γ = d 
v ry √ 

v 2 rx + v 2 ry 

(2) 

In Eqs. (1 –2 ) ˆ σ (x, y ) denotes real contact pressure, ˆ N ,normal

omponent of the real resultant force loading the contact, d , rolling

esistance parameter, γ , angle describing “direction of rolling”. The

ariables v rx and v ry are the components of the non-dimensional

rolling velocity” v r = 

ˆ v r / ̂  a = v rx e x + v ry e y ( ̂ v r is the corresponding

eal vector, e ζ is unit vector of axis ζ ). 

The model ( 1 ) is some artificial modification of the Hertzian

tress distribution, moving the centre of the pressure distribution

utside the geometrical centre A of the contact and allowing to

odel the non-dimensional rolling resistance. The latter finally

eads 

 r = f × e z = y S e x − x S e y = M rx e x + M ry e y (3)

her e 
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Fig. 2. The example of the contact pressure distribution ( 1–2 ), for d = 1 and γ = 1 . 
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M rx = 

1 

5 

d s M ry = −1 

5 

d c (4)

and f = 

−→ 

AS = x S e x + y S e y is vector indicating position of the centre

S of the non-dimensional contact pressure distribution. The cen-

tre S can be found using the following relations: x s = 

∫ ∫ 
F 

σ ( x, y ) xdF 

and y s = 

∫ ∫ 
F 

σ ( x, y ) ydF . The real rolling resistance is ˆ M r = ˆ a ̂  N M r . 

Here some attention should be given to the introduced concept

of “rolling direction” and “rolling velocity”. In the case of contact

of a deformable body and a rigid one, the “rolling direction” is a

direction of relative motion of the centre of the contact area over

the surface of the deformable body, while “rolling velocity” is the

corresponding velocity. In the case of two deformable bodies, the

rolling resistance can be modelled as a superposition of two inde-

pendent rolling resistances, and the quantities d c and d s ( 2 ) can be

understood as a resultant action of them. In the case of the system

of billiard ball modelled in Section 3 , it is assumed that a rigid ball

rolls and slides over deformable table. 

In Fig. 2 the example of the contact pressure distribution ac-

cordingly to the proposed model ( 1–2 ) is presented, where d = 1

and γ = 1 is assumed. 

2.2. Integral model of the resultant friction forces 

Assuming a fully developed sliding on the contact area F (see

Fig. 1 ) and deformations of the bodies are small enough, we

describe the relative motion of the two bodies in the contact

plane as a plane motion of rigid bodies. This motion is charac-

terized by the dimensionless linear sliding velocity in the centre

A : v s = 

ˆ v s / ̂  a = v sx e x + v sy e y and the angular sliding velocity: ω s =
ˆ ω s = ω s e z , where ˆ v s and 

ˆ ω s are the corresponding real quantities. 

Assuming sliding and applying the Coulomb friction law on

each element dF of the contact, we get d T s == d ̂  T s / (μ ˆ N ) =
−σ ( x, y ) dF v P / ‖ v P ‖ , where d T s is elementary non-dimensional fric-

tion force, d ̂  T s , its real counterpart, v P , local non-dimensional ve-

locity of sliding and μ, dry friction coefficient. The moment of

the friction force d T s about the centre A of the contact reads

d M s = ρ × d T s = d ˆ M s / ( ̂  a μ ˆ N ) , where d ˆ M s is the corresponding real

moment. 

Summing up the elementary friction forces and moments, one

get the following integral expressions for the corresponding com-

ponents of the total friction force T s = −T s x e x − T s y e y and moment

M s = −M s e z reduced to point A : 
T s x = 

∫ ∫ 
F 

σ ( x, y ) ( v sx − ω s y ) √ 

( v sx − ω s y ) 
2 + ( v sy + ω s x ) 

2 
d xd y 

T sy = 

∫ ∫ 
F 

σ ( x, y ) ( v sy + ω s x ) √ 

( v sx − ω s y ) 
2 + ( v sy + ω s x ) 

2 
d xd y 

 s = 

∫ ∫ 
F 

σ ( x, y ) 
ω s 

(
x 2 + y 2 

)
+ v sy x − v sx y √ 

( v sx − ω s y ) 
2 + ( v sy + ω s x ) 

2 
d xd y (5)

here the signs have been changed in order to simplify further

otation. The real quantities can then be calculated as ˆ T s = μ ˆ N T s 
nd 

ˆ M s = ˆ a μ ˆ N M s . 

The functions ( 5 ) possess redundancy in number of arguments.

he used here kinematic quantities v sx , v sy and ω can be conve-

iently obtained during numerical simulations. They can be how-

ver reduced using the following relations 

 s = λs cos θs ω s = λs sin θs (6)

here 

s = 

√ 

v 2 s + ω 

2 
s 

nd 

 sx = v s cos ϕ s v sy = v s sin ϕ s (7)

Taking into account the relation ( 6–7 ) in Eq. (5) , one gets 

T s x = 

∫ ∫ 
F 

σ ( x, y ) 
N 1 

D 

d xd y T sy = 

∫ ∫ 
F 

σ ( x, y ) 
N 2 

D 

d xd y 

 s = 

∫ ∫ 
F 

σ ( x, y ) 
N 3 

D 

d xd y (8)

here 

 1 = cos θs cos ϕ s − y sin θs 

 2 = cos θs sin ϕ s + x sin θs 

 3 = 

(
x 2 + y 2 

)
sin θs + x cos θs sin ϕ s − y cos θs cos ϕ s 

 = 

√ 

( cos θs cos ϕ s − y sin θs ) 
2 + ( cos θs sin ϕ s + x sin θs ) 

2 

The integral components ( 8 ) for the proposed contact pressure

istribution ( 1 – 2 ) possess the following properties 

f ( θs , ϕ s , γ ) = − f ( θs + π, ϕ s , γ ) for f = T sx , T sy , M s 

f ( θs , ϕ s , γ ) = − f ( −θs , ϕ s + π, γ ) for f = T sx , T sy , M s 

f ( θs , ϕ s , γ ) = f ( −θs , ϕ s , γ + π) for f = T sx , T sy 

f ( θs , ϕ s , γ ) = − f ( −θs , ϕ s , γ + π) for f = M s (9)

The examples of the components T sx , T sy and M s of the inte-

ral model ( 9 ) are presented in Fig. 3 , where ϕ s = 0 and d = 1 is

ssumed. 

.3. Approximations of the integral model of friction forces 

Since the expressions ( 5 ) or ( 8 ) contain the integrals over the

ontact area, their direct use in numerical simulations may be in-

onvenient and time consuming. The exact analytical expressions

xist, but they are also inconvenient because of their complexity

 1 – 4 ]. In this situation one can use the following approximations

f the corresponding components of the integral model: 
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Fig. 3. The components ( T sx , T sy , M s ) of the integral friction model ( 9 ), for d = 1, 

ϕ s = 0 . 
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T (I) 
sx = 

v sx − b T c 
(x,y ) 
0 , 1 , 1 

ω s (| v s | m T + b m T 

T | ω s | m T 
)m 

−1 
T 

T (I) 
sy = 

v sy + b T c 
(x,y ) 
1 , 0 , 1 

ω s (| v s | m T + b m T 

T | ω s | m T 
)m 

−1 
T 

 

(I) 
s = 

b M 

c (x,y ) 
0 , 0 , −1 

ω s − c (x,y ) 
0 , 1 , 0 

v sx + c (x,y ) 
1 , 0 , 0 

v sy (
b m M 

M 

| ω s | m M + | v s | m M 
)m 

−1 
M 

(10) 
here 

 

( x,y ) 
i, j,k 

= 

∫ ∫ 
F 

x i y j 
(
x 2 + y 2 

)− k 
2 σ ( x, y ) d xd y 

hich belongs to the larger family of approximations proposed in

he work [5] and fulfilling conditions ( 9 ). 

The components ( 9 ) fulfil the following conditions 

f (I) 
∣∣
v s =0 

= f | v s =0 

f (I) 
∣∣
ω s =0 

= f | ω s =0 (11) 

here f = T sx , T sy , M s are the corresponding integral components.

he constant parameters b T , m T , b M 

and m M 

do not influence the

onditions ( 11 ) and can be found in the process of optimization

y fitting the approximate components to the exact integral ones.

hey can be identified from the experimental data as well. 

For the model of the contact pressure distribution ( 1 ) one get 

c (x,y ) 
0 , 1 , 1 

= 

3 

32 

πd s c (x,y ) 
1 , 0 , 1 

= 

3 

32 

πd c 

 

(x,y ) 
0 , 0 , −1 

= 

3 

16 

π c (x,y ) 
0 , 1 , 0 

= 

1 

5 

d s c (x,y ) 
1 , 0 , 0 

= 

1 

5 

d c (12) 

Using the relation ( 6–7 ) and changing the kinematic variables,

he expressions ( 9 ) take the following form: 

T (I) 
sx = 

cos θs cos ϕ s − b T c 
(x,y ) 
0 , 1 , 1 

sin θs (| cos θs | m T + b m T 

T | sin θs | m T 
)m 

−1 
T 

T (I) 
sy = 

cos θs sin ϕ s + b T c 
(x,y ) 
1 , 0 , 1 

sin θs (| cos θs | m T + b m T 

T | sin θs | m T 
)m 

−1 
T 

 

(I) 
s = 

b M 

c (x,y ) 
0 , 0 , −1 

sin θs − c (x,y ) 
0 , 1 , 0 

cos θs cos ϕ s + c (x,y ) 
1 , 0 , 0 

cos θs sin ϕ s (
b m M 

M 

| sin θs | m M + | cos θs | m M 
)m 

−1 
M 

(13) 

Taking into account the properties ( 9 ) and the circularity

f the contact, it is sufficient to compare the integral and

pproximate models only on the region D ≡ {( d, γ , θ s ): 

 ≤ d ≤ 1 , 0 ≤ γ ≤ π, −π/ 2 ≤ θs ≤ π/ 2 } , assuming ϕ s = 0 . There-

ore, in the process of the approximate model’s optimization, the

ollowing objective functions are constructed 

F T ( b T , m T ) = 

∫ 
D 

((
T sx − T (I) 

sx 

)2 + 

(
T sy − T (I) 

sy 

)2 
)

dD 

 M 

( b M 

, m M 

) = 

∫ 
D 

(
M s − M 

(I) 
s 

)2 
dD 

llowing to find the following set of optimal parameters: b T =
 . 771 , m T = 2 . 655 , b M 

= 0 . 419 and m M 

= 3 . 073 . The optimization

rocess has also been carried out assuming that m T = 2 and m M 

=
 , which resulted in the following parameters: b T = 0 . 68102 , b M 

=
 . 480909 . This assumption leads to the significant reduction of the

omputational time in some cases. 

Fig. 4 exhibits comparison of the full integral model ( 8 ) of fric-

ion forces ( T sx , T sy , M s ) for ϕ s = 0, d = 0.6 and γ = 1, with the

ptimized approximate models ( 13 ) in the two above mentioned

ases: where all the parameters are optimized ( T (Ia ) 
sx , T (Ia ) 

sy , M 

(Ia ) 
s )

nd where m T = 2 and m M 

= 2 ( T (Ib) 
sx , T (Ib) 

sy , M 

(Ib) 
s ) is assumed. 

.4. Regularizations of the models of friction and rolling resistance 

The models of rolling resistance and friction forces presented in

he previous sections, concern the case of non-zero rolling veloc-

ty and fully developed sliding. They possess singularities for van-

shing rolling resistance or lack of relative sliding motion. The full

odels of rolling resistance and friction should be the set-valued
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Fig. 4. Comparison of the optimized approximations ( 13 ) with the full integral 

model of friction ( 8 ). 
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models taking into account both stick and motion (rolling and slid-

ing) modes, as well the transition between them. One can how-

ever simplify the problem making the special changes in the cor-

responding expressions for rolling resistance (deformation of the

contact pressure) and friction components during sliding, obtain-

ing their smooth (regularized) counterparts. 

In the case of regularization of the rolling resistance, one should

introduce in the denominators of the expressions ( 2 ) a small nu-

merical parameter ε r , obtaining the following smooth versions of

these expressions 

d cε = d 
v rx √ 

v 2 rx + v 2 ry + ε 2 r 

d sε = d 
v ry √ 

v 2 rx + v 2 ry + ε 2 r 

(14)
Then the rolling resistance reads 

 rε = M rxε e x + M ryε e y (15)

here 

 rxε = 

1 

5 

d sε M ryε = −1 

5 

d cε 

The real regularized rolling resistance is then equal to ˆ M rε =
ˆ  ̂  N M rε . 

In order to eliminate the singularities from the integral expres-

ion for components of friction model, we introduce the small pa-

ameter ε t in the following way 

T s xε = 

∫ ∫ 
F 

σ ( x, y ) ( v sx − ω s y ) √ 

( v sx − ω s y ) 
2 + ( v sy + ω s x ) 

2 + ε 2 t 

d xd y 

T syε = 

∫ ∫ 
F 

σ ( x, y ) ( v sy + ω s x ) √ 

( v sx − ω s y ) 
2 + ( v sy + ω s x ) 

2 + ε 2 t 

d xd y 

 sε = 

∫ ∫ 
F 

σ ( x, y ) 
ω s 

(
x 2 + y 2 

)
+ v sy x − v sx y √ 

( v sx − ω s y ) 
2 + ( v sy + ω s x ) 

2 + ε 2 t 

d xd y (16)

The total regularized friction force and moment read T sε =
T sxε e x − T syε e y and M sε = −M sε e z , correspondingly. Their real

ounterparts are ˆ T sε = μ ˆ N T sε and 

ˆ M sε = ˆ a μ ˆ N M sε . 

The approximate models of friction force and moment are reg-

larized in an analogical way, adding a small parameter ε t in the

enominators of the corresponding expressions: 

T (I) 
sxε = 

v sx − 3 
32 

πb T d sε ω s √ (| v s | m T + b m T 

T | ω s | m T 
)2 m 

−1 
T + ε 2 t 

T (I) 
syε = 

v sy + 

3 
32 

πb T d cε ω s √ (| v s | m T + b m T 

T | ω s | m T 
)2 m 

−1 
T + ε 2 t 

 

(I) 
sε = 

3 
16 

πb M 

ω s − 1 
5 

d sε v sx + 

1 
5 

d cε v sy √ (
b m M 

M 

| ω s | m M + | v s | m M 
)2 m 

−1 
M + ε 2 t 

(17)

The corresponding non-dimensional friction force and mo-

ent are then computed as T (I) 
sε = −T (I) 

sxε e x − T (I) 
syε e y and M 

(I) 
sε =

M 

(I) 
sε e z , while their real counterparts read 

ˆ T (I) 
sε = μ ˆ N T (I) 

sε and

ˆ 
 

(I) 
sε = ˆ a μ ˆ N M 

(I) 
sε , respectively. 

. Billiard ball 

.1. Mathematical model 

An example of application of the presented model is a billiard

all rolling and sliding on deformable table, presented in Fig. 5 ,

here the following notation is used: v , velocity of the ball centre

 ; ˆ T sε , the resultant friction force acting at the contact centre A ;
ˆ 
 = 

ˆ N e z , the normal reaction acting on the ball; ˆ ω s , angular sliding

elocity; ˆ v r , linear rolling velocity; ˆ M sε , moment of friction forces;
ˆ 
 rε , moment of rolling resistance; ˆ v s , linear sliding velocity at the

oint A . It is assumed that a rigid ball rolls and slides over the

eformable table, therefore ˆ v r = v . 
Since the permanent contact between the ball and table is as-

umed with constant normal reaction 

ˆ N = mg, the billiard ball is

overned by the following set of differential equations: 

 

d v 
dt 

= 

ˆ T sε (18a)

 

dω 

dt 
= r × ˆ T sε + 

ˆ M sε + 

ˆ M rε (18b)
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Fig. 5. The contact area of the billiard ball. 
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here r = 

−→ 

OA , m denotes mass of the ball, while B is tensor of in-

rtia in the mass centre O . 

Using the matrix representation one can write: 

v = 

[ 

v x 
v y 
v z 

] 

ω = 

[ 

ω x 

ω y 

ω z 

] 

r = 

[ 

0 

0 

−r 

] 

ˆ T sε = 

[ 

ˆ T sxε 

ˆ T syε 

0 

] 

= μmg 

[ 

T sxε 

T syε 

0 

] 

ˆ M sε = 

[ 

0 

0 

ˆ M sε 

] 

= 

ˆ a μmg 

[ 

0 

0 

M sε 

] 

ˆ 
 rε = 

[ 

ˆ M rxε 

ˆ M rxε 

0 

] 

= 

ˆ a mg 

[ 

M rxε 

M rxε 

0 

] 

B = 

[ 

B 0 0 

0 B 0 

0 0 B 

] 

(19) 

here B = 2/5 mr 2 is the central inertia moment of the body. 

Vector product can be expressed in different forms (vector or

atrix): 

 × ˆ T sε = 

∣∣∣∣∣
e x e y e z 
0 0 −r 

ˆ T sxε ˆ T syε 0 

∣∣∣∣∣ = r ̂  T syε e x − r ̂  T sxε e y 

r 

 × ˆ T sε = 

[ 

0 r 0 

−r 0 0 

0 0 0 

] 

·
[ 

ˆ T sxε 

ˆ T syε 

0 

] 

= 

[ 

r ̂  T syε 

−r ̂  T sxε 

0 

] 

= μmg 

[ 

r T syε 

−r T sxε 

0 

] 

(20) 

Eq. (18a) leads to the following two scalar differential equations

overning the mass centre of the ball: 

d v x 
dt 

= −μg T sxε , 
d v y 
dt 

= −μg T syε (21)

hile the third equation is d v z / dt = 0 . Assumption of permanent

ontact results in five degrees of freedom of the analysed system. 

Applying relation (19–20) to Eq. (18b) one could obtain the fol-

owing differential equations governing the angular motion of the

all 

d ω x 

dt 
= −5 

2 

g 

r 

(
μT syε − 1 

r 
ˆ a M rxε 

)
d ω y 

dt 
= 

5 

2 

g 

r 

(
μT sxε + 

1 

r 
ˆ a M ryε 

)
d ω z = −5 g 

2 
ˆ a μM sε (22) 
dt 2 r 
For computation of the absolute position of the ball centre one

eed the following additional equations: 

d X O 

dt 
= v x , 

d Y O 
dt 

= v y (23) 

here X O and Y O are the coordinates of the ball centre O in the

lobal coordinate system XYZ . 

In order to apply the proposed models of friction forces one

lso need 

ˆ 
 s = v A = v + ω × r (24)

Representing Eq. (24) in the matrix form one get 
 

v sx 

v sy 

v sz 

] 

= 

[ 

v Ax 

v Ay 

v Az 

] 

= 

[ 

v x 
v y 
v z 

] 

+ 

[ 

0 −ω z ω y 

ω z 0 −ω x 

−ω y ω x 0 

] 

·
[ 

0 

0 

−r 

] 

(25) 

hich finally takes the following form: 

 sx = 

v x − r ω y 

ˆ a 
v sy = 

v y + r ω x 

ˆ a 
v sz = 0 (26) 

In the rolling resistance model one use the following relation 

 rx = 

v x 
ˆ a 

v ry = 

v y 
ˆ a 

(27) 

.2. Possibilities of shaping the ball’s trajectory 

Results of simulation of the ball’s motion in the two cases are

resented: (i) the instance where the full integral models of fric-

ion forces ( T sx ε , T sy ε , M s ε ) are applied; (ii) the instance where the

ntegral models are replaced by the corresponding approximants

 T (I) 
sxε , T (I) 

syε , M 

(I) 
sε ). Proper set of the initial conditions may result in

btaining the desired trajectory. 

The comparison of the full integral model with the approximate

odel is presented in Figs. 6 –8 . However, because of the difficulty

f carrying out calculations with some initial conditions, only the

esults of approximate model are presented in Figs. 9 –10. 

In Fig. 6 the straight motion of the ball along the direction of Y

xis is presented. The diagonal movement of the ball is presented

n Fig 7 . Fig. 8 shows the reversal motion of the ball along the Y di-

ection. Fig. 9 shows the case, in which ball is turning in direction

 and then it is doing a curve motion in the opposite direction.

ig. 10 exhibits the case in which the ball is turning in both X and

 direction at the same time, and then it constantly rolls in both X

nd Y direction until it stops. 

For the approximate model the following parameters

ere used: ˆ a = 0 . 003 m , μ = 0 . 2 , d = 1 , ε t = 0 . 01 , ε r = 0 . 01 ,

 = 9 . 81 m / s 2 , r = 0 . 02 m, m T = 2 , m M 

= 2 , b T = 0 . 68102 , b M 

=
 . 480909 . Some of the initial conditions are the same for each

f the presented simulations: X O (0) = 0 , Y O (0) = 0 , αx (0) = 0 ,

y (0) = 0 , αz (0) = 0 , v x (0) = 0 and v y (0) = 1 . The rest of them

re different for the particular figures and they are noted in the

gures’ descriptions. 

During the simulations the approximate models of friction

orces with the parameters m T = m M 

= 2 were used, since they oc-

ur computationally more effective than the corresponding models

ith the different values of the m T and m M 

. 

. Concluding remarks 

In the work simplified models of the friction force and moment

re presented, as well as rolling resistance for fully developed slid-

ng on a circular contact area with Coulomb friction law valid on

ach of its element. Then the introduced contact models are ap-

lied in modelling and numerical simulations of a rigid billiard ball

olling and sliding over a deformable table. The proposed approx-

mated models of friction forces occurred very effective and able
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Fig. 6. Position of the billiard ball during the straight motion. Initial conditions: 

ω x (0) = –50 rad/s, ω y (0) = 0 and ω z (0) = 0. 

Fig. 7. Position of the billiard ball during the diagonal movement. Initial conditions: 

ω x (0) = –50 rad/s, ω y (0) = 5 rad/s and ω z (0) = 0. 
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Fig. 8. Position of the billiard ball during turning in x direction. Initial conditions: 

ω x (0) = 150 rad/s, ω y (0) = 5 rad/s and ω z (0) = 0. 

Fig. 9. Position of the billiard ball during the curve movement. Initial conditions: 

ω x (0) = –50 rad/s, ω y (0) = –3.5 rad/s and ω z (0) = –150 rad/s. 

Fig. 10. Position of the billiard ball during full turn movement. Initial conditions: 

ω x (0) = 150 rad/s, ω y (0) = 0 and ω z (0) = –150 rad/s. 
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s  
o substitute inconvenient and extremely computationally expen-

ive integral expressions. They can be used in fast numerical sim-

lations of rigid body dynamics, computer games or control algo-

ithms based on the plant model. 

The presented results of simulations of the billiard ball indicate

arge possibilities of shaping the ball’s trajectory by manipulating

ts initial conditions. Thus, the developed models can be potentially

sed as elements of control system of a machine playing billiard.

hey should be supplemented by models of impacts between the

all and other objects like another billiard ball, cue or table band. 

The parameters of the developed contact models have been

ound in the process of optimization of fitting the approximate

odels to the corresponding integral expressions. Note however,

hat these and other parameters of the contact models can be also

stimated based on the experimental data. To collect such data, a

pecial control and test station should be constructed. Therefore,
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the use of different mechatronic sensors such as high speed cam-

era, 3D scanner, laser scanner is being analysed by the paper’s

authors. Placing inertial measurement unit (IMU) with the wire-

less data transmission inside the moving ball is considered as well.

With such test station and the results presented in this study, pro-

posed friction force and moment model could be verified. 
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