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A relaxation method is applied to estimate and predict a critical set of parameters responsible for
stability loss (buckling) of spherical circle axially symmetric shells. The buckling phenomenon under
static loading was investigated by solving the Cauchy problem for a set of ordinary differential equations
and the Hausdorff metrics was applied while quantifying the data obtained within the novel approach.
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1. Introduction

One of the key issues in the field of materials strength and
structural mechanics is that devoted to the study of stability as
well as buckling and postbuckling behavior of structural members
such as beams, plates, shells and thin-walled structures. These
members of structures and the structures themselves are usually
subjected either to static or dynamic, or both types of loading, and
hence various computational techniques, including numerical,
analytical and combined numerical–analytical approaches are
used to analyze various types of stability loss including local,
global (flexural, torsional, lateral, distorsional and their combina-
tions) and interactive forms of buckling.

It is well known that the mentioned either isolated or coupled
structural members have found wide applications in numerous
constructions in aerospace, civil engineering, ship building, auto-
mobiles, aircraft wings and fuselages, and others. There are
numerous papers/monographs devoted to stability loss (and
buckling) investigation of structural members treated as isolated
or interacting objects, where the structural members are linked
with each other by different/mixed boundary conditions. It is well
recognized that stability loss is understood as the transition of a
mechanical system from one to another equilibrium configuration

either in a smooth way (bifurcation point) or by a sudden jump
from a stable to unstable equilibrium path (limit point).

In general, there are either static or dynamic loads. The latter
ones are measured via “pulse intensity” and “pulse velocity”.
Depending on their length in time, different dynamic loading
phenomena can be distinguished. Namely, when pulse duration is
short (long) and the amplitude is relatively high (average) then an
impact (quasi-static) behavior is observed. In the case when the
pulse duration is close to the period of natural vibrations, a
dynamic buckling takes place.

It should be emphasized that a finite duration load may have
different shapes (parabolic, triangular, rectangular, exponential or even
irregular), since it attempts to model real dynamic load met in nature
and engineering applications. Studies on the stability and buckling
behavior of mainly thin-walled structures date back to over a hundred
years, and were motivated by Bernoulli/Euler [1], Timoshenko [2] and
Volmir [3,4]. Here, our studies are limited to only a few proposals
regarding stability phenomena, but the reader may find more infor-
mation for instance in the recent monograph of Kubiak [5].

Growing interest in stability loss/buckling/postbuckling beha-
vior of thin-walled structures measured by the publication of a
number of papers/books began in the 1970s (see for instance
[6–12]). In particular, a lot of research was aimed at non-linear
problems of stability of orthotropic and anisotropic thin-walled
structures. The studies covered orthotropic plate buckling [13],
critical stresses of anisotropic laminated plates [14], buckling of
composite and anisotropic plates [15–17], stability of columns
and square laminate plates [18] and postbuckling behavior of
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orthotropic laminated plates [19]. Numerous papers have been
devoted to the solution of stability problem using numerical and
analytical–numerical methods often applying commercial pro-
grams based on the finite elements method (FEM). However,
despite the mentioned research aiming at the explanation of the
static/dynamic stability loss of thin-walled structures and struc-
tural members, there is no a general stability definition/criterion
formulated which can be validated experimentally and can satisfy
engineering requirements regarding the load carrying capacity as
well as stability of the mentioned mechanical objects. Below, a few
of stability loss criteria regarding continuous mechanical objects
which found considerable resonance among researchers are
briefly illustrated and discussed.

Volmir [4] proposed a time-consuming though simple app-
roach to determine the critical load while investigating dyn-
amics of a simply supported rectangular plate subjected to pulses
of infinite/finite durations and of rectangular/exponential shapes.
He pointed out that the plate subjected to pulse load lost its
stability, when the maximum deflection of the plate was equal to
the assumed constant value (usually, it was either the plate
thickness or the half-plate thickness). Budiansky and Hutchinson
[20,21] and Budiansky and Roth [22] proposed displacement
criteria regarding cylindrical shells axially loaded rods and cylind-
rical shells loaded transversally, respectively. There are two
equivalent formulations of their criteria: 1) structures subjected
to pulse loading lose their stability when an unlimited increase of
their deflection for small load increments is observed; 2) a plate
exhibits dynamic stability loss when its maximum deflection
grows rapidly under a small load amplitude variation.

Both theoretical and experimental investigations of thin plates
clamped on all contours and subjected to pulse load with a half-
wave of sine shape carried out by Ari-Gur and Simonetta [23]
yielded other four dynamic criteria. Only two of them are recalled
(the other two deal with failures): 1) dynamic buckling takes place
when a small increase of the loading pulse intensity causes a
significant increase of the deflection value; 2) dynamic buckling
takes place when a small increase of the pulse loading amplitude
causes a decrease of the deflection value.

The so far discussed stability loss criteria concern isolated
structural members like beams, columns, plates and shells. In
complex structures composed of the linked simple structural
members the problem is more difficult. One buckling mode may
simply create other modes, and then a problem of multi-modal
modes stability appears. Petry and Fahlbusch [24] extended the
Budiansky–Hutchinson criterion to plated structures, and they
proposed the following dynamic buckling criterion: Dynamic
response of a structure subjected to pulse load is dynamically stable
if the condition that the equivalent stress (originally the authors
used the Huber–Mises hypothesis) less/equal to the assumed limit of
stress is satisfied at any time and any point of the structure.

In addition to the presented status of existing criteria of the
structural members stability loss, a few papers from the Russian
literature are referred to. Kulikov [25] studied the stability of a
spherical shell putting emphasis on numerical techniques applied
to study non-linear behavior of thin elastic shells. Numerous
algorithms of the FDM (Finite Difference Method) devoted to the
solution of stability problems of mechanical structures allow
researchers to solve a large class of static and dynamic problems.
Valishvili [26] solved the static problem, where the non-linear
boundary value problem was reduced to that of solving non-linear
algebraic equations. In addition, static problems of structural
membranes can be solved with the help of a relaxation method
first applied by Feodos'ev for shells [27].

The so far given review of papers devoted to stability/buckling
problems of structural members shows that there are numerous
approaches to define and predict this phenomenon. However, it is

also clear that none of them is sufficient and meets expectations of
the engineering community. In general, models of the processes
associated with stability loss of mechanical structures require
derivation of complex variational equations or equivalent differ-
ential equations. Additionally, in spite of a large number of
algorithms devoted to the computation of various kinds of stability
loss and in spite of the used characteristics such as graphical
stability loss visualization versus the applied load, there is no
relatively simple and reliable estimation of stability loss pictures
being validated by various laboratory experiments.

The aim of this paper is to get reliable characteristics of time
evolution of the development of shell deformation versus the
applied load variation in order to detect the critical load values. For
this purpose the following problems are solved: (i) to estimate the
deformation velocity while changing an input load; (ii) to get
information on rapid changes of the deformation velocity devel-
opment in order to reach a certain critical load level; (iii) to get
information on the absolute and relative error introduced by the
linear approximating function while changing the initial input. It
should be emphasized the static problems are solved by using the
dynamic method which is much more efficient in comparison to
the standard static approaches.

The paper is organized in the following manner. In Section 2
both the method and algorithm of computation of an axially
symmetric spherical shell are presented. Section 3 deals with a
static stability loss of shells. A core of the paper is in Section 4
devoted to the application of modified Chebyshev's method used
to quantify the velocity characteristics of shell deflection. In
particular, an important theorem is formulated. Section 5 presents
computational experiments validating the previous theoretical
considerations. Concluding remarks sum up the research carried
out and the novel results obtained.

2. Method and algorithm of computation

Consider a shallow spherical axially symmetrical shell
described by the 2D space in R2 in the polar co-ordinates
introduced in the following way: Ω¼ ðr; zÞj rA ½0; b�; �H=2r

�
zrH=2g:

Dynamics of the mentioned axially symmetric shells is gov-
erned by the following set of PDEs:

w″þεw0 ¼ �∂4w
∂r4
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∂r
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; ð2:1Þ

where Ф¼ ∂F=∂r and F stands for the stress (Airy's) function.
While investigating theoretically real shells, usually a 3D problem
of the theory of elasticity is reduced to that of 2D assuming that
the shell material is elastic and satisfies Hook's law and that the
Kirchhoff–Love hypothesis is validated (normals to the middle
shell surface are not deformed with shell deformation).

System (2.1) is recast into its counterpart dimensionless form by
introducing the following relations:

t ¼ω0t; ω0 ¼
ffiffiffiffiffiffi
Eg
γR2

q
; ε¼

ffiffiffiffi
g
γE

q
R
Hε; F ¼ η F

EH3; w¼ ffiffiffi
η

p w
H; r¼ brc;

q¼
ffiffi
η

p
4

q
E

R
H

� �2
; η¼ 12ð1�ν2Þ; b¼ ffiffiffi

η4
p cffiffiffiffiffi

RH
p ;

where t – time, ε – damping coefficient, F – stress function,
w – displacement function, R – main shell curvature radius,
2c – length of ends of the shell curvature (see Fig. 1), H¼2h – shell
thickness (see Fig. 1), b – shallow parameter, ν – Poisson's coefficient,
r– distance between the axis of rotation and a point of the middle
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shell surface, q – uniformly distributed load applied to the shell
surface. For simplicity, bars in Eq. (2.1) over the dimensionless
quantities have been already omitted, differentiation with respect
to time is denoted by d=dt ¼ ': Boundary and initial conditions should
be added at the shell top. For simple–movable support in the
meridian direction the boundary conditions have the following form:

Ф¼w¼ 0;
∂2w
∂r2

þν
r
w¼ 0; for r¼ b; ð2:2Þ

whereas initial conditions are as follows:

w¼ f 1ðr;0Þ; w0 ¼ f 2ðr;0Þ; 0rto1: ð2:3Þ
In the small neighborhood of the shell center the following

estimation holds:

Ф� Ar; Ф0 � A; w� BþCr2; w0 � 2Cr; w″� 2C; w‴� 0: ð2:4Þ
In order to reduce continuous system (2.1)–(2.4) to the system
with lumped parameters the finite difference method (FDM) with
approximation O(Δ2) is applied. System (2.1)–(2.4) is recast into its
counterpart finite-difference form with respect to r, i.e.,

w″
i þεw0

i ¼ �wiþ1�wi�1
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1
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� �
; ð2:5Þ

where Δ¼ b=n and n denotes a number of shell radius partitions.
The boundary conditions take the form

Фn ¼ 0; wnþ1 ¼ �wn�1; wn ¼ 0 for rn ¼ b; ð2:6Þ
whereas the initial conditions are as follows:

wn ¼ f 1ðrk;0Þ; w0
n ¼ f 2ðrk;0Þ; 0rkrn; 0rto1: ð2:7Þ

Neglecting small terms and substituting differential operators
by the central finite-difference for r¼Δ;the following conditions
hold at the shell center:

Ф0 ¼Ф2�2Ф1; w0 ¼
4
3
w1�

1
3
w2; w�1 ¼

8
3
w1�

8
3
w2þw3: ð2:8Þ

Though the applied load can be taken arbitrarily with respect to
both spatial co-ordinate and time, only the static case is consid-
ered here, i.e. q¼const. In order to solve the Cauchy problem
(2.5)–(2.8) it is sufficient to apply the fourth-order Runge–Kutta

method. In order to keep solution stability, the integration time
step ðΔt ¼ 3:90625U10�3Þ was taken. In the numerical experiment
Δ¼ 0:2 with respect to the spatial co-ordinate was also taken.
Though a discussion of reliability and validation of the obtained
results, as well as a motivation of the choice of time and spatial
steps are omitted here, one may follow the same algorithm of
analysis in the papers [28–30].

3. Stability of shells (static case)

The following assumptions are taken into account while carry-
ing out the computations of the shell/plate structural member.

1. Shell/plate should be thin. Owing to the definition introduced
by Novozhilov [31], a shell is called thin, where maximum
values of the ratio h/R (where R denotes the main shell
curvature radius) are essentially less than one (1). He suggests
also that it is reasonable to introduce the relative error of 5% for
technical computations, which implies that the shells are
treated as thin-walled structural members if the following
inequality holds h=Rr1=40: Otherwise, a shell will be under-
stood as thick. The majority of shells applied in engineering
satisfy the following estimation 1=2000rh=Rr1=100; and
hence they can be treated as thin-walled.

2. In the case of shallow spherical shells our computational
results refer to the geometrical data for shallow spherical
axially symmetrical shell reported in Fig. 1. The studied shells
can be considered as thin-walled shells if either the Reissner
[32] hypothesis f =2cr1=8 or the Vlasov [33] hypothesis
f =2cr1=5 holds. Now, if the Reissner assumption regarding
shallow-shape criterion (oα¼601) is taken, the following
inequality 2crR is obtained (this can be directly derived
from Fig. 1).

In order to solve static problems of the theory of plates and
shells, traditionally a variety of approximating methods are
applied. The latter ones allow us to reduce PDEs to ANE, i.e. partial
differential equations to algebraic non-linear equations, where the
equations obtained are further linearized.

Owing to the relaxation method, a solution to a system of PDEs
is reduced to the equivalent Cauchy problems of ODE's [34]. The
main idea of the relaxation method originally proposed by
Feodos'ev [27,34] is as follows: for ε¼ εcr ¼ 0:9 relation
qm; wmðtÞ
� �

is constructed, where m¼1, 2,… denotes the static
load values number for which a solution was obtained using the
relaxation method, i.e. using the dynamic approach and taking
into account a relatively high damping coefficient ε: An increase in
the number of iterations, i.e. the number of m, implies more
smoothened curve qm; wmðtÞ

� �
; and hence a critical load value

associated with buckling is more accurately estimated. This allows
us to construct characteristics qðwstÞ; and to study further the
stress–strain state of the construction being analyzed. In other
words, the method of dynamics is applied here to solve the
problems of statics. Observe that for high damping term εcr ; the
shell dynamics is quickly damped, and the static equilibrium
position is found in a simple and relatively fast way by applying
the relaxation method. In the four given examples it is easy to
follow how wmðtÞ tends to the corresponding wst :

In Ref. [35] advantages of the employed method over the
widely used Newton's method and other iterational approaches
are outlined. The applied relaxation method is used to detect non-
symmetric solutions for shells rectangular in plane. In order to
demonstrate computational benefits of the relaxation method
applied here, four numerical examples have been studied.

Fig. 1. The computational model of a shallow spherical axially symmetric shell.
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Example 1. A steel flexible shell circular in plane with a simple–
movable support having the following geometric and physical
parameters: c¼ 0:055 m; ν¼ 0:3; h¼ 0:003 m; E¼ 210 GPa; b� 4;
R¼ 0:2 m is considered.

Fig. 2 shows deflection wðtÞ obtained for the case of the static
load action (left) and the dependence qðwstÞ (right) for the
dimensional quantities and parameters. Three curves wðtÞ for the
constant loads q¼ 57; 59:5; 60:6 show that the solutions tend to
the three constant values of shell deflection wm yielded by both
static ðwstÞ and dynamic ðwmÞ approaches applied. In particular, it
is shown how a small change of q implies a sudden snap-through
transition to another equilibrium of shell configurations (compare
the time histories in red and blue).

Fig. 3 shows relations qðwÞ obtained using the relaxation
algorithm (a,c) and the method proposed by Valishvili [26]
(b) for boundary conditions given in this figure, and for the fixed
value of parameter b¼4, which validates the obtained results by
solving PDEs in time.

However, the dynamic relaxation approach applied here makes it
possible to estimate critical loads with high accuracy, and to define
directly if the buckling appears inside or outside the shell surface.
Loops of the characteristics q0ðwÞ may occur (see Example 3) because
they are constructed regarding the shell center, whereas the remain-
ing points of the shell radius may behave individually, i.e. the shell
stability loss may occur not in the shell center but in the shell
quadrants. In the latter case the loops describe the behavior of the
shell center as a result of stability loss in the shell quadrants.

The curves q(w) obtained by our relaxation method (a,c) and
these attained using the Valishvili approach [26] concern a simple
movable shell support (Fig. 3) for b¼4 and they almost fully
coincide. Observe that the reported solution obtained by the
Valishvili method is non-unique not only with respect to the load
but also with respect to deflection, and it cannot yield proper
values of either upper or bottom critical load estimation.

Example 2. A steel flexible shell circular in plane with a simple–
movable support and with the following geometric and physical
parameters: c¼ 0:13 m; ν¼ 0:3; h¼ 0:003 m; E¼ 210 GPa; b� 8;
R¼ 0:3 m, is considered. wmðtÞ and wstðqÞ for q¼ 25:45; 35; 35:5
were computed in a way similar to that described in Example 1.

In this case (Fig. 4) the numerical results obtained via static and
dynamic approaches coincide very well and a sudden jump (snap
through) is demonstrated (compare blue and red time histories).
Deflection forms wðrÞ of the shell for the critical load q¼ 35ð Þ and
for the static stability loss are reported in Fig. 5. In the case of the
critical load the shell exhibits deflections in the quadrants (blue),
whereas after stability loss the maximum shell deflection is
achieved in the shell center (red).

Example 3. A steel flexible shell circular in plane with a simple–
movable support and with the following geometric and physical
parameters: c¼ 0:25 m; ν¼ 0:3; h¼ 0:004 m; E¼ 210 GPa; b� 10;
R¼ 0:5 m, is studied. A comparison of results obtained by New-
ton's method [26] and the applied relaxation method (red) is
reported in Fig. 6 (non-dimensional quantities). In addition, Fig. 7
gives the shell deflection forms in the case of the critical load
(blue) and after static stability loss (red).

Example 4. A steel flexible shell circular in plane with the simple/
movable and movable support and with the following fixed
parameters: c¼ 0:2m; ν¼ 0:3; h¼ 0:0018 m; E¼ 210 GPa, b� 12;
R¼ 0:5m; h=R¼ 0:004 (thin shell), and 2c¼ 40oR (shallow shell)
is analyzed. Fig. 8 illustrates qðwÞ (non-dimensional) dependencies
obtained via Newton's method versus the employed relaxation
method (green and red). On the other hand, Fig. 9 shows shell
deflection form subjected to critical load (blue) and after the static
stability loss (red).

Fig. 2. Shell center deflection versus load obtained via dynamic (left) and static
(right) approaches (Example 1). (For interpretation of the references to color in this
figure the reader is referred to the web version of this article.)

Fig. 3. A shell with simple and movable support q¼ q0
� �

.

Fig. 4. Shell center deflection versus load obtained via dynamic (left) and static
(right) approaches (Example 2). (For interpretation of the references to color in this
figure the reader is referred to the web version of this article.)

Fig. 5. Shell deflection form w(r) for Example 2. (For interpretation of the
references to color in this figure the reader is referred to the web version of this
article.)
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In this work a novel approach to the computation of a critical
load, where shell stability loss takes place, is proposed. This
method yields results at least few times faster than the known
traditional methods. Besides, this method relies only on the initial
short time interval monitoring (where the vibrational process is
yet unstationary), while estimating the occurrence of buckling.

Table 1 gives numerical results. The static load values are:
q¼0.025, 0.05, 0.075, 0.1, 0.125 and 0.15. The buckling phenom-
enon takes place when the load is changed from q¼0.125 (pre-
critical load) to q¼0.15 (post-critical load).

In Table 1, on the basis of Fig. 3, different values of the applied
load with a simultaneous relative error estimation are reported.
The proposed and applied novel method for computation of the
critical load allows us not only to reduce the computational time,

but also to carry out an analysis based on the shell deformation for
only a few values of the applied load.

The obtained experimental data shown in Table 1 are further
analyzed from the point of view of their compression. This allows
us to obtain novel quantifying characteristics principally different
from the known static quantification tools, and provides important
information on the rate of linear deformation development
together with the estimation of maximum absolute approximation
error. As it will be shown further, these characteristics make it
finally possible to estimate the critical loads.

4. Modified Chebyshev's method and shell velocity
characteristics

The problem regarding the best and uniform approximation of
a function via algebraic polynomials was formulated by Chebyshev
already in 1854. Here, its discrete variant is revisited briefly (see
[36], page 13).

Let a series of function values yk ¼ yðtkÞ; kA0; :::;N on the
interval T ¼ ft0ot1o…otNg be given, and let natural number n
of the algebraic polynomial pnðA; tÞ be fixed. The aim is to find
minimum deviations between all grid node values of the discrete
functions and the approximating polynomial values.

ρ¼ min
AARnþ 1

max
kA0;:::;N

yk�pnðA; tkÞ
		 		: ð4:1Þ

Problem (4.1) has been solved for different polynomial orders,
and then generalized through the introduction of additional
constraints to the approximating polynomial (see Ref. [37] for
more details). Below, a linear variant of problem (4.1) is considered
and a few additional properties of the approximating function of
linear-type problem (4.1) with constraints are applied.

The aim is to best approximate data xi; yi
� �

; i¼ 1; :::;n by
linear equation ŷ¼ a0þa1x. Points xi; yi

� �
do not lie exactly on the

line, contrary to points xi; ŷi
� �

, where ŷi ¼ a0þa1xi: Error in the i-th
point is described by a difference between real and computational
values εi ¼ yi� ŷi. A linear regression model has the form of
yi ¼ β0þβ1xiþεi.

Since random errors εi cannot be measured, coefficients a0; a1
based on the existing data xi; yi

� �
; i¼ 1; :::;n should be estimated.

Mainly, the so called least squares method is applied. In order to
estimate unknown parameters a0; a1; the following conditions
should be satisfied:

Q a0; a1ð Þ ¼
Xn
i ¼ 1

yi� ŷi
� �2 ¼Xn

i ¼ 1

yi�a0�a1xi
� �2

-min
a0 ;a1

: ð4:2Þ

Sometimes (in economy) in order to achieve reliable events,
both orthogonal polynomials and dynamic models are applied.

Fig. 6. Dependencies qðwÞ obtained via dynamic and static approaches. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 7. Shell deflection form w(r) for Example 3.(For interpretation of the refer-
ences to color in this figure the reader is referred to the web version of this article.)

Fig. 8. Dependencies qðwÞ for different b obtained using dynamic (red and green)
and static approaches. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. Shell deflection form w(r) for Example 4. (For interpretation of the
references to color in this figure the reader is referred to the web version of this
article.)
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However, the traditional least squares method does not allow
researchers to achieve the required target in the case of the
mechanical problem studied. Namely, it may happen that only
one sudden jump of the shell deformation may yield the shell
collapse even when the least squares sum of deviations is small.
Furthermore, an introduction of constraints applied to the approx-
imating functions may violate results of the regression analysis.
For these reasons another approach is applied. A generalization of
the method for data approximation following Chebyshev's inves-
tigations [36] is proposed regarding a unique and best approxima-
tion of a function through an algebraic polynomial of fixed order,
which enables also a detection of additional properties hidden in a
dynamic series. Let us note that Vygodchikova [38] investigated
problem (4.1) and its potential generalization for approximations
of a population number.

The following constraints on the approximating function are
applied to problem (4.1):

ρðAÞ ¼ max
k ¼ 0;:::;N

yk�pnðA; tkÞ
		 		- min

AAD ¼ fAARnþ 1 :pn A;t0ð Þ ¼ y0g
: ð4:3Þ

Remark 1. The constraint introduced in point t ¼ t0 is satisfied
within our investigation.

Remark 2. If the approximating polynomial (solution to pro-
blem (4.1)) satisfies the constraint pnðA; t0Þ ¼ y0; then this poly-
nomial is a solution to problem (4.3).

Let us analyze applicability of problem (4.3) in order to get
quantitative estimations. At the beginning fundamental properties
of a solution to problem (4.3) are studied assuming that NZnþ1:
An arbitrary set σ ¼ ftj0 otj1 o…otjnþ 1

g � T with fixed point
tj0 ¼ t0, where Ω stands for the set of all bases, is further called a
semi-basis.

Since only the semi-bases are used while considering problems
(4.3), further in the text the word “semi” is omitted for simplicity.
Besides of problem (4.3), the following supplemented issues are
considered:

ρiðA;σÞ ¼ max
k ¼ 0;:::;nþ1

yjk �pnðA; tjk Þ
			 			-min

AAD
; iA0; :::;1: ð4:4Þ

A novel algorithm is derived to find solutions to our problem
which differs fundamentally from the existing methods. Our
investigations on the application of linear solutions to mini–max
problems within the studied class of problems show numerous
advantages of our proposed algorithm in comparison to the
traditional approaches.

The maximum absolute error of approximation is denoted
byρn ¼ min

AAD ¼ fAARnþ 1 :pn A;t0ð Þ ¼ y0g
ρðAÞ and the maximum relative error

of approximation by Θn ¼ ρn= max
k ¼ 0;:::;N

yk. Taking n¼1, one gets

p1ðA; tÞ ¼ p1ðða0; a1Þ; tÞ ¼ a0þa1t: In this case, a semi-basis is the
set σ ¼ ftj0 otj1 otj2 g � T with fixed point tj0 ¼ t0. Hence, problem

Table 1
Numerical results (first excitation).

q¼0.025 w(0.5,t) q¼0.05 w(0.5,t) q¼0.075 w(0.5,t) q¼0.1 w(0.5,t) q¼0.125 w(0.5,t) q¼0.15 w(0.5,t)

t t t t t t

0 0 0 0 0 0 0 0 0 0 0 0
0.5 0.010823 0.5 0.000469 0.5 0.001054 0.5 0.001874 0.5 0.002929 0.5 0.004217
1 0.032029 1 0.004104 1 0.009235 1 0.016419 1 0.025657 1 0.036949
1.5 0.071351 1.5 0.020361 1.5 0.045808 1.5 0.08143 1.5 0.127225 1.5 0.183191
2 0.12643 2 0.06396 2 0.143963 2 0.256028 2 0.400194 2 0.5765
2.5 0.179835 2.5 0.129741 2.5 0.292764 2.5 0.521967 2.5 0.817901 2.5 1.181113
3 0.229558 3 0.212388 3 0.481468 3 0.862317 3 1.357318 3 1.968802
3.5 0.269709 3.5 0.295218 3.5 0.673864 3.5 1.215198 3.5 1.925795 3.5 2.812329
4 0.300431 4 0.369093 4 0.848954 4 1.542788 4 2.463958 4 3.62632
4.5 0.328474 4.5 0.444445 4.5 1.029921 4.5 1.88587 4.5 3.035261 4.5 4.50229
5 0.352623 5 0.516159 5 1.205604 5 2.225557 5 3.611824 5 5.403161
5.5 0.373114 5.5 0.582592 5.5 1.372155 5.5 2.554819 5.5 4.182884 5.5 6.314365
6 0.390387 6 0.643698 6 1.530466 6 2.877264 6 4.757677 6 7.255104
6.5 0.402867 6.5 0.692434 6.5 1.663584 6.5 3.161426 6.5 5.286137 6.5 8.153994
7 0.412074 7 0.731565 7 1.775929 7 3.412222 7 5.771766 7 9.011584
7.5 0.419226 7.5 0.764327 7.5 1.874462 7.5 3.641265 7.5 6.232213 7.5 9.853258
8 0.424676 8 0.791112 8 1.958908 8 3.846149 8 6.660529 8 10.66584
8.5 0.429205 8.5 0.814559 8.5 2.035387 8.5 4.037568 8.5 7.073153 8.5 11.47258
9 0.432667 9 0.83429 9 2.10366 9 4.216452 9 7.473662 9 12.28299
9.5 0.435074 9.5 0.849863 9.5 2.161841 9.5 4.377887 9.5 7.853053 9.5 13.08356
10 0.436743 10 0.862265 10 2.211883 10 4.524895 10 8.214988 10 13.87972
10.5 0.437791 10.5 0.871773 10.5 2.254112 10.5 4.657352 10.5 8.558726 10.5 14.6712
11 0.43854 11 0.879381 11 2.290168 11 4.776629 11 8.883678 11 15.45433
11.5 0.439115 11.5 0.885769 11.5 2.321997 11.5 4.886487 11.5 9.19545 11.5 16.23703
12 0.439495 12 0.890947 12 2.349782 12 4.987495 12 9.495334 12 17.02247
12.5 0.439752 12.5 0.895198 12.5 2.374157 12.5 5.080516 12.5 9.783884 12.5 17.81135
13 0.439871 13 0.898537 13 2.395344 13 5.166256 13 10.06266 13 18.60792
13.5 0.439887 13.5 0.901047 13.5 2.413424 13.5 5.244512 13.5 10.33115 13.5 19.41257
14 0.439881 14 0.903051 14 2.429016 14 5.316114 14 10.58943 14 20.22553
14.5 0.439855 14.5 0.904644 14.5 2.442531 14.5 5.38175 14.5 10.83865 14.5 21.04929
15 0.439826 15 0.905933 15 2.454298 15 5.441956 15 11.07918 15 21.88509
15.5 0.439798 15.5 0.907011 15.5 2.464649 15.5 5.497571 15.5 11.31185 15.5 22.73468
16 0.439756 16 0.907849 16 2.4737 16 5.548851 16 11.5375 16 23.60094
16.5 0.439711 16.5 0.908497 16.5 2.481507 16.5 5.596063 16.5 11.75626 16.5 24.48567
17 0.439669 17 0.909004 17 2.488317 17 5.63958 17 11.96856 17 25.39082
17.5 0.439631 17.5 0.909393 17.5 2.49422 17.5 5.679595 17.5 12.17466 17.5 26.31875
18 0.439603 18 0.90971 18 2.49934 18 5.716403 18 12.37485 18 27.27148
18.5 0.43958 18.5 0.909969 18.5 2.5038 18.5 5.751356 18.5 12.56944 18.5 28.25124
19 0.43956 19 0.910175 19 2.507726 19 5.781668 19 12.75883 19 29.26085
19.5 0.439542 19.5 0.910337 19.5 2.511147 19.5 5.810558 19.5 12.94323 19.5 30.30271
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(4.3) is equivalent to the following one:

ρðAÞ ¼ max
k ¼ 0;:::;N

yk�a0�a1tk
		 		- min

AA fAAR2 :a0 þa1t0 ¼ y0g
ð4:5Þ

Let us consider three new estimating indexing parameters which
are applied to quantify the shell deformation development in time
versus the load action (owing to the data resulting from the
investigation carried out and given in Table 1): ρn; Θn

; a1: It is
observed that the coefficient of polynomial slope of the best
approximation a1 stands for the estimation of data inclination
from the stationary function yk ¼ y0; k¼ 0; :::;N: Then, following
the results obtained in Ref. [36], the following theorem can be
formulated.

Theorem.. Solution to problem (4.5) is unique. Vector
A¼ ða0; a1ÞAR2 is a solution to the stated problem if and only if the
following relations hold for semi-basis σ and quantity h σð Þ:
a0þa1tj0 ¼ y0; ð4:6Þ

yj1 �a0�a1tj1 ¼ �hðσÞ; ð4:7Þ

yj2 �a0�a1tj2 ¼ hðσÞ; ð4:8Þ

where:ρðAÞ ¼ hðσÞ
		 		:

Remark. When А and h σð Þ satisfy the theorem conditions, one
has ρn ¼ hðσÞ

		 		:
Remark. For t0 ¼ 0; y0 ¼ 0 one gets a0 ¼ 0:
The solution to algebraic Eqs. (4.6)–(4.8) is as follows:

a1 ¼
yj1 þyj2 �2y0
tj1 þtj2 �2tj0

; ð4:9Þ

a0 ¼ y0�a1tj0 ¼
yoðtj1 þtj2 Þ�tj0 ðyj1 þyj2 Þ

tj1 þtj2 �2tj0
; ð4:10Þ

hðσÞ ¼ yj2 �a0�a1tj2 : ð4:11Þ

The above theorem is supported with the following example. Let
T ¼ f0o1o4g; y0 ¼ 0; y1 ¼ 4; y2 ¼ 8; then the solution to pro-
blem (4.6)–(4.8) be a0 ¼ 0; a1 ¼ 1:6; h¼ 1:6: The algorithm of
solution to the problem requires a multiple solution of Eqs.
(4.9)–(4.11) using the choice of target-oriented bases (see [38]
for more details).

Further on a concept of the Hausdorff distance is applied to get
estimating characteristics which measure a distance between the
approximating functions. First, the Hausdorff distance is com-

puted. Consider sets A and B from R2: They are composed of
elements ðt; p tð ÞÞ; where pðtÞ ¼ a0þa1t is the approximating poly-

nomial. Let X A;Bð Þ ¼ max sup
aAA

inf
bAB

ρ a;bð Þ; sup
bAB

inf
aAA

ρ a;bð Þ

 �

be the

Hausdorff distance between sets A and B, and let ~ρ w; vð Þ ¼
max w1�v1j j; w2�v2j jf g be the distance between points w¼
w1;w2ð Þ and v¼ v1; v2ð Þ in R2 in the sense of Minkowski's metrics.
Parts of the graphs of linear polynomials p1 tð Þ; ~p1 tð Þ; located
between points t0 and tN as sets A and B can also be taken.
Subscript “1” is omitted further in the study.

The required steps of estimation of the Hausdorff distance
between points of linear functions are taken. Consider interval
½t0; tN � and two linear functions p tð Þ ¼ a0þa1t; ~p tð Þ ¼ cþdt (assume
that a1j jZ d

		 		). The Euclidean distance between parts of these
functions located between points t0 and tN is defined by the
following formula:

eðGrp;Gr ~pÞ ¼ max f ða0�cþt0ða1�dÞÞ cos ðarctan a1j jÞ
		 		;

ða0�cþtNða1�dÞÞ cos ðarctan a1j jÞ
		 		g; ð4:12Þ

whereas the Hausdorff distance is given by the following equation:

XðGrp;Gr ~pÞ ¼ eðp; ~pÞmax f cos ðarctan a1j jÞ; sin ðarctan a1j jÞg:
ð4:13Þ

Both quantities (4.12)–(4.13) presented so far will be applied while
estimating a distance between graphical pictures of the deforma-
tion development for various loads applied. In order to obtain the
required target the real data are substituted by the computational
counterpart data using model (4.5).

5. Computational experiment

The values of displacements on each chosen load level with
variation in time t are approximated by a linear function depen-
dent on t in the constraint introduced at zero, and formulas
(4.9)–(4.11) are used. As a result, a coefficient of the slope of the
approximating linear function is found and a maximum error of
approximation regarding both absolute and relative measure-
ments is derived (Table 2).

To get a physical explanation of the deformation developed in
time for different load levels, the values of approximating poly-
nomials pðtÞ ¼ a1t on each load level are computed. The values
obtained experimentally (Table 1) are substituted by smoothened
values obtained via approximating functions. Collecting results of
the deformation developed for load levels 0.025, 0.05, 0.075, 0.1,
0.125, 0.15, the approximating function for each level, shown in
Fig. 10, is obtained.

Remark. The loads used for visualization and function slopes are
given in Table 3.

Below, computation of a critical load is illustrated and dis-
cussed. An increase of the load (higher than 0.05) is accompanied
by a sudden change in deformation velocity a1, whereas the error
of approximation in percentage is decreased. This is because the
deflection increase regarding its maximum value is decreased due
to a sudden increase of the deformation velocity of the shell
deflection. The increase of the load from 0.1 to 0.125 causes an
increase of the deformation velocity in more than 100% (the
deformation process is out of control, since the increase of
deflection magnitude with respect to its maximum value became
negligible comparing with the increase of the sudden deformation

Table 2
Computation of slopes of experimental functions and associated errors.

Load a1 (tan of the approximating function slope) Maximum error %

0 0 0 0.00
0.025 0.032546235 0.195109588 44.39
0.05 0.062024607 0.299142497 32.86
0.075 0.162547472 0.65852838 26.22
0.1 0.351824913 1.050027343 18.07
0.125 0.717227702 1.042710768 8.06
0.15 1.431082975 2.396594933 7.91 Fig. 10. Graphs of the approximating functions for different loads (numbers denote

applied series).

J. Awrejcewicz et al. / Thin-Walled Structures 94 (2015) 293–301 299



velocity). The loading described so far is referred to as a critical
one (stabilization of the error in percentage with an increase of a1
is observed) – see Table 4.

The estimated critical load achieves the value of 0.125, which is
in full agreement with the results obtained by the method of
relaxation (Fig. 3).

The increase in development of shell deformation velocity
versus load increase is evident (see Table 4). In order to illustrate
quantification of this process for various loading ways, a distance
between the approximation functions for different loading series
computed using formulas (4.12) and (4.13) were monitored and
estimated. This leads to a conclusion that a sudden buckling takes
places for the load 0.125 (see Table 5).

6. Concluding remarks

In this work critical load values were estimated while analyzing
the stability of spherical circle axially symmetric shells using the
relaxation method. In order to solve static problems of the theory
of plates and shells usually numerous approximating methods are
applied aiming at a reduction of ODEs to NAEs which are then
linearized. On the other hand, the relaxation method is used to
reduce the investigated PDEs to a Cauchy problem of ODEs. As a
result of the mentioned analysis one may get various graphical
stress–strain representations of the mechanical objects studied.
Though they are very helpful in particular at the first step of the
study, they are not sufficient to fully understand and characterize
the analyzed processes, to compare dynamic processes exhibited
by different shells, and to monitor health of the analyzed processes
in different periods of their life. This was a motivation to propose
qualitatively novel estimating characteristics, following and mod-
ifying the classical Chebyshev's approach.

The proposed approach has the following advantages:

(i) High target information: even minimum values of a target
function transform the important information regarding the
maximum absolute error of initial data approximation (in our
case it is a linear function). The mentioned high target
information property is preserved even at the lack of ten-
dency to stability of the studied process.

(ii) Possibility of high data compression: in the case of a stable
dynamic process a large choice of data is substituted by only
two coefficients of the polynomial of best approximation.
Though the latter approach is similar to the standard least
squares procedure, a large volume of the gathered data can be
truncated to only two values corresponding to the extremum
of the studied problem with a constraint.

(iii) Dependence of the solution on the values of measuring
parameter applied in a few considered points only (without
taking into account other remaining data) does not violate
predicting property of the parameter, and the error of
approximations remains unaffected. This property may be
applied to smooth the data.

(iv) Results can be easily validated, and the method is mathema-
tically approved and clearly interpreted.

Finally, the following estimating characteristics of the graphical
pictures are obtained: (i) velocity of a linear deformation devel-
oped in time with regard to the initial loading action; (ii) max-
imum absolute and relative errors of data approximation
regarding the development of deformation using linear functions;
(iii) distance between data series regarding deformation for
different loads obtained via approximation of the mentioned
series by linear functions.

Basing on the analysis of the mentioned indices, the level of
critical load for experimentally obtained data has been defined.
The results validate also algorithms and theoretical background of
the applied relaxation method.
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