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a b s t r a c t

In this paper regular and chaotic vibrations of flexible curvilinear beams with (and without) the action of
temperature and electric fields are studied. Results obtained are based on the reduction of PDEs
governing non-linear dynamics of straight and curvilinear beams to large sets of non-linear ODEs
putting emphasis on reliability and validation of the results. In spite of the applied classical approaches
to study bifurcational and chaotic dynamics, we have employed 2D and 3D Morlet wavelets and we have
computed first four Lyapunov exponents. Numerous results are reported regarding scenarios of the
transition from regular to chaotic vibrations including the occurrence of hyper-hyper chaos and deep
chaos. Snap-through phenomena have been detected and analyzed, and the influence of boundary
conditions of three types of the considered fields (mechanical, thermal and electrical) as well as of
temperature on non-linear dynamics of the beam have been reported.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There are numerous papers/monographs devoted to the study
of dynamics of beams embedded either into an electric field or
thermal field separately, and only a few papers address a simulta-
neous action of both fields on non-linear dynamics of beams.

The influence of electric field on free transverse vibrations of
smart beams was studied by Krommer and Irschik [1].

Static and dynamic instabilities of the MEMs cantilever beam
system subjected to weak and strong disturbances were investigated
by Liu et al. [2]. They illustrated and analyzed period doubling, chaos
and strange attractors for both open- and closed-loop cantilever
systems subjected to strong disturbances.

Closed-form solutions of Euler–Bernoulli beams with singula-
rities (flexural stiffness and slope discontinuities) are proposed in
reference [3]. The continuity conditions are set into the flexural
stiffness model and are included in the proposed procedure.

Zamianian and Khaden [4] studied microbeam dynamics under
an electric actuation assuming that the microbeam midplane is

stretched when it is deflected. Altering DC electric actuation in a
microswitch system exhibits a saddle-node bifurcation point.
Depending on the system parameters, periodic, quasi-periodic
and pull-in instability can be achieved. The beam chaotic behavior
is studied using Melnikov's approach.

Towfighian et al. [5] investigated the closed-loop dynamics of a
chaotic electrostatic microbeam actuator with two wells of poten-
tial and with two distinct chaotic attractors. Period doubling,
reverse period doubling, one-well and two-well chaos, as well as
superharmonic resonances are reported, among others.

Barari et al. [6] applied variational iteration and parameterized
perturbation methods to investigate the non-linear vibration of
Euler–Bernoulli beams subjected to axial loads.

Shen et al. [7] analyzed the Euler–Bernoulli beam model where
the absorbed heat flux on the beam surface depended on the beam
deformation. The coupled thermal-structural analysis allowed
them to predict a cantilever beam movement from eclipse with
large incident angles of solar radiation.

Li et al. [8] studied non-linear equilibrium equations of the
slender pinned-fixed Euler–Bernoulli beams regarding their buck-
ling behavior.

A thin-walled composite beam including the interaction
between structural deformations and incident heating was studied
by Ko and Kim [9]. The beam model includes transverse shear
deformation and rotary inertia, as well as primary and secondary
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warping effects. Steady-state thermal response was examined
using the uncoupled analysis, whereas thermal flutter was studied
by the coupled thermal-structural method.

Li et al. [10] analyzed the fundamental frequency of slender
Euler beams embedded into the thermal field under various
boundary conditions. The post-buckling behavior of functionally
graded material beams with edge crack effects was investigated by
Ke et al. [11]. Li et al. [12] analyzed thermal stability of nonlinear
vibrations of a hybrid functionally graded Timoshenko beam with
both clamped edges.

Gilat and Aboudi [13] applied the Lyapunov exponents meth-
odology to study dynamic buckling of composite plates under-
going a sudden thermal or mechanical loading. The approach
involving Lyapunov exponents to the quantitative analysis of
continuous mechanical systems was applied in both works.

Wu [14] used Hamilton's principle to derive the equations of
motion of a pinned beam with transverse magnetic fields and
thermal loads. It was shown that the transient vibratory behavior
of the beamwas influenced by the magnetic and thermal loads; for
example, the period of vibration increased with the increase of the
magnetic fields and temperatures.

Pull-in instability of the double-clamped microscale beams
actuated by a suddenly applied electrostatic force and subjected
to non-linear squeeze film damping was investigated by Krylov
[15] through monitoring the largest Lyapunov exponent evolution.

Li et al. [16] studied vibrations of functionally graded material
beams with surface-bounded piezoelectric layers in thermal envir-
onment based on the Euler–Bernoulli beam theory. The beams
were covered with piezoelectric layers and subjected to thermo-
mechanical loadings. However, the authors reduced the problem
to two sets of coupled ordinary differential equations. They
showed that the temporal force produced in the piezoelectric
layers by the voltage could efficiently increase the critical buckling
temperature and the natural frequency.

Non-linear vibrations of the functionally graded material beam
bounded with/without piezoelectric layers in a thermal environ-
ment were studied by Wang et al. [17] who analyzed pre/post-
buckling phases of non-linear vibrations.

Yu et al. [18] studied free vibration of thermal post-buckled
functionally graded material beams subjected to both temperature
rise and voltage. They showed that three lower frequencies of the
pre-buckled (buckled) beam decreased (increased) with the tem-
perature rise, among others.

As it has already been mentioned, there are also works dealing
with the problems of non-linear beam dynamics with thermal and
electrical excitations. Non-linear vibrations of thermo-electrically
post-buckled rectangular functionally graded piezoelectric beams
were studied by Komijani et al. [19]. Thermo-electro-mechanical
beam properties were graded across the beam thickness, and both
in-plane and out-of-plane boundary conditions were considered.
The effects of boundary conditions, beam geometry, actuator
voltage, and thermal environment action were studied.

The general numerical approach used in this work, as
employed to structural members, has already been presented in
our earlier papers [21–27]. This type of the studied problem has
been analyzed briefly in reference [25]. However, the mentioned
short report concerned a straight beam.

Our work is organized in the following way. The flexible
curvilinear beam model is introduced in Section 2, where also
the types of heat boundary conditions are defined. Then the
influence of boundary conditions is briefly illustrated in Section
3. Section 4 deals with the scenarios of transition into chaotic
regimes. Chaotic vibrations of the curvilinear beam embedded into
a temperature field are studied in Sections 5 and 6 for different
types of heat boundary conditions using FFT (Fast Fourier Trans-
form) and LE (Lyapunov Exponent) characteristic of different beam

curvature and temperature magnitude. Section 7 illustrates the
effect of beam curvature on the solution of the heat transfer
equation, whereas the influence of the electric field on the beam
dynamics is illustrated and discussed in Section 8. Concluding
remarks are presented in Section 10.

2. Beam model

We consider a one-layer thin flexible curvilinear beam of
length l, height h and geometric curvature kx ¼ 1=Rx; where Rx is
the curvature radius. The beam is loaded through continuous load
along the beam surface qðx; tÞ; acting in the normal direction to the
middle beam surface (Fig. 1).

A mathematical model of the beam is based on the hypotheses
of shallow shells introduced by Reissner and Vlasov. Namely, for
shallow spherical shells the ratio of deflection f to the smallest
shell plane dimension of ðf =aÞr1=8 (Reissner) or ðf =aÞr1=5
(Vlasov) and the geometry in space coincides with that of plane.

The mathematical model of the curvilinear beam is governed
by a system of non-linear partial differential equations (PDEs)
describing the motion of a beam element taking into account
energy dissipation which is represented by the occurrence of
damping coefficient ε. The non-dimensional form of PDEs regard-
ing displacements is as follows

∂2u
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where: L1ðu;wÞ, L2ðw;wÞ, L3ðw;wÞ are the non-linear operators;
wðx; tÞ – normal deflection of the beam element; uðx; tÞ – long-
itudinal displacement of the beam element; ε– coefficient of
dissipation of the surrounding medium; E – Young modulus; h –

height of the beam transversal cross section; γ– specific material
gravity; g– Earth acceleration; kx – geometric beam curvature; t –
time; q¼ q0 sin ðωptÞ – external load; q0– amplitude; ωp –

frequency.
Non-dimensional parameters are introduced in the following

way:

λ¼ a
h
; w¼w

h
; u¼ ua

h2 ; x¼ x
a
; t ¼ t

τ
; τ¼ a

p
; p¼

ffiffiffiffiffiffi
Eg
γ

s
;

ε¼ a
p
ε; q¼ qa4

h4E
; kx ¼

kxa
λ
:

Bars over the non-dimensional quantities are omitted in Eq. (1).
The following boundary conditions are applied: one beam end is

Fig. 1. Flexible curvilinear beam.
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simply supported ðx¼ 0Þ; whereas the other one is clamped ðx¼ aÞ

wð0; tÞ ¼wða; tÞ ¼ uð0; tÞ ¼ uða; tÞ ¼w=
xða; tÞ ¼w==

xxð0; tÞ ¼ 0; ð2Þ

and the following initial conditions are applied

wðx;0Þ ¼ _wðx;0Þ ¼ uðx;0Þ ¼ _uðx;0Þ ¼ 0: ð3Þ

In reference [20], for the curvilinear beams made from isotropic
material, the following heat transfer equation ΔTþ2kxð∂T=∂zÞ ¼ 0
was derived and studied. In what follows we employ the same
shallow conditions and we consider also the Laplace type heat
transfer equation ΔT ¼ 0 with the boundary conditions given in
Table 1:

PDEs (1) are reduced to ODEs via Finite Difference Method
(FDM) of the second order. The latter procedure allowed us to

obtain the following set of ODEs:
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The obtained system of the second-order ODEs (7) with corre-
sponding boundary conditions (yielded by the application of FDM)
are then reduced to the first-order ODEs, which are further solved
by the fourth-order Runge-Kutta method. In the papers [21–27]
we proved that this method was sufficient and efficient. Since the
governing equations of the curvilinear beam differ from those of
the flexible straight linear beam only due to the terms related to

Table 1
Types of heat boundary conditions.
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Table 2
Vibration charts for different kx.
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the geometric curvatures, we may follow the method for valida-
tion of results given in the mentioned references.

First, we study beam vibrations without the action of the
temperature field. Applying FDM, unit interval xA ½0;1� is divided
into 120 parts, and the following parameters are fixed during the
computation: λ¼ 100; ε¼ 1; kx ¼ 0;12;48: Table 2 reports charts
showing types of beam vibrations for the set of parameters fq0;ωpg
including quasi-periodic vibration (2 independent frequencies),
damped vibrations, periodic and chaotic vibrations, as well as
bifurcation zones. The zones, where the vibrational regime has not
been defined, correspond to the lack of convergence of the used
numerical integration algorithms.

In other words, in order to identify a point color, i.e. the vibrational
regime of an investigated point of the chart, the numerical analysis has
been carried out with the help of power spectra analyses through FFT.
Irrespective of this type of analysis, we included also the charts of
Lyapunov exponents (LE). The latter ones are constructed in the plane
of control parameters fωp; q0g in a similar way, i.e. four Lyapunov
exponents have been computed at each point of the ðq0;ωÞ plane.

It is remarkable that an increase of the beam curvature yields a
larger area of periodic vibrations (blue color). For instance, there is
a peninsula-like zone of periodicity for relatively high values of
bothωp and q0. The increase of curvature in the interval kx ¼ ½0;12�
does not yield sufficient changes in the charts of vibration types.
All possible non-linear dynamical phenomena are presented
(quasi-periodic orbits marked as vibrations with two independent
frequencies, high-dimensional tori with vibrations being the
superposition of independent frequencies, chaotic vibrations and
zones of bifurcations). The main difference in comparison to the
case of kx ¼ 0 is that in the case of kx ¼ 12 the existence of quasi-
periodic orbits with superposition of independent frequencies is
more visible (the number of red drops increased). The case of
kx ¼ 48 differs from the previous ones because the area of chaotic
zones increased significantly versus the remaining studied cases.

In order to validate the so far presented and discussed charts
based on a study of the power frequency spectrum, we have
computed in addition four Lyapunov exponents. This approach is
not limited only to validate the earlier results, but also it allows us
to define the strength of chaotic zones. Namely, we have computed
the first four Lyapunov exponents, and hence we can detect chaos,
hyperchaos, hyper-hyperchaos, and deep chaos.

Table 3 reports charts regarding the Lyapunov exponents which
have been found using the Wolf algorithm (four largest Lyapunov

exponents are computed). Comparison of Tables 3 and 2 shows a
remarkable convergence of the various types of analysis carried out.
Each type of the chart exhibits its own characteristic aspect, whereas
their common analysis allows us to understand the global system
behavior. An increase of the beam curvature yields extension of the
space with regular dynamics (four exponents are negative), whereas
after dynamical stability loss the vibrational process is transited into a
deep chaos (four LEs are positive), which cannot be detected either for
a straight line beam or for a beam with small curvature.

3. The influence of mechanical boundary conditions

Three types of the beam support with the following fixed
parameters (kx ¼ 48, λ¼ 100) are studied.

1. Both ends of the beam are fixed:

w 0; tð Þ ¼w l; tð Þ ¼ u 0; tð Þ ¼ u l; tð Þ ¼w0
x 0; tð Þ ¼w0

x l; tð Þ ¼ 0: ð8Þ

2. Both ends of the beam are pinned:

w 0; tð Þ ¼w l; tð Þ ¼ u 0; tð Þ ¼ u l; tð Þ ¼Mx 0; tð Þ ¼Mx l; tð Þ ¼ 0: ð9Þ

3. One beam end is fixed, whereas the other one is pinned:

w 0; tð Þ ¼w l; tð Þ ¼ u 0; tð Þ ¼ u l; tð Þ ¼w0
x 0; tð Þ ¼Mx l; tð Þ ¼ 0: ð10Þ

The remaining parameters are the same as those in the
previous case. The reported charts (Table 4) of vibration types
show that the boundary conditions influence significantly the non-
linear beam dynamics. In almost whole chart area of the investi-
gated control parameters the regular dynamics (periodicity and
quasi-periodicity) dominates in the case of a pinned-pinned
support. In the case of fixed-fixed support the zone of periodic
vibrations covers less than half of the chart, and tongues of
bifurcation zones (yellow) and chaos (white) are clearly visible
for high values of ωp and q0. In the case of mixed boundary
conditions, the area of chaos increases significantly, and chaos can
be reached even for relatively low values of control parameters.
Surprisingly, there is a tongue of the periodic zone for high values
of q0 and ωp.

Table 3
Charts of Lyapunov exponents for different kx.
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Charts presented in Table 4 are constructed with the help of the
power spectrum analysis via FFT, and the same color notation as
that applied in Table 3 is used.

4. Scenario of transitions into chaos

We study the beamwith curvature kx ¼ 48 and the following fixed
parameters: n¼ 120; λ¼ 100; ε¼ 1: The analysis was carried out for
fixed excitation frequency ωp ¼ 5:7615 and different values of the
excitation amplitude. Tables 5–8 show the following characteristics:
(1) Fourier power spectrum ðtA ½1836;2348�Þ; x¼ 0:5; (2) Poincaré
pseudo-map; (3) phase portrait; (4)modal portrait; (5) autocorrelation
function; (6) the shape of beam deflection in time instant t ¼ 1836;
(7) the shape of beam deflection versus time tA ½1836;1852�; (8) 2D
Morlet wavelet; (9) 3D Morlet wavelet.

The following conclusions can be formulated on the basis of the
results given in Tables 5–8. For the amplitude of excitation
q0 ¼ 57500 (Table 5) periodic vibrations are obtained. In the modal
portrait we may follow the occurrence of the attractor, but its
magnitude is so small that it is not validated either via the phase
portrait or the Fourier power spectrum. A slight increase of the
excitation amplitude up to q0 ¼ 62500 yields the occurrence of an
independent frequency and a set of dependent frequencies
appears. Then the phase portraits exhibit an attractor (the modal
portrait is collapsed and the Poincaré map shows the attractor). In
the interval q0 ¼ ½64500;83000� results of the simulation are
changed qualitatively though small changes in both the Poincaré
section and in the energy distribution along the power spectrum
are visible (the graphical results are not reported here). For the
amplitude q0 ¼ 85000 (Table 6) a collapse of both the Poincaré
section and phase portrait is observed and the system transits via
a jump (stiff bifurcation) into the periodic state (for q0 ¼ 86000;
not reported here). However, this state is not robust and one
observes a transition into chaos in the interval q0 ¼ ½86500;87000�
(2D Morlet wavelet exhibits the intermittency of frequencies,
whereas 3D Morlet wavelet validates the energy pumping into
low frequencies). The Poincaré map splits into the attractor
validated also by the phase and modal portraits, and the auto-
correlation function strongly decreases in time. Observe that the
changes described so far influence strongly both the charts of
vibration character and the maximum beam deflection. For
q0 ¼ 86500 the deflection is equal to 1.75, for q0 ¼ 87000 it reaches
the value of 4.25, and for q0 ¼ 87500 it is equal to 10.5 (the two
latter results are not reported here). The maximum deflection
moves along the x coordinate to the beam center and the system
resists to give a feedback to the non-symmetric boundary condi-
tions. In fact, our thin curvilinear beam exhibits buckling and loses
a possibility to react to the external load which is well demon-
strated by time evolutions of the beam deflections.

A further analysis has only a theoretical aspect, since the beam
deflection is out of the initially introduced mechanical hypotheses.
All amplitudes of the external loads applied further deal with the
occurrence of the Lorenz attractor on the phase portraits. The
autocorrelation function strongly decreases. The Fourier power
spectrum becomes noisy, a broad-band frequency basis is
observed and a deep chaotic regime is exhibited.

Analysis of the Fourier power spectrum allows us to monitor the
following scenarios of transition into chaos. For the amplitude of
excitation less than q0¼57,500 periodic vibrations are observed at
frequencyωp ¼ 5:7615: An increasing excitation amplitude implies the
occurrence of frequency ω1 ¼ 2:614 being non-commeasurable with
the fundamental ones, and simultaneously the linearly dependent
frequency ω2 ¼ωp�ω1 is generated. This process takes place further
and the Ruelle–Takens–Newhouse scenario follows. It is basically
visible for excitation amplitude q0 ¼ 62500: This scenario is continued
up to q0 ¼ 86000; when the system transits again into periodic
vibrations. The increase of the excitation amplitude from q0 ¼ 86500
to q0 ¼ 87000 implies the occurrence of intermittency (this is exhib-
ited by the 2D Morlet wavelet) which yields the increase of stochas-
ticity of the spectrum. However, frequencies ω1¼2.405, ω2 ¼ωp�ω1

can be distinguished, and the Ruelle–Takens–Newhouse scenario
appears. This scenario is conserved until q0 ¼ 87500. A further increase
of the excitation amplitude results in a novel dynamical phenomenon,
i.e. two scenarios of transition into chaos appear simultaneously.
Though for q0 ¼ 88500 (Table 7) one may distinguish fundamental
frequenciesωp; two frequenciesω1 andω2 ¼ωp�ω1 remaining from
the previous Ruelle–Takens–Newhouse scenario, as well as frequencies
ω3 ¼ωp=2¼ 2:884; ω4 ¼ωp=4¼ 1:424; ω5 ¼ 3=4ωp ¼ 4:308 appear.
The values of frequencies ω3; ω4; ω5 validate the Hopf bifurcation, i.e.
the Feigenbaum period doubling scenario is exhibited while transiting
into chaos. However, for q0 ¼ 95500 the system dynamics changes,
since the birth of frequencies ω1 ¼ω2=2¼ 2:884; as well as
ω2 ¼ 1:387; ω3 ¼ 1:497; ω4 ¼ 4:271; ω5 ¼ 4:369 is observed. It
should be emphasized that frequencies ω2 and ω3 are located around
ωp=4¼ 1:436; whereas frequencies ω4 and ω5 around
3=4ωp ¼ 4:307; i.e. both implicit and explicit Hopf bifurcations as well
as the damped Ruelle–Takens–Newhouse scenario are exhibited.
When carrying out a similar analysis of vibrations of the curvilinear
beam in the interval from q0 ¼ 95000 to q0 ¼ 96500 it is clear that a
few times the system shows a jump-type reconstruction into two
configuration states. A doubled system regime is robust even for
higher values of q0; unless it transits into the deep chaotic state with
fully broadband Fourier spectrum (Table 7).

5. Chaotic vibrations in the temperature field (kx¼12)

Tables 9 and 10 give the analysis of the influence of stationary
temperature field for problems of type 1 to 3 (boundary conditions for

Table 4
Vibration charts for different boundary conditions.
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temperature fields are defined in Table 1) for the curvilinear beam
with curvatures kx ¼ 12;24. The first reported graph presents the color
palette of the temperature field regarding beam thickness and length.
Further, relations wmaxð0;5Þðq0Þ and scales obtained with the help of
FFT and Lyapunov exponents (LE) estimations for the temperature field
intensity T¼0; 200; 300 are given. The following non-linear dynamics
has been detected: periodic (all LEs are negative), chaotic (one LE is
positive), hyperchaotic (two LEs are positive), hyper-hyperchaotic
(three LEs are positive) and deep chaotic (four LEs are positive).

Consider the case of heat boundary condition of type 1 (T1) and
beam curvature kx ¼ 12 (Table 9). In interval q0 ¼ ½8;10� tempera-
ture TA ½0;300� does not influence linear dependence wmaxðq0Þ
(the three curves overlap). Another observation is that the
reported scales of FFT and LE are in agreement and provide more
information by supplementing each other. In the beginning it is
also shown that the occurrence of temperature causes beam
center deflections of about 1.4 units (q0 ¼ 0). In the case of T ¼ 0
the increase of q0 causes a parabolic increase of wmax up to the
value of wmax ¼ 2; then the increase is less dynamic and after
reaching q0 ¼ 6:3 a snap-through occurs.

The snap-through phenomena exhibited by relation wmaxðq0Þ
are associated with deep chaotic dynamics. A qualitatively similar
behavior has been observed in the two remaining heat boundary
conditions of type 2 and 3 (not reported here). In both cases only
the qualitatively different temperature distribution has been
detected (in the case of T3 a break of distribution of the
temperature symmetry has been observed).

We carried out a similar computational analysis regarding
beam curvature for kx ¼ 24: Here, we report only one example
associated with the heat boundary conditions of type 2 (Table 10).

In this case there is a wider interval where two curves of wmaxðq0Þ
are almost linear and overlap each other but only for the cases of
T ¼ 200 and T ¼ 300. In the case of T ¼ 0 there are four snap-
through phenomena. Furthermore, beginning from q0A ½12;15� the
value of wmax is almost constant in the case of T ¼ 200 and T ¼ 300
(higher values correspond to lower temperature). Again, in the
case of boundary condition T3 the lack of symmetric heat dis-
tribution over the beam length was observed (not reported here).

In general, the analysis of results implies that the temperature
field increase causes an increase of periodic vibration zones. The
zones of different chaos types decrease essentially. Parameter kx
largely affects the curvilinear beam vibrations. An increased
temperature field intensity implies vanishing of the deep chaos,
and hence an increase in the value of q0 causes also the death of
hyperchaos state.

6. The influence of heat transfer boundary conditions and
beam curvature

In this section we briefly address the problem devoted to the
impact of three types of heat boundary conditions as well as beam
curvature on maximum vibrations monitored in the beam center.
Table 11 presents relations wmaxð0:5Þðq0Þ for three types of bound-
ary conditions (Table 1) vs. kx ¼ 0;12;24. Initial deflections serve
as initial conditions of the Cauchy problem (initial system state is
defined via the relaxation method [28,29]).

The first row of Table 11 presents the same temperature value
but associated with three different types of the heat boundary
conditions. An increase of beam curvature kx implies the increase

Table 5
Beam characteristics (q0 ¼ 57500; ωp ¼ 5:7615).
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of wmax: The deepest snap-through phenomenon occurs for
kx ¼ 24; and in the case of type 3 heat boundary conditions. The
second row of Table 11 reports the influence of heat boundary
conditions for the assumed beam curvature kx ¼ 0; 12; 24: It is
noteworthy that in the case of curvature kx ¼ 12 the type of heat
boundary conditions introduces almost negligible differences in
the wmaxðq0Þ characteristics up to the value of q0 ¼ 10:

7. The influence of kx on the solution of heat transfer equation

In this section we are going to solve the 3D heat transfer
equation in order to define the temperature field for a curvilinear
beam. For shells made from an isotropic material a stationary heat
transfer equation has the following form [20]

∂2T
∂x2

þ∂2T
∂z2

þ2kx
∂T
∂x

¼ �W0

λ
; ð11Þ

where λ stands for the heat transfer coefficient of the isotropic
body. As in the previous examples, we do not take into account the
internal heat source ðW0 ¼ 0Þ. So, Eq. (11) yields

∇2Тþ2kx
∂Т
∂x

¼ 0:

Temperature is yielded by the method of boundary elements
(the number of FEM elements and nodes associated with FDM are
given in Table 12). Analysis of the obtained results shows that in
order to get reliable results it is required to increase the number of
partitions while kx is increased.

Fig. 2 illustrates wmaxð0:5Þðq0Þ for the problem of type 1
(Table 1) for two fixed parameters kx ¼ 12 and kx ¼ 24. A dotted

(or solid) curve corresponds to the problem, while in Eq. (11) the
beam curvature kx is not taken (or is taken) into account.

Analysis of the relations yields the following result: the
increase of kx implies essential changes in the characteristic
wmaxð0:5Þðq0Þ.

8. The influence of electric field

In this section a mathematical model of a flexible curvilinear
beam in the stationary temperature field and electric field is
derived. A polarized electro-conducting layer is situated on the
beam surface (Fig. 3).

A beam of length a (along the Ox axis), height h (along the Oz
axis), and of unit width is considered. The beam material is
described in the frame of the linear theory of piezoelectricity.
The supported beam is subjected to the action of transversal load
qðx; tÞ: Its surfaces z¼ 7h are electrically loaded through the
potential difference V(t). Surfaces x¼ 0; x¼ a are not covered by
electrodes. The beam displacements are as follows:

uz ¼ u�z
∂w
∂x

; wz ¼w; �hrzrh; ð12Þ

where u¼ uðx; tÞ and w¼wðx; tÞ are the beam longitudinal dis-
placement and beam deflection measured regarding the beam
middle curve, respectively.

The beam deformation is described by the following formulas

εxx ¼ ∂u
∂x

þ1
2

∂w
∂x

� �2

�z
∂2w
∂x2

; εzx ¼ 0: ð13Þ

The vector characteristics of the electric field are: D¼Dðx; z; tÞ
� induction, E¼ Eðx; z; tÞ � electric field intensity. The state

Table 6
Beam characteristics (q0 ¼ 85000; ωp ¼ 5:7615).

J. Awrejcewicz et al. / International Journal of Non-Linear Mechanics 76 (2015) 29–41 35



equations are approximated by the linear direct and inversed
piezo-effect and pyro-electric effect, and they have the following
form

σxx ¼ cE11 εxx�αTTð Þ�e31Ez;

Dx ¼ εS11Ex;

Dz ¼ εS33Ezþe31εxxþgpyrT ; ð14Þ

where: cE11 � elasticity modulus (for the constant electric field),
e31 � piezoelectric coefficient, εS11; ε

S
33 � dielectric permeability

(for constant deformation), αT � coefficient of linear heat exten-
sion, T ¼ θðx; z; tÞ�T0 � temperature increase with respect to the
temperature T0, gpyr � pyro-electric coefficient
(gpyr ¼ ð2;…;3ÞU10�3 for direction along the initial polarization
and gpyr ¼ 0 for the remaining directions). Note, that state Eq. (14)
govern the case when the beam material is initially polarized
along its thickness. Electrostatic equations have the following form

∂Dx

∂x
þ∂Dz

∂z
¼ 0; Ex ¼ �∂ψ

∂x
; Ez ¼ �∂ψ

∂z
; ð15Þ

where ψ ¼ψ ðx; z; tÞ is the electric potential. The first of Eq. (15),
after substituting (13) into (14), takes the following form

e31
εS33

∂2w
∂x2

þεS11
εS33

∂2ψ
∂x2

þ∂2ψ
∂z2

�gpyr
εS33

∂T
∂z

¼ 0: ð16Þ

Introducing forces

Nx ¼
Z h

�h
σxxdz; Qx ¼

∂Mx

∂x
¼ ∂
∂x

Z h

�h
σxxzdz;

and after a few transformations we get

Nx ¼ 2hcE11
∂u
∂x

þ1
2

∂w
∂x

� �2

þ e31
2hcE11

V tð Þ�αT

2h

Z h

�h
Tdz

 !
;

Qx ¼ �2h3

3
cE11

∂3w
∂x3

�cE11αT

Z h

�h

∂T
∂x

zdz: ð17Þ

Projection of the equation governing the motion onto the Ox
axis takes the form

2hρ
	 


€uþε1 _u
	 
¼ ∂Nx

∂x
; ð18Þ

and after taking into account (17) we get

∂2u
∂x2

þL3 w;wð Þ�αT

2h

Z h

�h

∂T
∂x

dz¼ ρ
cE11

€uþε1 _u
	 


: ð19Þ

On the other hand, projection of the motion into the Oz axis is

∂Qx

∂x
þNx

∂2w
∂x2

þ∂Nx

∂x
∂w
∂x

þq¼ ð2hρÞð €wþε1 _wÞ; ð20Þ

which, after taking (15) into account, takes the final form

L1 u;wð ÞþL2 w;wð Þ�h2

3
∂4w
∂x4

þ q
2hcE11

þ e31
2hcE11

 !
V tð Þ∂

2w
∂x2

�

�αT

2h

Z h

�h

∂2T
∂x2

zdzþ∂2w
∂x2

U
Z h

�h
Tdzþ∂w

∂x
U
Z h

�h

∂T
∂x

dz

 !
¼ ρ

cE11

 !
€wþε2 _w
	 


: ð21Þ

Eqs. (16), (17) and (21) have the dimensional form. Below,
symbol � is associated with dimensional quantities, whereas the
lack of this symbols denotes non-dimensional quantities. We use

Table 7
Beam characteristics (q0 ¼ 88500; ωp ¼ 5:7615).
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c¼
ffiffiffiffiffiffiffiffiffiffiffiffi
cE11=ρ

q
– velocity, d31 – piezo-modulus,

~x ¼ ax; ~z ¼ 2hz; ~u ¼ ð2hÞ2
a

u; ~w ¼ 2hw; λ¼ a
2h

; ~t ¼ a
c
t;

~ε1;2 ¼
c
a
ε1;2; ~q ¼ cE11

2h
a

� �4

q; ~V ¼ 1

λ2
2h
d31

� �
V ; ~ψ ¼ 1

λ2
2h
d31

� �
ψ ; ~T ¼ T0T :

ð22Þ
Eqs. (16), (17) and (21) take the following counter-part form

k21
∂2w
∂x2

þ 1

λ2
εS11
εS33

∂2ψ
∂x2

þ∂2ψ
∂z2

�k2pyrλ
2∂T
∂z

¼ 0;

∂2u
∂x2

þL3 w;wð Þ�λ2 U αTT0ð Þ
Z 1=2

�1=2

∂T
∂x

dz¼ €uþε1 _u;

1

λ2
L1 u;wð ÞþL2 w;wð Þ� 1

12
∂4w
∂x4

þqþk22 UV tð ÞU∂
2w
∂x2

� �

� αTT0ð Þ
Z 1=2

�1=2

∂2T
∂x2

zdzþ∂2w
∂x2

U
Z 1=2

�1=2
Tdzþ∂w

∂x
U
Z 1=2

�1=2

∂T
∂x

dz

 !
¼ €wþε2 _w:

ð23Þ

In Eq. (23) k21 ¼ e31d31=εS33 and k22 ¼ e31=ðcE11d31Þ denote the non-
dimensional coefficients of the electro-mechanical coupling and

Table 8
Beam characteristics (q0 ¼ 96500; ωp ¼ 5:7615).

Fig. 2. Beam deflection vs. q0 for two curvatures.
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k2pyr ¼ gpyrT0d31=εS33 is the non-dimensional coefficient of the pyro-
electric coupling.

Furthermore, we have

L1 u;wð Þ ¼ ∂u
∂x

∂2w
∂x2

þ∂2u
∂x2

∂w
∂x

; L2 w;wð Þ ¼ 3
2
∂2w
∂x2

∂w
∂x

� �2

;

L3 w;wð Þ ¼ ∂w
∂x

∂2w
∂x2

¼ 1
2
L1ðw;wÞ: ð24Þ

9. Initial and boundary conditions for electric potential

For ψ ¼ψ ðx; z; tÞ the non-dimensional boundary conditions are:
ψ x; �1=2; t
	 
¼ �VðtÞ=2, ψ x;1=2; t

	 
¼ VðtÞ=2 ð0rxr1; t40Þ
∂ψ=∂x¼ 0 for x¼ 0, x¼ 1 ð�1=2rzr1=2; t40Þ. Initial condi-
tions regarding the non-dimensional quantities are as follows:

ψ ¼ 0;
∂ψ
∂t

¼ 0 for t ¼ 0 ð0rxr1; �1=2rzr1=2Þ:

Parameters are the same as these adopted previously. Data
reported in Table 13 show that for the uncoupled problem (without
the influence of the electric field on temperature field), the electric
field has only a negligible effect on the chaotic beam dynamics.

10. Concluding remarks

In this final section we shortly summarize the applied meth-
odology and the obtained results putting emphasis on their
novelty. First, the object of our study represents a continuous
structural member, and hence its dynamics is governed by non-
linear PDEs. Furthermore, we study a problem, when our beam isFig. 3. Flexible curvilinear beam with the electric layer.

Table 9
Temperature field scale, wmaxðq0Þ and FFT/LE (T1, kx¼12).
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located in either thermal environment or is affected by both
thermal and electric fields. Each of the PDEs associated either
with the action of the mechanical field (the Euler–Bernoulli beam
theory with inclusion of the von Kármán non-linearity) or the
thermal/electric fields requires different boundary conditions.

The research takes into account strong non-linear dynamic effects,
and in particular bifurcational and chaotic vibrations exhibited by the
beam. The constructed charts of beam vibration type which are
associated with long computational time (each point of the chart
requires computation of a set of many nonlinear ODEs with the help of
numerous characteristics applied to identify a type of nonlinear
dynamics) play a key role in direct engineering applications. It is well
known that bifurcational and chaotic dynamics is much more danger-
ous than the regular one due to the occurrence of large vibration
amplitudes. Therefore, the obtained charts may serve as a recipe to
make a proper choice of control parameters in order to avoid
dangerous dynamical regimes.

It should be emphasized that dynamics of any structural
member (beam, plate, shell) governed by non-linear PDEs yields
a qualitatively different problem than that originated from dyna-
mical behavior of lumped mechanical systems with either one or a
few degrees of freedom. It is clear and well documented in the

existing literature that in many cases we cannot reduce the
problem of infinite dimension to that of one- or two-degrees-of-
freedom mechanical systems. The usually introduced strong trun-
cation of an infinite set of ODEs may generate erroneous results.
This is why the numerical study requires validation and confirma-
tion of reliability of the results. Our research satisfies the men-
tioned requirements. Furthermore, we proposed a deeper analysis
beyond the classical ones, which allows us to offer significant new
physical insights in the presented non-linear phenomena using an
example of the curvature beam dynamics.

The obtained results are briefly summarized as follows:

(i) A different form of the PDEs and the associated boundary
conditions have been derived;

(ii) Charts of vibration types (Table 2) and charts of first four
Lyapunov exponents (Table 3) for different beam curvatures
(kx ¼ 0; 12; 48) have been constructed;

(iii) The influence of three types of the mechanical boundary
conditions on the beam dynamics has been reported in the
form of vibration charts (Table 4);

(iv) Scenarios of transition from regular to chaotic beam vibra-
tions using FFT, Poincaré pseudo-maps, phase portraits,

Table 10
Temperature field scale, wmaxðq0Þ and FFT/LE (T2, kx¼24).
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modal portraits, autocorrelation functions, shapes of beam
deflection, 2D and 3D Morlet wavelets have been detected
and discussed;

(v) Chaotic vibrations of the beam in the stationary temperature
field environment have been studied putting emphasis on the
snap-through phenomena exhibited by the wmaxðq0Þ curves

Table 11
Beam deflection wmaxð0:5Þðq0Þ for different heat boundary conditions type and curvature magnitudes.
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Table 12
Numbers of FEM elements and numbers of nodes (FDM).

Number of elements kx ¼ 12 kx ¼ 24 Finite differences m�n kx ¼ 12 kx ¼ 24

32 0.28 0.35 32�32 0.32 0.36
64 0.28 0.35 64�64 0.28 0.31

128 0.28 0.35 128�128 0.28 0.31

Table 13
Vibration chart showing the influence of V.
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with respect to three different types of heat boundary
conditions;

(vi) The effect of beam curvature (in the equation governing heat
transfer) on the beam dynamics has been investigated
(usually this question is omitted in the existing literature
while studying similar types of problems);

(vii) We have shown that in the case of non-coupling between
electric and temperature fields, the electric field action has a
negligible impact on non-linear beam dynamics.
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