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Abstract
A mathematical model of a system consisting of a dc motor, mechanism
converting the rotational motion to the linear one and a single physical
pendulum with the joint horizontally driven is developed. Constant
angular velocity of the crank is assumed. The parameters of the model are
estimated using the experimental data consisting of five solutions corre-
sponding to the five different values of constant input voltage. Different
versions of the mathematical model, with different details concerning
friction and damping modelling, are tested. A good agreement between
real and simulated behaviour of the system is obtained. Moreover the
model is validated by testing its ability to predict critical values of the
bifurcation parameter.

Keywords: pendulum, mathematical modelling, dry friction modelling,
parameter estimation, bifurcation dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

A single pendulum and multi-degree systems of pendulums are still subjects of interest to
scientists from all over the world and from different areas of science. For mechanics and
physicians the pendulum is interesting because of its simultaneous simplicity and

European Journal of Physics

Eur. J. Phys. 36 (2015) 055028 (13pp) doi:10.1088/0143-0807/36/5/055028

0143-0807/15/055028+13$33.00 © 2015 IOP Publishing Ltd Printed in the UK 1

mailto:grzegorz.kudra@p.lodz.pl
http://dx.doi.org/10.1088/0143-0807/36/5/055028
http://crossmark.crossref.org/dialog/?doi=10.1088/0143-0807/36/5/055028&domain=pdf&date_stamp=2015-08-04
http://crossmark.crossref.org/dialog/?doi=10.1088/0143-0807/36/5/055028&domain=pdf&date_stamp=2015-08-04


capability of exhibiting many spectacular and fundamental phenomena of bifurcational
dynamics.

A large and comprehensive study concerning the pendulum, including a historical
review, is presented in [1]. While it easy to find works where single and double pendulums
are investigated experimentally [2], much more seldom are experiments performed on sys-
tems of more than two pendulums [3, 4]. The plane triple physical pendulum with periodic
external forcing acting on the first body was investigated numerically and experimentally in
[4], where different versions of models of resistance in the joints, including the viscous
damping and dry friction, were tested.

In [5, 6], the plane and periodically forced triple pendulum with rigid limiters of motion
was investigated numerically, including stability analysis of the trajectories undergoing dis-
continuities. In [7], a special case of triple pendulum with barriers, the piston–connecting rod–
crankshaft system was presented and investigated.

In [8] the authors investigated numerically a mathematical model of a two-degree-of-
freedom electro-mechanical system consisting of a pendulum with support point moving
horizontally and driven by the use of two-bar linkage and a dc motor considered as a limited
power source. Almost the same system, but investigated both numerically and experimentally,
is presented in [13]. In the second case however no chaotic oscillations were observed since
the energy dissipation in the system was too high.

For more information on the related problems of nonlinear dynamical systems, deter-
ministic chaos, and bifurcation dynamics, see [9–11], in which the corresponding concepts
are presented in a manner appropriate for undergraduate students. The concepts related to
modelling of real processes along with the corresponding method of identification and
parameter estimation are presented in an accessible way in [12].

The present paper is a modification of the work published in [13], where a more
advanced model of the same experimental rig was presented as the initial stage of a larger
project and preparation for analysis of the system with periodically varying input voltage of
the dc motor. In comparison to the previous work, the experimental rig is developed and
equipped with an additional system of measurement of the angular position of the output shaft
of the gear box, giving more information for the identification process. On the other hand, the
mathematical model is simplified and the angular velocity of the crank is assumed to switch
suddenly from zero to a certain constant value, which occurs sufficient for description of the
system with similar input voltage behaviour. Results of the paper concern the problems
presented and investigated during the laboratory classes within the courses ‘Modelling and
Identification of Dynamical System’ and ‘Experimental Method of Mechanics’ at Technical
University of Lodz.

The paper is organized as follows. In section 2 there is presented experimental rig, while
section 3 presents a mathematical model of the pendulum. In section 4 there are presented
results of experimental investigations, parameter estimation and numerical simulations of the
presented system. Section 5 presents final remarks and discussion.

2. Experimental rig

Figure 1 exhibits the experimental setup [13], whose mathematical model will be presented in
the text part of the paper. A voltage generator 14 supplies the dc motor 1 equipped with the
gear transmission 2. On the output shaft of the gearbox there is mounted a disk 3, which
rotational motion is transformed, using the link 4-5-6, to the linear motion of the slider 7-8
moving along the horizontal guide 12-13. On the slider there is suspended physical pendulum
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11, whose angular position is measured by the use of potentiometer 9 supplied by wire 10.
The angular position of disk 1 is measured by the use of an angular scale situated on its
circumference and incremental angle transducer equipped with the optocoupler sensor 3b. For
additional control of correct operation of the measurement system, the experimental rig is
equipped with optocoupler sensor 3a detecting the angular position of the disk θ =−π/2 (see
section 3).

3. Physical and mathematical modelling

Physical conception of the system is presented in figure 2 [13]. It is a plane system
consisting of four rigid bodies: disk (crank OA) of angular position described by the
angle θ(t) being a predetermined function of time, connecting rod AB1, horizontally
moving the slider and pendulum of angular position described by the angle φ(t). It is
assumed, according to the structure of the experimental rig, that the pendulum is con-
nected to the slider by the use of the rotational joint B2. Under the above-mentioned
assumptions the system possess one degree of freedom, since its position is defined
uniquely by the angle φ(t).

Figure 1. Experimental setup.

Figure 2. Mechanical system.
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The governing differential equations will be derived by the use of the Lagrange equations
of the second kind, which for the analyzed system take the following form

φ φ φ
∂
∂ ̇

− ∂
∂

+ ∂
∂

=
⎛
⎝⎜

⎞
⎠⎟t

T T V
Q

d

d
, (1)

where T and V are kinetic and potential energies, while φ and Q are the generalized coordinate
and the corresponding generalized force acting on the system.

The kinetic energy reads

φ= ̇ + ̇ + ̇( )T m x y I
1

2

1

2
, (2)C C

2 2 2

where m is mass of the pendulum and I is its moment of inertia with respect to the axis
perpendicular to the motion plane and including the pendulum’s mass centre C, whose
position is defined by the two coordinates xC and yC in the coordinate system Oxy shown in
figure 2. They can be expressed in the following way

φ
φ

= +
= −

x t s t r t

y t r t

( ) ( ) sin ( ),
( ) cos ( ), (3)

C

C

where s(t) = xB2(t) is horizontal position of the point B2 and r is length B2C defining position
of the point C.

Taking into account equation (3), the kinetic energy (2) takes the following form

φ φ φ= ̇ + ̇ ̇ + ̇T m s m r s B
1

2
cos

1

2
, (4)2 2

where the following notation is introduced

= +B I m r .2

The potential energy is related to the potential of the gravitational force acting on the
pendulum and horizontal position of the point C

φ= −V m g r cos , (5)

where g is the gravitational constant.
The generalized force Q represents the remaining and non-potential forces acting on the

system. It will be used to model resistance torque acting on the pendulum in the joint B2. Let
us assume the existence of both dry friction and linear damping in the joint B2. Then the
generalized force Q can be modelled in the following way

φ
π

εφ= − ̇ − ̇Q c M
2

arctan( ), (6)B B

where cB is damping coefficient and MB is magnitude of dry friction torque φ ̇M sign( ),B

where the sign function is approximated by the use of the arctan function and where ε is a
relatively large positive parameter.

Taking into account the relations (4)–(6), equation (1) takes the form

φ φ
π

εφ φ φ̈ + ̇ + ̇ + + ̈ =B c M S g S s
2

arctan( ) sin cos 0, (7)B B

where

=S m r.
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Horizontal position s of the slider can be described as follows

θ λ λ θ= + −−( )s t a t t( ) cos ( ) 1 sin ( ) , (8)1 2 2

where

λ = a

b
.

Then the second derivative of s, which appears in the governing equation (7), has the
following form

θ θ θ θ θ θ θ̈ = − + + ̇ − + ̈⎜ ⎟⎛
⎝

⎞
⎠s a G G a Gcos cos 2

1

4
sin 2 sin (1 cos ) ,

(9)

3 2 2

where

λ

λ θ
=

−
G

t1 sin ( )
. (10)

2 2

Using the relation (9) in equation (7), one obtains the following final form of the gov-
erning equation

φ φ
π

εφ φ φ̈ + ′ ̇ + ′ ̇ + ′ + ′ ̈ =c M S g S s
2

arctan( ) sin cos 0, (11)B B

where
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B
M
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B
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S

B
, , .B

B
B

B

4. Numerical versus experimental investigations

4.1. Parameter estimation

In this section ξ t( )e denotes experimental counterpart of the signal ξ t( ) occurring in the
mathematical model of the system. In the identification process we use five sets of experi-
mental signals φ  t  ( )e and θ t( )e corresponding to different values of almost constant input
voltage (stabilized by the voltage generator) of the dc motor, recorded on the time interval [0,
60] s. Values and derivatives with respect to time of the measured signals at the initial
instance t= 0 are known and the same for all five cases: φ φ ̇ =(0) 0 rad,  (0)   0  ,e e

rad

s

θ = −π(0)    rade 2
and θ ̇ =(0)   0  .e

rad

s
Figure 3 exhibits behaviour of the functions Δθ θ θ= −t t   t( ) ( ) ( ),e e eL where

θ ω= +t b t( )eL e0 is a linear approximation of the angle θ ∈t t s( )for [0,  60] ,e for each
experimental solution. One can conclude that because of the non-ideal behaviour of resis-
tances in the system (small random fluctuations of friction), the angular velocity of the disk
undergoes some random changes, which cannot be described by the use of deterministic
equations. These changes are not big, but after some time they can lead to a significant time
shift in the angular position of the disk. It may cause problems in fitting the simulated signals
to those obtained experimentally, if we express them in the time domain. This is the reason
why we compare the corresponding signals expressed as functions of angular position of
the disk.
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Figure 3. The behaviour of the functions Δθ θ θ= −t t   t( ) ( ) ( ),e e eL where θ t( )eL is a
linear function approximating the experimental angle θ ∈t t s( )for [0,  60] ,e for five
experimental solutions ( = −u     5.063,e −6.049, −6.518, −7.503 and −8.024 V, for (a)–
(e), respectively).

Table 1. Average input voltages and angular velocities of the dc motor.

Number i of the experimental solution 1 2 3 4 5

Average experimental voltage u  ei [V] −5.063 −6.049 −6.518 −7.503 −8.024

Average experimental angular velocity ω  ei [rad/s] −3.797 −4.591 −4.961 −5.796 −6.215
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Table 1 exhibits average input voltage ue and average angular velocity ω  e of the crank for
each experimental solution. This data can be approximated by the following piece-wise linear
relation

ω =
+ < −

∈ −
− + >

⎧
⎨⎪

⎩⎪
[ ] (12)

a a u u a a

u a a a a

a a u u a a

for

0 for ,

for

0 1 0 1

0 1 0 1

0 1 0 1

where a0 = 0.3618 rad/s and a1 = 0.8194 (rad/s)/V. Figure 4 presents the relation (12) along
with the corresponding experimental data.

Fitting the model (11) to the experimental data, the same initial state of the model and
real system are assumed. However in the case of the model we assume at the initial
instance a jump of angular velocity θ ̇ t( ) of the crank from zero to the constant value ω.
This jump can be interpreted as an impact and is related to the simultaneous jump of the
velocity φ ̇ of the pendulum. Replacing in equations (11) and (9) the second derivatives
with respect to the time by the quotients of small increments of the corresponding vari-
ables, one gets

Δφ
Δ

φ
π

εφ φ

θ θ θ θ θ θ Δθ
Δ

φ

̇ + ′ ̇ + ′ ̇ + ′ +

− ′ + + ̇ + +
̇

=⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟ (13)

t
c M S g

S a G G G
t

2
arctan( ) sin

cos cos 2
1

4
sin 2 sin (1 cos ) cos 0.

B B

3 2 2

Multiplying the above equation by tΔ and dropping off the infinitely small terms (under
assumption of infinitely short duration tΔ of the impact), one obtains the following relation
between the jumps of the velocities of the pendulum φ ̇Δ and the crank θ ̇Δ

Δφ θ φ θ Δθ̇ − ′ + ̇ =S a Gsin cos (1 cos ) 0. (14)

Limiting the considerations to the case of the model position equal to the initial position
of the experimental system (φ = 0 and θ = − π rad ),

2
equation (14) simplifies to the following

Figure 4. The relation between angular velocity ω of the crank and input voltage u of
the dc motor: mathematical model (11) (blue line) and experimental data (black dots).
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form

φ θ̇ = − ′ ̇aSΔ Δ . (15)

Then the initial velocity of the pendulum during the proper simulation (after the impact,
when θ ω̇ = =     const, θ ̈ =   0) reads

φ ω̇ = − ′aS(0) . (16)

During the parameter estimation, the following construction of the objective function is
used

∫
∑

∑μ μ
θ θ

φ θ φ θ θ=
−

−
θ

θ

=

=
( )

( )
F ( )

1
( , ) ( ) d , (17)O

i

N

i i
i

N

i ei

1

max min
1

2

i

i

min

max

where N denotes number of the compared pairs of solutions, φi and φei are angular positions
of the pendulum obtained by the use of ith numerical simulation and experiment, while μ is
vector of the estimated parameters. It is assumed that θ θ= e and each simulation is performed
until the angle θ reaches θ .min It is also assumed that ω ω=    .e Function (17) represents the
average squared deviation between signals obtained during numerical simulation and the
corresponding experimental data. Therefore it allows assessing the quality of the model and
its parameters.

Some of the system parameters, which are relatively easy to determine, are assumed as
known: =a  0.090 m, λ = = −g  0.2535, 9.81 m∙s .2 The other parameters, as elements of the
vector μ, are estimated by minimizing the objective function (17). For the global minimum
search the Nelder–Mead method [14], also known as the downhill simplex method, is used.
This is a commonly used optimization algorithm, implemented in Matlab and Scilab as the
function fminsearch. However, one should be careful of stopping the algorithm in a local
minimum, which is not the desired solution. In order to avoid such a mistake one should
perform the optimization using different starting points (initial guesses of the solution) of the
method.

Five different versions of the model are tested: A, where it is assumed that only viscous
damping in the joint B2 (based on the rolling bearings) is present μ = ′ ′ ′ =( [ ] )S c M, , 0 ;B B

B, assuming only dry friction in the joint B2 (μ = ′ ′[ ]S M, ,B ′ =c 0,B ε = 10 );3 C,
assuming both the viscous damping and dry friction in the joint B2

μ ε= ′ ′ ′ =( )[ ]S c M, , , 10 ;B B
3 D, being a modification of the model C, assuming addi-

tionally that the parameter ε is an element of the vector of the estimated parameters
(μ ε= ′ ′ ′[ ]S c M, , , );B B and E, built on the base of the model D, assuming no viscous
damping (μ ε= ′ ′[ ]S M, , ,B ′ =c 0B ).

Table 2. Model parameters obtained in the identification process.

Parameter/Model A B C D E

·F10 O
3 [rad2] 6.915 4.242 3.676 3.612 3.802

′ −S   [m ]1 3.692 3.632 3.647 3.643 3.634
′ −c   [s ]B

1 0.328 0 0.087 0.047 0
′ −M   [s ]B

2 0 1.719 1.267 1.608 1.834
ε 103 103 103 2.243 2.900
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Table 2 presents results of the parameter estimation for the tested models. Analyzing the
final values of the objective functions, one can conclude that assumption of only the viscous
damping (model A) or only dry friction (model B) in the joint B2 is not sufficient, while
assumption of both of them leads (model C) to much better results. According to the initial
assumptions, the parameter ε should be relatively large in order to approximate the sign
function. It occurs however that smaller values of this parameter may lead to better results
(model D). The improvement is rather slight but there is another advantage of model D, i.e.
avoiding the stiffness of the differential equations and better performance of the numerical
solvers. Removal of the viscous damping term from model D (model E) leads to slightly
worse results. Figure 5 exhibits a comparison of five numerical solutions φ θ  ( ) to the best
model (D) with the corresponding experimental data φ θ( )e at the end of the identification
process. The same solutions, but plotted on the interval θ− ∈ [200, 225] rad, are presented
in figure 6.

4.2. Further numerical and experimental investigations

Figure 7 presents a bifurcation diagram [9–11] of the mathematical model D, where the
constant angular velocity ω plays the role of control parameter. In the construction of
this bifurcational diagram the Poincaré map has been used, which is equivalent to the
section of the attractor by the plane θ = −π      rad,

2
with a condition that θ is falling.

Changing the control parameter with a small step from its minimal to maximal value, for
each value of the control parameter, after ignoring some transient motion, one such
Poincaré map is performed. Initial conditions for each solution are equal to the final state
of the previous one. Using this method one obtains branch B and a part of curve A. Then
the same process is repeated changing the control parameter from its maximal to
minimal value, allowing one to find all of branch A and a part of curve B. Branches A
and B correspond to two different stable periodic orbits A and B, undergoing two
saddle-node bifurcations SNA and SNB. In the saddle-node bifurcation, when the
control parameter is changed, two solutions, stable and unstable, meet each other and
disappear together. The dashed curve denoting the unstable periodic orbit has only a
qualitative character. Between the critical values of the control parameter corresponding
to the bifurcations SNA and SNB, there exists a region of the coexistence of two stable
periodic solutions A and B. Figure 7 also depicts the solutions used in the identification
process.

The critical parameters corresponding to the saddle-node bifurcations are then investi-
gated more carefully for all tested models, as well as experimentally. The results are presented
in table 3. During the experimental investigations the input voltage is changed continuously
with a speed of 0.03 V/min (then the corresponding angular velocity ω is computed using the
function (12)). Numerical analysis is done by changing the control parameter ω with a step of
0.0005 rad/s. Magnitude of the corresponding parameter is increased in order to detect the
SNA bifurcation, while it is increased in order to detect the SNB bifurcation. In all cases a
jump of the solution indicates the saddle-node bifurcation and limit of existence of the stable
attractor.

5. Concluding remarks and discussion

In the paper the simplified version of the model of the pendulum driven by a dc motor, being a
part of a larger project, was presented. In particular, the angular velocity of the crank was
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assumed as a predetermined function of time, reducing the number of degrees of freedom to
one. The aim of the paper was to present as simple as possible an approach in modelling,
analysis and prediction of bifurcation dynamics of a simple real system.

Different versions of the model of resistance in the pendulum joint based on the rolling
bearings were tested. One can conclude that taking into account only viscous damping or only
dry friction in the joint is not sufficient. Assumption of both of them leads to significantly
better results. Moreover a modification of the approximation of the sign function in the

Figure 5. Five numerical solutions φ θ  ( ) to the model D (black line), compared with the
experimental data φ θ( )e e (gray line), at the end of the identification process (ue

= −5.063, −6.049, −6.518, −7.503 and −8.024 V, for (a)–(e), respectively).
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description of the dry friction were performed, leading to another kind of nonlinear resistance,
giving slightly better results and avoiding stiffness of the governing differential equations.

The developed model yielded a good tool for analysis, explanation and prediction of
nonlinear dynamics of the presented real pendulum. In particular, the critical values of the
control parameter corresponding to the saddle-node bifurcations were predicted numerically
and then confirmed experimentally.

Figure 6. Five numerical solutions φ θ  ( ) to the model D (black line), compared on the
interval θ− ∈ [200,  225]rad with the experimental data (gray line), at the end of the
identification process ( = −u     5.063,e −6.049, −6.518, −7.503 and −8.024 V, for (a)–(e),
respectively).
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