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Abstract The dynamic response of a nonlinear sys-
tem with three degrees of freedom in resonance that
is loaded, inter alia, with a non-ideal excitation is
investigated. A direct current motor (DC motor) with
an eccentrically mounted rotor serves as a non-ideal
source of energy. The general coordinate correspond-
ing to the rotor dynamics steadily increases as a result of
rotational motion. The decomposition of the equations
of motion proposed in the paper allows us to separate
the vibration of rotor from its rotations. The presented
approach can be used to separate the vibration from
rotations in many other mechanical and mechatronic
systems. The behaviour of the considered non-ideal
system near two simultaneously occurring resonances
is examined using the Krylov–Bogolyubov averaging
method. The stability analysis of the resonant response
is also carried out.
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1 Introduction

In modelling the excitation of vibrating systems, one
can distinguish two approaches. The first one assumes
that the behaviour of the source of excitation is not
influenced by the system being forced. In this case,
the excitation may be expressed as a given function
of time. Such a source of excitation is called an ideal
one. The second approach, which recognizes that the
vibrating system also influences the work of the exci-
tation source, is more accurate. In most engineering
problems, the motion of vibrating systems affects less
or more the behaviour of the source of energy which
causes the vibration. A source, which is influenced by
the response of the vibrating system, is said to be a non-
ideal one. On the other hand, a vibrating system forced
by a non-ideal source is called a non-ideal system.
When the source of excitation is non-ideal, its dynamic
behaviour and the reciprocal interactions between the
vibrating system and the source should be taken into
account in the mathematical modelling of the prob-
lem. Namely, the source becomes part of the whole
studied system. In effect, at least one additional equa-
tion that describes the motion of the source is required,
and moreover, the supplementary feedback appears
in the equations of motion. All that causes dynam-
ics of the non-ideal vibrating system requires a more
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sophisticatedmathematical description, especiallywhen
nonlinearities are also taken into account.

Power supplied to a non-ideal system is generally
limited. For this reason, dynamical behaviour of such
a system may differ significantly from its ideal coun-
terpart. The limiting of supplied energy becomes espe-
cially distinct in resonant conditions. Most often an
unbalanced DC electric motor situated on an elastic
structure is assumed as a non-ideal excitation source.
In the neighbourhood of resonant frequency of the
supporting structure, majority of the supplied energy
is consumed by vibration of this structure. Therefore,
great increase in the vibration amplitude is observed,
but the angular velocity of the DC motor increases
only slightly, or in other words its increase requires
a lot of energy, much more than in non-resonant condi-
tions. Afterwards, upon exceeding certain thresholds,
the angular velocity of the rotor suddenly increases,
and the amplitude of vibrations of the supporting struc-
ture decreases rapidly. When the power supplied to the
system is reduced during the passage through the res-
onance, the jump phenomena are also observed, but
the threshold values are not the same as in the case
described previously. Such a behaviour, characteristic
only in the case of a non-ideal system, is known as the
Sommerfeld effect.

There is a large number of works devoted to vari-
ous aspects of the dynamics of non-ideal systems. A
broad overview of investigations in the field of non-
ideal vibration was described by Balthazar et al. in
[1]. The vast majority of the works involving non-
ideal systems concerns the Sommerfeld effect which
was discovered in 1902 [2]. In particular, the book [3],
entirely devoted to the Sommerfeld effect in linear and
nonlinear systems, should be mentioned here. Regular
and chaotic vibrations of a non-ideal system with two
degrees of freedom operating near internal resonances
1:1 and 1:2 were investigated in [4] and [5], respec-
tively. All springs and dampers were assumed there as
linear elements, and the system was coupled linearly.
So, only nonlinear members resulting from the inter-
action between the vibrating system and the energy
source were taken into account. In paper [6], dynam-
ics of a cantilever beam, modelled by the non-ideal
Duffing–Rayleigh oscillator, is investigated in a broad
aspect. The authors present and discuss non-stationary
and steady-state responses of the system in the reso-
nance region as well as its passage through resonance
based on the analytical and numerical approach. The

Sommerfeld effect in rotor dynamics and the influence
of external and internal damping on the Sommerfeld
effect are the subject of the works [7,8]. Papers [9] and
[10] deal with the resonant response of a modified vari-
ant of the van der Pol–Mathieu oscillator with nonlin-
ear spring and parametric excitation which is disturbed
by a non-ideal source. In [9] is also presented a chaotic
aspect of vibration of such an oscillator. Some results of
numerical simulations concerningmainly energy trans-
fer and chaotic behaviour of the non-ideal system with
one or two pendulums attached to the support are pre-
sented in [11] and [12], respectively. The motion of the
non-ideal system at the resonance is exposed to the loss
of stability; therefore, many investigations are focused
on the problem of passage of the system through the
resonance as well as control of this passage. An opti-
mal law of control of the DC motor ensuring that a
two-degree of freedom system passes through the first
resonant peakwith theminimum amplitude of themain
mass is proposed in [13]. Paper [14] presents a control
strategy which was applied to two nonlinear systems
with two degrees of freedom: ideal and non-ideal one
in order to suppress chaotic oscillations and to improve
the transient response of the systems. The results con-
cerning attenuation or elimination of the Sommerfeld
effect with the help of appropriately chosen magne-
torheological dampers were described in [15].

In all previously mentioned papers, the driving
torque of the source of energy (i.e. DC motor) was
assumed as a linear function of the angular velocity. In
paper [16], where some dynamical features of theDuff-
ing oscillator are investigated, the non-ideal source is
assumed as an alternative voltage source harmonically
variable in time.

In most papers, the analytical approach devoted to
non-ideal systems is based on the application of the
Bogolyubov–Krylov averaging method or its modified
versions [9,16]. However, recently in several papers
the multiple-scale method in time has been adopted to
investigate the resonance behaviour of 1-dof system
[17,18].

For certain parameters, the chaotic motion can
appear in the non-ideal system. Such problems have
been discussed in paper [19]. The Pyragas method is
applied there to control chaotic motion.

A new approach to study the non-ideal system,
including special decomposition of equations and
yielding the equation which describes vibration of the
rotor, has been presented in [20]. This approach is in
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Fig. 1 The investigated system

a certain sense similar to the commonly used method
consisting in the subtraction of the increase of the
angle caused by pure rotation from the results obtained
experimentally or numerically, which describe both the
vibration and the effect of the rotation.

The decomposition into the rotations and the oscil-
lations proposed in [20] and developed in the present
paper refers to the model equations. The procedure,
carried out in such a way, leads to the model equations
containing the unknown functions, which describe only
the vibration of the whole system. Such a form of equa-
tions allows us to apply the Krylov–Bogolyubov aver-
aging method in order to investigate the behaviour of
the non-ideal system in the resonance case. This is the
main novelty of the approach presented in the paper.

However, the proposed method applies to a particu-
lar system. The form of the separated equation depends
on the characteristics of the excitation source. The
decomposition presented in this paper does not have
any common links with the approach consisting in the
decomposition of the motion into the slow and fast
components, which is widely discussed in works of
Blekhman [21]. It is worth to emphasize that the equa-
tions describing only vibration of the system have been
obtained by introducing the exact solution into the orig-
inal equations, unlike the general approach presented
in [21], where the equations have been derived with the
help of the averaging procedures.

The system investigated in the paper is shown in
Fig. 1. The electric DC motor with the eccentrically
mounted rotor is assumed to be a non-ideal source of
vibrations. In this case, the additional degree of free-

dom appears and it is related to the motion of the rotor.
Since the generalized coordinate describing the rotor
motion grows infinitely in time, the whole process can-
not be considered as vibrational. In order to avoid this
difficulty, we applied the decomposition of the equa-
tion of motion related to the rotor and separation of
rotations and vibration. As a result of the decomposi-
tion, a new set of equations of motion is derived, where
all generalized coordinates describe only the vibration.

2 Formulation of the problem

Let us consider planar motion of the system composed
of the support of mass m1 which can move vertically,
the mathematical pendulum of mass m2 and length L ,
and the DC motor as the non-ideal source of energy.
The studied system is presented in Fig. 1. It is assumed
that the stator of the motor whose mass is equal to m3

does not move with respect to the support. The rotor of
massm0 is eccentrically installed on the axis of rotation
passing through point S. The mass centre of the rotor
lies at the crossing point of the axes of symmetry shown
in Fig. 1 as two perpendicular dashed lines. Eccentric-
ity of the rotor is denoted by re. I0 is the moment of
inertia of the rotor about its central axis. The pendu-
lum is attached to the support by a joint. The support,
in turn, is connected to the basis via a viscous damped
elastic suspension. Both the spring and the damper are
assumed as nonlinear. The elasticity of cubic type has
been taken into account, where k1 and k2 are the lin-
ear and nonlinear elastic coefficients, respectively. The
Rayleigh damping model is admitted, whereas damp-
ing coefficients are denoted byC11 andC12. The length
of the non-stretched spring equals L0. The coefficient
denoted by C2 is associated with viscous damping at
the joint connecting the pendulum with the support.
The known force F acting vertically on the support
and the torque M loading the pendulum change har-
monically in the following way: F = F0 cos(�1t) and
M = M0 cos(�2t). In accordance with the commonly
used characteristics of DCmotors, the produced torque
Mp depends linearly on angular velocity. Therefore,
Mp = U1 − U2�̇(t), where U1 and U2 are the con-
stants depending on the electromagnetic field and some
geometric features of the DC motor. Angular velocity
�̇(t) oscillates as a result of the rotor unbalancing as
well as interaction with the support. Variation of the
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angular velocity causes that torque Mp is not constant
even during stationary operation.

The system has three degrees of freedom owing to
the reciprocal interactions between the support and the
source of excitation. Total spring elongation Z(t) and
angles �(t) and �(t) are chosen as generalized coor-
dinates of the system. Kinetic energy relative to the
motionless frame and written in the Cartesian coordi-
nate system OXY reads

T = 1

2
m1

(
Ẋ2
1 + Ẏ 2

1

)
+ 1

2
m2

(
Ẋ2
2 + Ẏ 2

2

)

+1

2
m3

(
Ẋ2
3 + Ẏ 2

3

)
+ 1

2
m0

(
Ẋ2
0 + Ẏ 2

0

)

+1

2
I0�̇

2, (1)

where X1 = 0, Y1 (t) = L0 + Z (t) + h/2 are
the coordinates of the movable support, X3 = 0,
Y3 = Y1 + H are the coordinates of the stator mass
centre, X2 = L sin (� (t)), Y2 = Y1 − L cos (� (t))
are the coordinates of the suspended pendulum, and
X0 = re sin (� (t)), Y0 = Y1 + H − re cos (� (t)) are
the coordinates of the mass centre of the eccentrically
mounted rotor, whereas g is the gravity of Earth.

All conservative forces which act in the system are
yielded by the potential energy

V = m0gY0 + m2gY1 + m1gY2 + m3gY3

+1

2
k1Z

2 + 1

4
k2Z

4. (2)

The position of stable equilibrium of the system is
determined by values Ze,�e,�e of the generalized
coordinates which satisfy the following relations

k1Ze + k2Z
3
e = −mcg, �e = 0, �e = 0, (3)

where mc = m0 + m1 + m2 + m3 is the total mass of
the system.

The non-conservative forces acting on the system
are introduced as generalized forces. The equations
of motion around the equilibrium position have been
obtained using Lagrange equations of the second kind
and they are as follows

mc Z̈1 + k1Z1 + 3k2Z
2
e Z1 + 3k2ZeZ

2
1 + k2Z

3
1

+C11 Ż1 + C12 Ż
3
1 + m0re�̇

2 cos�

+ Lm1�̇
2 cos� + m0re�̈ sin� − Lm1�̈ sin�

− F0 cos (�1t) = 0, (4)

L2m2�̈ + L g m2 sin� + C2�̇ + Lm2 Z̈1 sin�

− M0 cos (�2t) = 0, (5)

(
I0 + m0r

2
e

)
�̈ + g m0re sin� −U1 +U2�̇

+m0re Z̈1 sin� = 0, (6)

where Z1 = Z − Ze is the dynamic elongation of
the spring (measured from the equilibrium position).
Characteristic frequencies associated with coordinates
Z(t), �(t) and �(t) are: ω1 = √

k1/mc, ω2 = √
g/L ,

ω3 = √
gm0re/I0.

Let us introduce dimensionless time τ = tω1

and dimensionless coordinate z̃ = Z1/δ, where δ =
mcg/k1 = g/ω2

1 is the static elongation of the linear
spring of elastic constant equal to k1.Moreover, the fol-
lowing dimensionless parameters are defined: eccen-
tricity βe = re/L , mass fractions μ2 = m2/mc and
μ0 = m0/mc; frequenciesw2 = ω2/ω1,w3 = ω3/ω1,
p1 = �1/ω1, p2 = �2/ω1; amplitudes of the exter-
nal excitations f1 = F0/Lmcω

2
1, f2 = M0/L2m2ω

2
1;

parameters of the DC motor characteristics u1 =
U1/I0ω2

1, u2 = U2/I0ω1; damping coefficients c11 =
C11/mcω1, c12 = C12δ

2ω1/mc, c2 = C2/L2m2ω1;
nonlinear stiffness coefficientγ = k1

k2
δ; nonlinear value

ze = Ze/δ corresponding to the extension of the spring
at equilibrium position.

The following equation has to be fulfilled in the equi-
librium position ze + γ z3e = −1. The above equation
is the dimensionless counterpart of relations (3) and
allows us to express nonlinear part of stiffness γ of the
spring by static elongation γ = − (1 + ze) z−3

e .
In this way, nonlinear properties of the spring may

be expressed by static elongation ze. After introducing
all of the above dimensionless quantities, the equations
of motion take the following form

¨̃z + z̃ − 3 (1 + ze)

ze
z̃ − 3 (1 + ze)

z2e
z̃2 − (1 + ze)

z3e
z̃3

+ c11 ˙̃z + c12 ˙̃z3 + βeμ0
˙̃
λ
2
cos λ̃ + μ2

w2
2

˙̃ϕ2
cos ϕ̃

+βeμ0
¨̃
λ sin λ̃ + μ2

w2
2

¨̃ϕ sin ϕ̃ − f1 cos (p1τ) = 0,

(7)

¨̃ϕ + w2
2 sin ϕ̃

(
1 + ¨̃z

)
+ c2 ˙̃ϕ − f2 cos (p2τ) = 0, (8)

(
1 + w2

3βe

) ¨̃
λ + w2

3 sin λ̃
(
1 + ¨̃z

)
− u1 + u2

˙̃
λ = 0.

(9)

Now, functions denoted by z̃, ϕ̃, λ̃ (corresponding
to generalized coordinates Z , �, �) depend on time
τ . Equations (7)–(9) are supplemented by the initial
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Fig. 2 Time history of λ̃
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following conditions

z̃ (0) = z0, ˙̃z (0) = v0, ϕ̃ (0) = ϕ0, ˙̃ϕ (0) = ω0ϕ,

λ̃ (0) = λ0,
˙̃
λ (0) = ω0λ,

where z0, v0, ϕ0, ω0ϕ, λ0, ω0λ are known.

3 Decomposition of the governing equations

Coordinate λ̃ (τ ) is equal to the angle measured from
the initial position. After each rotation of the rotor, the
angle increases by 2π . This increase is dominant in
time history of λ̃ (τ ) which is shown in Fig. 2. This
graph and several subsequent graphs are made for the
chosen data included in the set

SET1 = { f1 = 0.0085, f2 = 0.003, p1 = 0.2,

p2 = 0.4, c11 = 0.0008, c12 = 0.000008,

c2 = 0.0001, βe = 0.05, μ1 = 1/6,

μ0 = 1/15, u1 = 3., u2 = 1, w2 = 0.045,

w3 = 0.016, ze = −0.99, z0 = 0, v0 = 0,

ϕ0 = 0.1, ω0ϕ = 0, λ0 = 0, ω0λ = 0}.
However, in the time history of λ̃ (τ ), there are also

oscillations caused by the rotor unbalance and influ-
ence of the vibration of the support. Oscillations of the
rotor play a significant role in dynamics of the whole
system. In order to study the interactions between par-
ticular parts of the system, for instance near resonance,
these oscillations should be separated from the rota-
tional motion.

Thus, it is desirable to split function λ̃ (τ ) into a
component describing the unlimited increase and the
second one relative to pure oscillations. We propose
decompositionof this function in the followingmanner:

λ̃ (τ ) = α0 (τ ) + α1 (τ ) , (10)

where functionα0 (τ ) satisfies the initial value problem
of the linear differential equation and inhomogeneous
initial conditions(
1 + w2

3βe

)
α̈0 − u1 + u2α̇0 = 0,

α0 (0) = λ0, α̇0 (0) = ω0λ. (11)

The Cauchy problem (11) describes dynamics of the
rotation of the rotor under the action of linearly chang-
ing torque and can be solved analytically.

Substituting the assumption given by (10) and dif-
ferential equation (11)1 into Eqs. (7)–(9), we obtain a
new form of the governing equations with unknown
functions denoted by z, φ and α1

z̈ + z − 3 (1 + ze)

ze
z − 3 (1 + ze)

z2e
z2 − (1 + ze)

z3e
z3

+ c11 ż + c12 ż
3 + βeμ0 (α̇0 + α̇1)

2 cos (α0 + α1)

+ μ1

w2
2

ϕ̇2 cosϕ + βeμ0 (α̈0 + α̈1) sin (α0 + α1)

+ μ2

w2
2

ϕ̈ sin ϕ − f1 cos (p1τ) = 0 (12)

ϕ̈ + w2
2 sin ϕ + c2ϕ̇ + w2

2 z̈ sin ϕ − f2 cos (p2τ) = 0,

(13)(
1 + w2

3βe

)
α̈1 + w2

3 sin (α0 + α1) + u2α̇1

+w2
3 z̈ sin (α0 + α1) = 0. (14)

The initial conditions supplementary to set (12)–
(14) are as follows

z (0) = z0, ż (0) = v0, ϕ (0) = ϕ0, ϕ̇ (0) = ω0ϕ,

α1 (0) = 0, α̇1 (0) = 0.

Taking into account the proposition (10), the orig-
inal initial value problem (7)–(9) is transformed into
two problems, i.e. the problem of pure rotation of the
rotor given by (11), and the problemof pure oscillations
of the whole system described by (12)–(14) with their
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Fig. 3 Time history of z for data from SET1

initial conditions. In the first case, the term “pure” is
used to emphasize that rotation α0 (τ ) does not depend
on the rotor unbalancing or interactions between parts
of the system. In the second case, it is used to note that
the oscillations have been completely separated from
the rotations. Let us note that in Eqs. (12)–(14), func-
tion α0 (τ ) is a solution of problem (11) and it has the
following form

α0 = −u1
u22

+ ω0λ

u2

+
(u1 − u2ω0λ)

(
1 + w2

3βe
)
exp

(
− u2τ

1+w2
3βe

)

u22

− (u1 − u2ω0λ) w3βe

u22
+ λ0 + u1τ

u2
. (15)

It should be noticed that function α1 (τ ) describes
oscillations of the rotor around its rotation expressed by
functionα0 (τ ). InEqs. (12) and (14), some trigonomet-
ric functions appear with argument in the form of sum
α0 (τ ) + α1 (τ ). Afterwards, we expand them using
the classical trigonometric identities. Consequently, the
coefficients in differential equations (12) and (14) are
the functions of time τ .

Equations (12)–(14), yielded by the proposed deco-
mposition of the original problem, describe pure oscil-
lations of the system. Time histories of z, ϕ and
α1 obtained as solutions of the initial problem given
by (12)–(14) and supplementary initial conditions are
presented in Figs. 3, 4 and 5.

Coincidence of the solutions of original initial prob-
lem (7)–(9) and problem (12)–(14) together with the
solution (15) is confirmed based on the results pre-
sented in Fig. 6 which validates our decomposition
proposal. The following differences are presented on
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Fig. 4 Time history of ϕ for data from SET1
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0.00010
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Fig. 5 Time history of α1 for data from SET1

the vertical axes: �z = z̃ − z,�ϕ = ϕ̃ − ϕ,�α =
λ̃ − (α0 + α1).

Very high conformity of solutions of both initial
problems has been achieved numerically for many var-
ious parameters despite the fact that assumption (10)
does not lead to the general solution of problem (7)–(9).

Function α1 (τ ) describes, in principle, oscillations
of the non-ideal source (beyond the transitional period).
Time histories of derivative α̇0(τ ) and the sum of deriv-
atives α̇0(τ ) + α̇1(τ ) are shown in Fig. 7. It is clearly
visible in this figure that time derivative of α1 (τ ) oscil-
lates around angular velocity of the stationary rota-
tional motion.

Function α0 (τ ) given by expression (15) is pre-
sented graphically in Fig. 8 for data included in SET1.
Let us observe that when time τ tends to infinity, func-
tion α0 (τ ) approaches its asymptote

lim
τ→∞(α0 (τ )) = −u1

u22
+ ω0λ

u2
+ (u2ω0λ − u1) w2

3βe

u22

+ λ0 + u1τ

u2
= α̂0(τ ). (16)

Therefore, exponential transient component

exp

(
− u2τ

1+w2
3βe

)
, which disappears in time, can be

omitted, apart from the initial stage of motion. Owing
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Fig. 6 Identity of solutions: z̃ versus z, ϕ̃ versus ϕ and λ̃ versus (α0 + α1) for data from SET1

Fig. 7 Time histories of α̇0 and (α̇0 + α̇1) for data from SET1
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Fig. 8 Asymptotic convergence ofα0 and α̂0 for data fromSET1

to this observation, we can approximate solution (15)
in the following manner

α0 (τ ) ≈ α̂0 (τ ). (17)

In order to validate approximation (17), we compare
the solutions of equations (12)–(14) obtained using
function α0 (τ ) given by (15) (i.e. the exact solution
of (11)) with the solutions of the same set of equations
into which approximate function α̂0 (τ ) is introduced.
Results of the comparison are shown in Fig. 9. Coor-
dinates on the vertical axes are marked by z, ϕ, α1 or
ẑ, ϕ̂, α̂1 when the exact or approximate solution of (11)
is used, respectively.

We can observe that omitting of the transient compo-
nent causes a rather negligible change in time histories

of coordinates z (τ ) and ϕ (τ). The difference between
solutions α1(τ ) and α̂1(τ ) consists only in shifting one
to another which is caused by the impact of the tran-
sient effects. We can observe in Fig. 10, where these
solutions are drawn in much shorter time interval, that
their amplitudes, periods and phases are the same.

Therefore, in the steady state we can introduce
assumption (17) into Eqs. (12)–(14). In this way, we
have the following set of the approximate equations of
motion

¨̂z + ẑ − 3 (1 + ze)

ze
ẑ − 3 (1 + ze)

z2e
ẑ2

−3 (1 + ze)

z3e
ẑ3 + c11 ˙̂z + c12 ˙̂z3 + βeμ0

( ˙̂α0 + ˙̂α1

)2

× (
cos α̂0 cos α̂1 − sin α̂0 sin α̂1

) + μ1

w2
2

˙̂ϕ2
cos ϕ̂

×βeμ0

( ¨̂α0 + ¨̂α1

) (
sin α̂0 cos α̂1 + cos α̂0 sin α̂1

)

+μ2

w2
2

¨̂ϕ sin ϕ̂ − f1 cos (p1τ) = 0 (18)

¨̂ϕ + w2
2 sin ϕ̂ + c2 ˙̂ϕ + ¨̂z sin ϕ̂ − f2 cos (p2τ) = 0,

(19)(
1 + w2

3βe

) ¨̂α1 + w2
3

(
1 + ¨̂z

)

× (
sin α̂0 cos α̂1 + cos α̂0 sin α̂1

) + u2 ˙̂α1 = 0. (20)

Due to approximation (17), the time-dependent
coefficients in equations (18) and (20) are periodic with
the period equal to 2πu2/u1. Therefore, the steady-
state behaviour of the system is described by the equa-
tions of the Hill type.

4 Vibration near resonance

Two simultaneously occurring resonances are consid-
ered, i.e. the main external resonance p1 = 1 and the
parametric one u1/u2 = 2, related to the interactions
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Fig. 9 Comparison of solutions of the problem (12)–(14) obtained for α0 and α̂0; data from SET1

Fig. 10 Comparison of
time histories α1 (τ ) and
α̂1 (τ ); data from SET1
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between the support and the unbalanced rotor. In paper
[19], the second one was detected as dominant by the
Fourier analysis for a similar non-ideal system. In order
to investigate the resonant state, we apply the averaging
method similar to the one presented in [9,10].

Firstly, we approximate the geometric nonlineari-
ties by polynomial ones, expanding trigonometric func-
tions in Eqs. (18)–(20) in the Taylor series

sin
(
ϕ̂
) ≈ ϕ̂ − ϕ̂3

6
, cos

(
ϕ̂
) ≈ 1 − ϕ̂2

2
, sin

(
α̂1

)

≈ α̂1 − α̂3
1

6
, cos

(
α̂1

) ≈ 1 − α̂2
1

2
. (21)

Next, in order to simplify the notation, we introduce
the new variable τ1 related to dimensionless time τ as
follows:

−u1
u22

+ ω0λ

u2
+ (u2ω0λ − u1) w2

3βe

u22

+ λ0 + u1τ

u2
= u1τ1

u2
. (22)

Taking advantage of approximations (21) and intro-
ducing shifted time τ1 into Eqs. (18)–(20), we obtain
the following new form of the equations of motion

− f1 cos (p1ξ) cos (p1τ1) + f1 sin (p1ξ) sin (p1τ1)

+ ¨̂z + ẑ − 1 + ze

z3e

(
3z2e ẑ + 3ze ẑ

2 + ẑ3
)

+ c11 ˙̂z

+ c12 ˙̂z3 + μ1
˙̂ϕ2

w2
2

− μ1ϕ̂
2 ˙̂ϕ2

2w2
2

+ βeμ0 sin (uτ1)
¨̂α1

+ μ1ϕ̂
¨̂ϕ

w2
2

(
1 − ϕ̂2

6

)(
1 − α̂2

1
2

)
(βeμ0 cos (uτ1)

×
(
u2 + 2u ˙̂α1 + ˙̂α2

1

)
+ βeμ0 sin (uτ1)

¨̂α1

)

×
(

α̂3
1
6

− α̂1

) (
βeμ0 sin (uτ1)

(
u2 + 2u ˙̂α1 + ˙̂α2

1

)

−βeμ0 cos (uτ1)
¨̂α1

)
= 0 (23)

− f2 (cos (p2ξ) cos (p2τ1) − sin (p2ξ) sin (p2τ1))

+ ¨̂ϕ + w2
2 ϕ̂ − w2

2
6

ϕ̂3
(
1 + ¨̂z

)
+ c2 ˙̂ϕ + w2

2 ϕ̂
¨̂z = 0

(24)

¨̂α1

(
1 + w2

3βe

)
+

(
1 − α̂2

1
6

)
w2
3 α̂1 cos (uτ1) (1 + z̈)

+ u2 ˙̂α1 +
(
1 − α̂2

1
2

)
w2
3 sin (uτ1)

(
1 + ¨̂z

)
= 0,

(25)

where ξ = 1+w2
3βe

u2
− u2λ0+λ1+w2

3βeλ1
u1

.
The most important mechanical effect in the consid-

ered problem is the vibration of the support, described
by coordinate ẑ (τ1). Therefore, our further analysis is
focused on the resonant behaviour of the support. Func-
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tion ẑ (τ1) is anticipated in the form (see also [9,10])

z (τ1) = B1 (τ1) cos (υτ1) + B2 (τ1) sin (υτ1) , (26)

where υ is the multiplicative measure of the “distance”
of the frequency from the resonant frequency. The sys-
tem is in resonance when υ → 1. B1 (τ ) and B2 (τ )

in (26) are the unknown functions describing the mod-
ulation of amplitude B and phase � of the support
according to

B (τ1) =
√
B2
1 (τ1) + B2

2 (τ1), � (τ1)

= arctan

(
B1 (τ1)

B2 (τ1)

)
. (27)

After introducing (26) into set (23)–(25) and elimi-
nating the secular terms, the modulation equations can
be derived in the form

− f1 cos (p1ξ) + B1 − 3
1 + ze
z3e

B1

×
(
z2e + 1

4
B2
2 + 1

4
B2
1

)
− υ2B1 + c11υB2

+3

4
c12υ

3B2

(
B2
1 + B2

2

)
+ c11 Ḃ1 + 3

2
c12υ

2

×
(
1

2
B2
1 Ḃ1 + 3

2
B2
2 Ḃ1 − B1B2 Ḃ2

)
+ 3

4
c12 Ḃ

3
1

+ 2υ Ḃ2 = 0, (28)

f1 sin (p1ξ) − c11υB1 − 3

4
c12υ

3B1

(
B2
1 + B2

2

)

+B2 − 3
1 + ze
z3e

B2

(
z2e + 1

4
B2
2 + 1

4
B2
1

)
− υ2B2

−2υ Ḃ1 + c11 Ḃ2 + 3

2
c12υ

2
(
−B1B2 Ḃ1

+3

2
B2
1 Ḃ2 + 1

2
B2
2 Ḃ2

)
+ 3

4
c12 Ḃ

3
2 = 0.

(29)

In order to simplify the notation, argument τ1 of
functions B1 (τ ) and B2 (τ ) is omitted.

In the steady state, all derivatives in (24)–(25) should
be equal to zero. The implicit, algebraic form of the
amplitude–frequency resonant response is as follows:

− f1 cos (p1ξ) + B1 − 3
1 + ze
z3e

B1

×
(
z2e + 1

4
B2
2 + 1

4
B2
1

)
− υ2B1 + c11υB2

+3

4
c12υ

3B2

(
B2
1 + B2

2

)
= 0, (30)

f1 sin (p1ξ) − c11υB1 + B2 − 3
1 + ze
z3e

B2

×
(
z2e + 1

4
B2
2 + 1

4
B2
1

)
− υ2B2

−3

4
c12υ

3B1

(
B2
1 + B2

2

)
= 0. (31)

Stability analysis

Let us express the functions in (30) and (31) in the
following manner

B1(τ1) = B10 (τ1) + B11 (τ1), B2 (τ1) = B20 (τ1)

+ B21 (τ1), (32)

where B10 (τ1) and B20 (τ1) are the fixed points of
Eqs. (28)–(29), i.e. they fulfil Eqs. (30)–(31), whereas
B11(τ1) and B21 (τ1) are the perturbations considered to
be small with respect to B10 (τ1) and B20 (τ1), respec-
tively.

After introducing (32) intoEqs. (30)–(31) and taking
into account the fact that B10 (τ1) and B20 (τ1) fulfil
Eqs. (30)–(31), the perturbed equations are obtained.
Their linear counterpart forms are as follows:

Ḃ11

(
c1 + 3

4
c12υ

2
(
B2
10 + 3B2

20

))

+ B11

(
1 − 3

1 + ze
z3e

(
3

4
B2
10 + 1

4
B2
20 + z2e

)

−υ2 + 3

2
B10B20c12υ

3
)

+ Ḃ21

(
2υ

− 3

2
B10B20c12υ

2
)

+ B21

(
−3 (1 + ze)

2z3e
B10B20

+ c11υ + 3

4
c12υ

3
(
B2
10 + 3B2

20

))
= 0, (33)

Ḃ21

(
c1 + 3

4
c12υ

2
(
B2
20 + 3B2

10

))

+ B21

(
1 − 3

1 + ze
z3e

(
3

4
B2
20 + 1

4
B2
10 + z2e

)

−υ2 − 3

2
B10B20c12υ

3
)

+ Ḃ11

(
− 2υ

− 3

2
B10B20c12υ

2
)

− B11

(
3 (1 + ze)

2z3e
B10B20

+ c1υ + 3

4
c12υ

3
(
B2
20 + 3B2

10

))
= 0. (34)

Solutions B10(τ1) and B20(τ1) are stable when all
roots of the characteristic equation of the system (33)–
(34) have negative real parts.

The amplitude–frequency relations (30)–(31) allow
us to draw resonant response curves. Figure 11 shows
four graphs constructed for several different values of
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Fig. 11 Resonant curves
for various nonlinear
damping coefficients c12;
black—stable,
gray—unstable

(a) (b)

(c) (d)

nonlinear damping coefficient c12.All other parameters
are the same for each of the included graphs, and their
values are collected in SET2, where

SET2 = { f1 = 0.1, c11 = 0.05, c12 = 0.008,

βe = 0.2, u1 = 4.4, u2 = 2.2, w3 = 0.16,

ze = −0.98, λ0 = 0, λ1 = 0}.
The dimensionless amplitude B on the vertical axes

is related to the value of the linear springwith the elastic
constant equal k1, being loaded by total weight of the
system in the equilibrium position.

One can notice that the influence of nonlinearity of
damping on the shape of the resonance curves is sig-
nificant. These few chosen graphs of the amplitude–
frequency relation presented in Fig. 11 are representa-
tive for the behaviour of the system in the considered
resonant conditions. In the cases presented in Fig. 11a
and b, the shape of curves is typical of hard springs.
However, the analysis of stability reveals dynamic fea-
tures appropriate only for non-ideal vibrating systems.
Upper branch of the resonance curve, which is usually
stable in the case of ideal systems, becomes unstable in
a certain interval of the frequency. Width of this inter-
val grows with the values of coefficient c12. As a result,
there is an interval of υ in which the occurrence of
steady-state motion is impossible (see Fig. 11a). This
conclusion was confirmed and validated by the direct
numerical solution of the governing equations.Namely,
when the values of parameter υ are located in the inter-

val corresponding to the loss of stability, all our trials
of getting the numerical solutions to the equations of
motion were finished due to occurred numerical insta-
bility. The shape of resonance response curves pre-
sented in Fig. 11c and d differs from the one known
from dynamics exhibited by ideal systems. When the
values of parameter υ decrease, branches of the curves
approach each other (see Fig. 11c) and then the separate
branch of the curve appears as it is shown in Fig. 11d. It
isworth noting that on the separate branch, there is a sta-
ble part. Concluding this issue, one can say that depend-
ing on the value of parameter c12, there are two, one or
none stable amplitudes for the fixed value of frequency.

5 Conclusions

The nonlinear mechanical system of three degrees of
freedom with the non-ideal source of energy has been
examined. The unbalanced rotor of DC motor and
the external harmonically changing force and torque
served as the vibration sources.

The new idea proposed in the present paper consists
in the analysis of resonant behaviour of the non-ideal
and nonlinear vibrating system based on the decom-
position concept. The decomposition of the equations
of motion has been proposed in order to separate the
infinitely growing coordinate, governing position of
the rotor. It should be emphasized that the proposed
decomposition procedure is an identity in the mathe-
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matical sense. It allows us to examine efficiently the
rotor oscillations separately, disregarding its rotations,
which essentially simplifies the analysis.

In addition, a detailed study of the case when para-
metric and primary resonances appear simultaneously
has also been performed. The possible amplitudes of
the steady-state vibration have been derived analyti-
cally and presented graphically. The stability procedure
shows that there are some ranges of frequency near res-
onance where the steady-state motion is impossible.
This phenomenon can be connected with the Sommer-
feld effect occurring in the non-ideal systems. For some
values of parameters, a stable separate loop appears as
part of the resonance response curve.

The procedures written in a Mathematica computer
algebra system have been used due to high complexity
of the symbolic computations.
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