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A novel numerical/analytical approach to study geometrically nonlinear vibrations of shells with variable
thickness of layers is proposed. It enables investigation of shallow shells with complex forms and different
boundary conditions. The proposed method combines application of the R-functions theory, variational
Ritz’s method, as well as hybrid Bubnov–Galerkin method and the fourth-order Runge–Kutta method.
Mainly two approaches, classical and first-order shear deformation theories of shells are used. An original
scheme of discretization regarding time reduces the initial problem to the solution of a sequence of linear
problems including those related to linear vibrations with a special type of elasticity, as well as problems
governed by non-linear system of ordinary differential equations. The proposed method is validated by the
investigation of test problems for shallow shells with rectangular planform and applied to new vibration
problems for shallow shells with complex planforms and variable thickness of layers.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of multi-layer shallow shells and plates is widely
used for mathematical modeling of thin-walled designs of ele-
ments made of advanced composite materials. Many of the con-
structive and nonlinear factors should be taken into account in
order to provide a more accurate mathematical description of the
real physical and mechanical processes. These features include
geometric nonlinearity, mechanical properties of composite mate-
rials, ways of stacking, variable thickness of shell or variable thick-
ness of layers, etc.

The vast literature on the nonlinear vibration of multilayer
plates and shallow shells having uniform thickness of layers is
available. This problem is a subject of many publications
[1,2,6,13,16,18,19]. A review of achievements in this field is pre-
sented in works [2,22,24,29]. As follows from the review, there is
a small number of papers dedicated to the problem of the nonlin-
ear vibrations of multi-layer plates and shells with variable thick-
ness of layers [4,5,8,28]. A more complex dynamic behavior of the
plates and shells caused by the interactive influence of layers and
variable thickness is expected. This requires both more advanced
modeling of governing equations and novel proposals to find their
solutions. In order to solve this problem appropriately we need
first to solve a linear problem associated with multi-layer plates
and shells with variable thickness of the layers. Some results for
multi-layered annular circular plate have been reported in Ref.
[28]. In that work a survey concerning this problem is presented
first for circular and annular plates. It should be noted that even
linear vibrations of multi-layer plates and shells with variable
thickness of layers have not been sufficiently studied [8].

In this paper the algorithm of meshless discretization, based on
a combination of the classical approaches and modern constructive
tools of the R-functions theory [23] is proposed. Application of the
R-functions theory allows us to study geometrically nonlinear
dynamic response of the laminated plates and shallow shells with
complex shapes, different boundary conditions and non-constant
thickness of the layers.

Recently many engineering oriented researchers are focused on
modeling, analysis and manufacturing of the tapered laminated
structures. Taper configurations may include external plies of rect-
angular shapes and mid-plane plies of triangle shapes, whereas the
internal tapered structure parts may consist of basic triangle shape
plies as well as the plies arrange in a staircase way, the overlapping
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Fig. 1. Shallow shell with layers of variable thickness.
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dropped plies and continuous plies interspersed. The tapered
laminated structures have found wide applications in mechanical
and civil engineering as well as in aerospace and aeronautics (wing
and tin skin structures, helicopter rotor blades, etc.) because of
their weight savings, damage tolerance and structural tailoring
capabilities. It means that the interest of such type laminated pan-
els comes from the needs of the mentioned industry branches, and
in particular from the aircraft industry. In general, the constant
thickness laminates do not allow for stiffness tailoring, and hence
tapered layers of variable thickness are required keeping simulta-
neously the thickness of the shell constant [20,21].

The state-of-art and review of recent developments in the ana-
lysis of tapered laminated composite structures taking into
account the interlaminar stress analysis, delamination analysis
and parametric study has been reported by He et al. [11]. Both ana-
lytical and numerical methods have been employed to solve the
ply drop-off problem with an emphasis on the stress fields in the
presence of interface cracks by Her [12]. The latter knowledge is
required to assess the overall strength of the total laminate and
to optimize the ply drop-off design.

A modified shear-lag model has been developed and implement-
ed to study tensile stresses and delamination of a composite lami-
nate with drop-off plies by He et al. [10]. In particular, in the case of
the laminate without drop-off layers the fiber layers and the resin
layers with linearly variable layers thickness have been studied.

The technology of manufacturing the so far described laminates
are addressed in Refs. [7,27]. It has been pointed out that compo-
nents of the composite laminates vary in thickness, and in many
cases it is not possible to taper the laminates continuously. The
tapering process ends by terminating one or more of the internal
plies. Though in our paper we do not exactly study, the mentioned
geometrical imperfections, but we analyze in the given examples
linear variation of the layers thickness.

Industrial design guidelines for composite structures with ply-
drops are discussed by Irisarri et al. [14]. The proposed method
of stacking, sequence, table devoted to the optimal design of lami-
nate composite structures with ply drops allowed to solve industri-
al problems including preventing unwanted coupled behavior,
avoiding delamination at ply-drop location, obtaining the ply lay-
outs allowed for manufacturing, as well as to keep ply continuity
and smooth load redistribution over the studied structure.

2. Problem statement

A laminated shallow shell of an arbitrary planform composed of
M layers of variable thickness is shown in Fig. 1. To investigate
geometrically nonlinear vibration of the shell we use both the
first-order shear deformation theory (FSDT) and the classical shell
theory (CST). According to these theories it is assumed that tangent
displacements are the linear functions of coordinate z, whereas
transverse displacement w is constant through the shell thickness.
While the CST adopts Kirchhoff’s hypothesis, FSDT does not adopt
it. Observe that in the latter case it is assumed that the mid surface
normal to the shell remains straight after deformation, but not
necessarily normal to the middle surface. Further, we consider
symmetric composite-laminated shallow shells.

According to the considered theories of shells, in-plane
displacements u; v and transverse displacement w may be given
in the following form [1,9]:

u ¼ u0 þ zwx; v ¼ v0 þ zwy; w ¼ w0; ð1Þ

where u0;v0 and w0 are the displacements at the midsurface, wx and
wy are the rotations perpendicular to the midsurface about the
y- and x-axes, respectively. The non-linear strain–displacement
relations can be written as follows
e11¼ e0
11þzv11; e22¼ e0

22þzv22; e33¼0; e12¼ e0
12þzv11; ð2Þ

where

e0
11 ¼ u0;x þ

w0

Rx
þ 1

2
w2

0;x; e0
22 ¼ v0;y þ

w0

Ry
þ 1

2
w2

0;y;

e0
12 ¼ u0;y þ v0;x þw0;xw0;y; ð3Þ

v11 ¼ dwx;x � ð1� dÞw;xx; v22 ¼ dwy;y � ð1� dÞw;yy;

v12 ¼ dðwx;y þ wy;xÞ � 2ð1� dÞw;xy: ð4Þ
Indicator d is the tracing constant which takes values 1 and 0 for the
FSDT and CST, respectively, and subscripts following a comma stand
for partial differentiation.

Let us present strain and moment resultants
F ¼ N11;N22;N12;M11;M22;M12f gT in the matrix form

F ¼ A½ � � e0; ð5Þ

in which components of vector eo ¼ e0
11; e0

22; e0
12;v11;v22;v12

� �T are
defined by formulas (3) and (4). Matrix A takes the following form

½A� ¼
½C� 0
0 ½D�

� �
; ð6Þ

whereas matrices C and D are defined as follows

½C� ¼
C11 C12 C16

C12 C22 C26

C16 C26 C66

2
64

3
75; ½D� ¼

D11 D12 D16

D12 D22 D26

D16 D26 D66

2
64

3
75: ð7Þ

The shear stress resultants of the composite shallow shell can be
expressed in the following way

Q ¼
Qx

Q y

� �
¼

C55 C54

C45 C44

� � e13

e23

� �
; ð8Þ

e13 ¼ d w0;x þ wx �
u0

Rx

� 	
; e23 ¼ d w0;y þ wy �

v0

Ry

� 	
ð9Þ

Elements Cij and Dij in the above given equations are the stiff-
ness coefficients of the shell which are defined by the following
formulas [3]:

ðCijðx; yÞ;Dijðx; yÞÞ ¼
XM

m¼1

Z hmþ1ðx;yÞ

hmðx;yÞ
BðmÞij ð1; z

2Þdz; i; j ¼ 1;2;3; ð10Þ

Cijðx; yÞ ¼ K2
XM

m¼1

Z hmþ1ðx;yÞ

hmðx;yÞ
BðmÞij dz; i; j ¼ 4;5: ð11Þ

Here, stiffness matrix elements BðmÞij express the stress–strain

relation in the m-th layer, K2 is the shear correction factor, and
hm is the distance from the midsurface to the upper surface of
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the mth layer. While solving the concrete problems, the shear cor-
rection K2 is taken equal to 5

6. It should be emphasized that for the
given class of problems the stiffness coefficients Cij and Dij are the
functions of ðx; yÞ.

In what follows we apply the method proposed in Ref. [18].
According to this approach, the aim of the first step is to study a
linear problem in order to find the natural frequencies and eigen-

functions UðcÞ ¼ uðcÞ;v ðcÞ;wðcÞ;wðcÞx ;wðcÞy

n oT
that satisfy the given

boundary conditions.

3. Solution to linear problem

We are going to find a solution to linear problems for laminated
shells with variable thickness of layers using RFM [17,23]. Note
that while solving the linear problem, all inertial forces, including
membrane and rotary ones, are taken into account. Since we deal
with linear vibrations, the problem can be reduced to a variational
problem oriented towards finding a stationary value of the follow-
ing Lagrange functional

J ¼ Umax � Tmax; ð12Þ

where Umax and Tmax are the maximum strain and kinetic energies
of the shell, respectively. In the case of the linear vibration analysis,
both energies can be found using the standard approaches
described in Refs. [1,9]:

Umax ¼
1
2

ZZ
X

N11e0
11 þ N22e0

22 þ N0
1212 þM11v11 þM22v22

h
þM12v12 þ dðQ xe13 þ Qye23Þ



dX; ð13Þ

Tmax ¼
k2

2

ZZ
X
qðx; yÞ hðx; yÞ u2

0 þ v2
0 þw2

0

� ��

þd
h3ðx; yÞ

12
w2

x þ w2
y

 �!
dX: ð14Þ

In order to minimize functional (12), Ritz’s method is used pro-
vided that a system of basic functions is built by R-functions theory.
However, in order to get the basic functions, the corresponding
solution structures should be proposed [23]. Examples, how to
define the mentioned solution structures are presented, illustrated
and widely discussed in Refs. [4,17–19,23], and therefore this
description is omitted in this work.

4. Solution to nonlinear problem

In the case of geometrically nonlinear problem, the approach
proposed in earlier works is applied [4,18,19]. Namely, the
unknown functions are presented in the following way:

w ¼
Xn

i¼1

yiðtÞw
ðcÞ
i ðx; yÞ; wx ¼ d

Xn

i¼1

yiðtÞw
ðcÞ
xi ðx; yÞ;

wy ¼ d
Xn

i¼1

yiðtÞw
ðcÞ
yi ðx; yÞ; ð15Þ

u ¼
Xn

i¼1

yiðtÞu
ðcÞ
i ðx; yÞ þ

Xn

i¼1

Xn

j¼1

yiyjuij;

v ¼
Xn

i¼1

yiðtÞv
ðcÞ
i ðx; yÞ þ

Xn

i¼1

Xn

j¼1

yiyjv ij; ð16Þ

where ykðtÞ are the unknown functions to be defined further,

wðcÞi ðx; yÞ;u
ðcÞ
i ðx; yÞ;v

ðcÞ
i ðx; yÞ;w

ðcÞ
xi ðx; yÞ;w

ðcÞ
yi ðx; yÞ are the components

of the i�th eigenfunctions.
Note that functions uij; v ij should satisfy the following relations

L11ðuijÞ þ L12ðv ijÞ ¼ �Nlð2Þ1 wðcÞi ;wðcÞj

 �
;

L21ðuijÞ þ L22ðv ijÞ ¼ �Nlð2Þ2 wðcÞi ;wc
j

 �
;

ð17Þ

where

Nlð2Þ1 wðcÞi ;wðcÞj

 �
¼ wðcÞi ;xL11wðcÞj þwðcÞi ;yL12wðcÞj ; ð18Þ

Nlð2Þ2 wðcÞi ;wðcÞj

 �
¼ wðcÞi ;xL12wðcÞj þwðcÞi ;yL22wðcÞj : ð19Þ

Operators L11; L22; L12; L21 are defined as follows

L11 ¼ C11ð Þ;xx þ 2C16ð Þ;xy þ C66ð Þ;yy;

L22 ¼ C66ð Þ;xx þ 2C26ð Þ;xy þ C22ð Þ;yy;

L12 ¼ L21 ¼ C16ð Þ;xx þ ðC12 þ C66Þð Þ;xy þ C26ð Þ;yy: ð20Þ

The system of Eq. (17) is solved by RFM. Substituting formulas
(16) and (17) for functions u;v;w;wx;wy into equations of motion,
and applying the Bubnov–Galerkin procedure, we obtain the follow-
ing nonlinear system of ODEs regarding the unknown functions yjðtÞ:

y00r ðtÞ þx2
LryrðtÞ þ

Xn

i;j¼1

bðrÞij yiðtÞyjðtÞ þ
Xn

i;j;k¼1

cðrÞijk yiðtÞyjðtÞykðtÞ ¼ 0 ð21Þ

Coefficients bðrÞij ; c
ðrÞ
ijk have the following form:

bðrÞij ¼
�1

m1 wðcÞr

��� ���2

ZZ
X

NðLÞ11 wðcÞj

 �
;xx þ NðLÞ22 wðcÞj

 �
;yy þ 2NðLÞ12 wðcÞj

 �
;xy



�k1NðNpÞ
11 � k2NðNpÞ

22

�
wðcÞr dX;

cðrÞijk ¼ �
1

m1 wðcÞr

��� ���2

ZZ
X

NðNpÞ
11 uij;v ij;w

ðcÞ
i wðcÞj

 �
wðcÞk

 �
;xx



þ NðNpÞ
22 uij;v ij;w

ðcÞ
i wðcÞj

 �
wðcÞk

 �
;yy

þ 2NðNpÞ
12 uij;v ij;w

ðcÞ
i wðcÞj

 �
wðcÞk

 �
;xy

�
wðcÞr dX ð22Þ

NðLÞ ¼ NðLÞ11 ; NðLÞ22 ; NðLÞ12

n oT
¼ ½C�eðLÞ; NðNpÞ

n o
¼ NðNpÞ

11 ; NðNpÞ
22 ; NðNpÞ

12

n oT
¼ ½C� eðNpÞ� �

; ð23Þ

eðLÞ ¼ eðLÞ uðcÞi ;v ðcÞi ;wðcÞi

 �
¼ uðcÞi

 �
;x þ k1wðcÞi ; v ðcÞi

 �
;y þ k2wðcÞi ; uðcÞi

 �
;y þ v ðcÞi

 �
;x

 �n oT
;

ð24Þ

eðNpÞ ¼ eðNpÞ uij;v ij;w
ðcÞ
i wðcÞj

 �
¼ ðuijÞ;xþ

1
2

wðcÞi

 �
;x � wðcÞj

 �
;x;ðv ijÞ;y

�

þ1
2

wðcÞi

 �
;y � wðcÞj

 �
;y;ðuijÞ;yþðv ijÞ;xþ wðcÞi

 �
;x wðcÞj

 �
;y

�T

: ð25Þ

Solution to the system of second-order ODEs (21) can be found
by different analytical methods, such as the harmonic balance
method (HBM), multiple scale, method and the Bubnov–Galerkin
techniques or via a direct numerical integration using the Runge–
Kutta methods. In this paper we apply the Runge–Kutta method.

5. Numerical results and test problems

The developed theoretical approach and worked out software
are validated regarding some tested problems. In order to obtain
the solutions to the tested problems, we have applied numerical



Table 1
Comparison of nonlinear frequency ratio kN=kL of laminated cross-ply plates obtained
(our method (RFM) and Ref. [26] method).

wmax

h
(0�/90�/0�/90�/0�)

SSI CCI

[26] RFM [26] RFM

0.2 1.032 1.031 1.008 1.008
0.4 1.121 1.120 1.034 1.031
0.6 1.257 1.254 1.074 1.068
0.8 1.428 1.420 1.128 1.118
1.0 1.624 1.609 1.195 1.180
1.2 1.837 1.813 1.271 1.251

Table 2
Comparison of nonlinear frequency ratio kN=kL of laminated angle-ply plates obtained
(our method (RFM) vs. that presented in Ref. [26]).

wmax

h
(45�=� 45�=45�=� 45�=45�)

SSI CCI

[26] RFM [26] RFM

0.2 1.015 1.015 1.007 1.007
0.4 1.058 1.057 1.028 1.027
0.6 1.126 1.124 1.063 1.061
0.8 1.215 1.212 1.109 1.106
1.0 1.322 1.317 1.165 1.162
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algorithms suitable for the analysis of laminated shallow shells
with a variable thickness of layers. Note that in the present paper
we use only a single mode approximation to solve nonlinear prob-
lems. A few of the studied problems regarding constant layers are
given bellow.

Problem 1. A test was carried out to compare isotropic cylindrical
and spherical shallow shells of square planform studied earlier by
Kobayashi and Leissa [15] using the FSDT formulation. The
boundary conditions for a thin shell are as follows

v ¼ w ¼ Mx ¼ wy ¼ Nx ¼ 0 at x ¼ � a
2
; ð26Þ

u ¼ w ¼ My ¼ wx ¼ Ny ¼ 0 at y ¼ � a
2
: ð27Þ

Poisson’s coefficient is m ¼ 0:3, whereas shell geometric charac-
teristics satisfy the following relations: h=a ¼ 0:01; rx ¼ Rx=a ¼ 10;

ry ¼ Ry=a ¼ ð10;1Þ. Fig. 2 presents the frequency ratio kN=kL as a
function of the non-dimensional maximum positive deflection
wmax=h for cylindrical and spherical shallow shells. Natural fre-
quency kL corresponds to the first bi-symmetric linear mode. In
order to solve Eq. (4), the fourth-order Runge–Kutta method has
been used. A comparison of the results regarding kN=kL versus
wmax=h validates our approach.
1.2 1.442 1.434 1.227 1.225
Problem 2. We study nonlinear vibrations of thin laminated
composite rectangular plates using the CST taking into account
the following material properties:

E1=E2 ¼ 40; G12=E2 ¼ 0:6; G13=E2 ¼ 0:5; m12 ¼ 0:25: ð28Þ

All plate layers are of equal thickness and the fiber orientation is
measured from X-axis. The following boundary conditions are con-
sidered in the present analysis:

(i) Immovable simply supported case (SSI): w ¼ 0; Mn ¼ 0; v ¼
0; u ¼ 0 at x ¼ � a

2 ; y ¼ � b
2 ;

(ii) Immovable clamped case (CCI): w ¼ 0; w;n ¼ 0; v ¼
0; u ¼ 0 at x ¼ � a

2 ; y ¼ � b
2.
Fig. 2. Non-dimensional frequency kN=kL versus wmax=h of non-linear vi
ðrx ¼ Rx=a ¼ 10; ry ¼ Ry=a ¼ 10Þ isotropic panels (our results (RFM) are compared to tho
The relationship between the nonlinear frequency ratio kN=kL and
non-dimensional maximum amplitude wmax=h regarding cross-ply
0�=90�=0�=90�=0�½ � and angle-ply 45�=� 45�=45�=� 45�=45�½ � of

thin square plates (a=b ¼1;h=a ¼0.01) are reported in Tables 1 and
2, respectively.

Again, the comparison of results reported in Tables 1 and 2
regarding nonlinear frequency of the considered vibrated plates
validates our approach.

Problem 3. Here, non-linear free vibrations of laminated shallow
shells with rigidly clamped edges are studied. It is assumed that
the shells consist of graphite-epoxy layers and each layer has the
same thickness and the following material properties hold:
bration cylindrical ðrx ¼ Rx=a ¼ 10; ry ¼ Ry=a ¼ 1; 1=ry ¼ 0Þ and spherical
se reported in Ref. [15]).
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E1 ¼ 138 GPa; E2 ¼ 8:96 GPa; G12 ¼ 7:1 GPa;
G13 ¼ G23 ¼ E1=2; m12 ¼ 0:3: ð29Þ

The computations are carried out for a symmetric laminated
angle-ply shallow shell (h ¼ 45�=� 45�=45�) with square planform.
Shear correction factor is taken as K2 ¼ 5=6 and h=a ¼ 0:01. A com-
parison regarding linear natural frequency for the first vibration
mode of the considered shells obtained through our method and
that reported in Ref. [1] is presented in Table 3.

Fig. 3 shows a comparison of the backbone curves obtained
through our approach versus results reported in Ref. [1] for
angle-ply laminated shallow shell (h ¼ 45�=� 45�=45�) with curva-
tures rx ¼ Rx=a ¼ 25; ry ¼ Ry=a ¼ 25 and thickness h=a ¼ 0:01.

Since the divergence of results presented in Fig. 3 does not
exceed 5%, our results are reliable and validated.

Problem 4. Let us consider the angle-ply laminated shell on a
trapezoidal plane-form as shown in Fig. 4.

The studied shell consists of four fiber reinforced layers.
Suppose that orientation on h of the fibers is defined from the
positive x-axis as ðh=� h=h=� hÞ. The material properties, along the
principal directions of each layer are:

E22=E11¼0:4086; G12=E11¼0:198; G13=E11¼0:198;

G23=E11¼0:198; m12¼0:23; m12¼0:23; q=q0¼1; h¼30�: ð30Þ
The obtained results are compared with results reported in Ref.

[25] for shells with following geometric parameters:

b=a ¼ 1; Rx=a ¼ rx ¼ 0; Ry=a ¼ ry ¼ 2;

h=a ¼ 0:05; c=a ¼ 0; 0:5: ð31Þ

Two opposite edges AD and BC are clamped and the remaining
two are free. Following the Ref. [25], the middle point of the edge
CD in Fig. 4 is chosen as the reference point, and the deflection at
this point is denoted by W0 ¼ wða=2; ðbþ cÞ=4Þ.

Fig. 5 shows a comparison of frequency ratio (kN=kL) against the
ratio of the deformation parameters ðw=hÞ for trapezoidal and tri-
angular shells obtained using our approach with the results report-
ed in Ref. [25]. Let us note that divergence of our results does not
exceed 1% for trapezoidal and 4% for triangular shell, which also
validates our method.

6. Nonlinear vibration of shallow shells with layers of variable
thickness

Let us now apply our numerical software to investigate nonlin-
ear vibration of shallow shells with layers of variable thickness.

Problem 5. Consider a three-layer clamped shallow shell with
square planform of side a and thickness h ¼ 0:01a. Suppose that
the face layers are isotropic, but a middle layer is orthotropic with
the following parameters:
E1=E0¼0:25; E2=E0¼0:077; G12=E0¼0:029; m1¼0:24: ð32Þ
Table 3
Non-dimensional natural frequency K1 (first vibration mode) of symmetric angle-ply
laminated shallow shells obtained via our (RFM) and Ref. [1] approach.

(45�=� 45�=45�)

K1 ¼ k1a2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1�m12m21Þq

E2

q
rx=a rx=ry [1] RFM

10 1 140.1 140.1
25 1 93.01 92.94
50 1 83.97 83.89

100 1 81.54 81.46
10 0 103.2 103.1
10 �1 98.81 98.76
Here E0 is the elastic modulus of isotropic layers, Poisson’s ratio
for isotropic layers is m0 ¼ 0:3, and density of all layers is the same
equal to q ¼ q0. We take plane z ¼ 0 as the middle surface. Assume
that thickness of the layers varies linearly (Fig. 6), but the general
thickness has a constant value defined as follows

X3

s¼1

hs ¼ h: ð33Þ

Equations of surfaces which bound the inner layer, are formu-
lated in the following way (see Fig. 6):

h1ðx;yÞ¼�
h
2

mþ x
a
ð1�2mÞ

 �
; h2 x;yð Þ¼ h

2
mþ x

a
ð1�2mÞ

 �
: ð34Þ

Observe that the maximum value of parameterm = 0.5 corre-
sponds to constant thickness of layers. For the given case, rigid
coefficients Cij and Dij are governed by the following relations

Cijðx; yÞ ¼ h E0 þ ðE1 � E0Þ mþ x
a
ð1� 2mÞ

 � �
; ð35Þ

Dijðx; yÞ ¼
h3

12
E0 þ ðE1 � E0Þ mþ x

a
ð1� 2mÞ

 �3
� 	

: ð36Þ

In Table 4 the values of non-dimensional frequencies Ki ¼ k2
i a2q0=

ðEoh2Þ; i ¼ 1;2;3, for the investigated clamped square plate
obtained by our proposed method are compared to similar results
reported in Ref. [8]. In Ref. [8] this problem is solved using the clas-
sical theory via a numerically-analytical method applying both the
spline-approximation and the discrete-orthogonalization method.
The results have been obtained only for free vibrations of the plates
and they are presented graphically. A comparison of both results
with available ones confirms the validation of the proposed method.

Below we solve this problem for cylindrical and spherical shells.
In Tables 5 and 6 the values of non-dimensional frequencies

Ki ¼ kia2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0=E0h2

q
for cylindrical and spherical shells with square

planform and non-dimensional parameters of curvature k1; k2 are
reported. These parameters are defined as follows:

k1 ¼
a
Rx
; k2 ¼

a
Ry
: ð37Þ

Analysis of Tables 5 and 6 shows that difference in the estima-
tion of frequencies for the shells with constant thickness of layers
(m ¼ 0:5) in comparison to the shells with uniform inner layer
(m = 0) may achieve the level of 14.7% depending on the number
of frequency. Note that for the plates this difference reaches 20%
(see Table 4).

In Table 7 we present modes corresponding to the first, second
and third frequencies of the studied spherical shells. Note that for a
shell with constant thickness of layers the maximum amplitude of
the first mode is achieved in the center of the plate. But for sphe-
rical shells with a variable thickness of layers the maximum values
of the mode is shifted along the Ox axis. Similarly, the nodal lines of
the second (m = 0.25) and third (m ¼ 0:25) modes are also dis-
placed along the Ox axis. In addition, when m ¼ 0, the second
and third forms are swapped.

The backbone curves for clamped spherical panels with square
planform and curvatures k1 ¼ k2 ¼ 0:25 are shown in Fig. 7. These
curves have been obtained assuming that we keep only single
mode, that is, we put n ¼ 1 in formulas (21). Consequently instead
of system ODEs (21) we have only one Duffing-type equation

y00ðtÞ þx2
L yrðtÞ þ by2ðtÞ þ cy3ðtÞ ¼ 0: ð38Þ

In this case we apply the fourth-order Runge–Kutta method to
obtain relation between the amplitude A ¼ wmax=h and ratio kN=kL:

It follows from Fig. 7 that as parameter m increases, the soft
spring response becomes more essential.



Fig. 3. Comparison of functions kN=kLðwmax=hÞ of non-linear vibration clamped spherical angle-ply laminated shallow shell (h ¼ 45�=� 45�=45�) with curvatures
rx ¼ 25; ry ¼ 25 obtained via our method against results of Ref. [1].

Fig. 4. Shallow shells on trapezoidal planform.
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In order to illustrate the possibilities of the proposed approach,
we have investigated linear and geometrically nonlinear vibrations
of the shells with complex planform and linearly varied thickness
of layers. Note that our software allows us to consider the different
laws of changing thickness of layers and different boundary condi-
tions. However, in this paper we have considered only the linear
law and clamped boundary conditions for shells with complex
shape of their plan.

Problem 6. Let us consider three-layer shallow shells with com-
plex planform presented in Fig. 8.

Suppose that the boundary conditions and mechanical charac-
teristics of the layers are the same as in Ref. [1] and defined by rela-
tions (29). The shell is a laminated angle-ply shallow shell
(h ¼ 45�=� 45�=45�) with layers of variable thickness. Suppose
that thickness of the inner layer varies linearly.

The equations of surfaces which bound the inside layer is as
follows

h1;2ðx; yÞ ¼ �
h
2

mþ y� b
a
ð1� 2mÞ

� 	
ð39Þ
Some particular cases (m = 0; m = 0.25; m = 0.5) of the behavior
thickness of the inside layer are presented in Fig. 8. The stiffness
coefficients are defined as follows

Cijðx; yÞ ¼ h E0 þ ðE1 � E0Þ mþ y� b
a
ð1� 2mÞ

� 	� 	
; ð40Þ

Dijðx; yÞ ¼
h3

12
E0 þ ðE1 � E0Þ mþ y� b

a
ð1� 2mÞ

� 	3
 !

ð41Þ

Let us choose the solution structure [17,23] in the following way

u¼xU1; v ¼xU2; w¼x2U3; wx¼xU4; wy¼xU5: ð42Þ

Function xðx; yÞ in formula (42) satisfies the following conditions

xðx; yÞ ¼ 0; 8ðx; yÞ 2 @X; xðx; yÞ � 0; 8ðx; yÞ 2 X; ð43Þ

and it will be constructed using the R-functions theory [23]. In the
case of the planform shown in Fig. 8 we take

xðx; yÞ ¼ ðf 1^0f 2Þ^0ððf 3_0f 4Þ_0ðf 5^0f 6ÞÞ; ð44Þ

where



Fig. 5. Comparison of function kN=kLðw=hÞ characterizing non-linear vibrations of cylindrical four-layer laminated shallow shell (30�=� 30�=30�=� 30�) of trapezoidal
ðc=a ¼ 0:5Þ and triangular planforms (c=a ¼ 0 and c=a ¼ 0:01) with the results of Ref. [25].

Fig. 6. Thickness of layers varies linearly.

Table 5
Effect of parameter m on the values of non-dimensional frequencies

Ki ¼ kia2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0=E0h2

q
of the clamped cylindrical shells.

Cylindrical shells (k1 ¼ 0:25; k2 ¼ 0)

CST FSDT

Ki m ¼ 0 m ¼ 0:25 m ¼ 0:5 m ¼ 0 m ¼ 0:25 m ¼ 0:5

K1 18.28 19.53 19.84 18.27 19.51 19.82
K2 20.63 22.04 22.39 20.55 21.97 22.32
K3 25.75 26.99 27.38 25.21 26.94 27.30
K4 30.98 32.81 33.27 30.85 32.68 33.13

Table 4
Comparison of non-dimensional frequencies Ki ¼ k2

i a2q0= Eoh2
 �

; i ¼ 1;2; 3 for three-
layer square clamped plate estimated by our (RFM) method and that reported in Ref.
[8].

Ki Method m ¼ 0 m ¼ 0:25 m ¼ 0:5

CST FSDT CST FSDT CST FSDT

K1 RFM 0.886 0.882 1.023 1.019 1.057 1.053
[8] 0.88 – 1.02 – 1.06 –

K2 RFM 3.608 3.578 4.259 4.231 4.369 4.341
[8] 3.60 – 4.25 – 4.35 –

K3 RFM 3.781 3.756 4.264 4.235 4.430 4.401
[8] 3.80 – 4.26 – 4.40 –
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f 1 ¼
1

2a
ða2 � x2ÞP 0; f 2 ¼

1
2b
ðb2 � y2ÞP 0; ð45Þ

f 3 ¼ ðy� b1ÞP 0; f 4 ¼
1
2c
ðc2 � x2ÞP 0; ð46Þ

f 5 ¼ ðyða� cÞ � b2ðx� cÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� cÞ2 þ b2

2

q�
P 0; ð47Þ

f 6 ¼ ððy� b2Þða� cÞ þ b2ðxþ aÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� cÞ2 þ b2

2

q�
P 0: ð48Þ

Here, ^0 and _0 are the symbols of R-conjunction and R-disjunction
(see [23] for more details), respectively.
In order to construct the basic functions, indefinite components
Ui; i ¼ 1; . . . ;5 (formulas (42)) should be taken in the form of the
following truncated series

Ui ¼
Xk¼Ni

k¼1

aðiÞk uðiÞk ; ð49Þ

where uðiÞk

n o
are the known complete systems of functions, for

instance, power or Chebyshev’s polynomials, trigonometric func-
tions, splines or other. In the present study, power polynomials
have been used in Eq. (49) to get numerical results. Substituting
(49) into Eq. (39) yields

u ¼
XR1

i¼1

aiui; v ¼
XR2

i¼1

aiv i; w ¼
XR3

i¼1

aiwi;

wx ¼
XR4

i¼N3þ1

aiwxi; wy ¼
XR5

i¼N4þ1

aiwyi ð50Þ

where ui ¼ xuð1Þi ;v i ¼ xuð2Þi ;wi ¼ xuð3Þi ;wxi ¼ xuð4Þi ;wyi ¼ xuð5Þi

are the admissible functions that satisfy boundary conditions.
Unknown coefficients ai; i ¼

P5
j¼1Rj are calculated by minimizing

functional (12). In order to determine the needed numbers of coor-
dinate functions the computational experiment for plates with the
following geometrical and mechanical parameters is carried out:

h=2a ¼ 0:01; c=2a ¼ 0:3; b1=2a ¼ 0:2; b2=2a ¼ 0:2; a=b ¼ 1;
ð51Þ

E1 ¼ 138 GPa; E2 ¼ 8:96 GPa; G12 ¼ 7:1 GPa;
G13 ¼ G23 ¼ E1=2; m12 ¼ 0:3: ð52Þ



Table 6
Effect of parameter m on the values of non-dimensional frequencies

Ki ¼ kia2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0=E0h2

q
of the clamped spherical shells.

Spherical shells (k1 ¼ 0:25; k2 ¼ 0:25)

CST FSDT

Ki m ¼ 0 m ¼ 0:25 m ¼ 0:5 m ¼ 0 m ¼ 0:25 m ¼ 0:5

K1 24.38 26.84 27.56 24.34 26.81 27.54
K2 26.94 28.92 28.99 26.87 28.86 28.93
K3 28.02 29.08 29.56 27.95 29.02 29.51
K4 34.42 36.52 37.03 33.29 36.40 36.90
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Results of the performed investigations are presented in
Table 8.

The analysis of Table 8 shows that convergence of the frequen-
cies is better for the classical theory. Let us explain a reason of the
essentially small dimension of Ritz matrices. We have three
unknown functions in the case of CLT and five ones in the case of
FSDT. It is obvious that here we are faced with the accumulation
of errors for the densely filled matrices of high order and com-
plexity of the integration domain and integrand. Therefore, it is
better to apply finite functions (for example splines) to approxi-
mate the uncertain components. Since we consider thin shallow
shells, the CLT may be used. The total number of coordinate func-
tions 234 has been chosen to solve the problem that corresponds to
the 12th degree of polynomials U1;U2;U3. Note that the complete

systems uðiÞk

n o
have the following form

uð1Þk

n o
uð2Þk

n o
; uð3Þk

n o
: 1; x; y; x2; xy; y2; x3; x2y; xy3; y3; . . . ð53Þ

In the case of the application of FSDT we take the total numbers
of the admissible functions equal to 362 that corresponds to the
11th degree of polynomials U1;U2;U4;U5 and the 12th degree of
polynomial U3. Next, we discuss the obtained results using the
introduced data.
Table 7
Effect of parameter m on modes of the clamped spherical shells with curvatures k1 ¼ k2 ¼

m ¼ 0

K1 ¼ 24:38 K2 ¼ 26:94

m ¼ 0:25

K1 ¼ 26:84 K2 ¼ 28:92

m ¼ 0:5

K1 ¼ 27:56 K2 ¼ 28:99
Table 9 reports frequency parameters Ki ¼ kia
2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1�m12m21Þq

E2

q
i ¼ 1;2;3, for plates, cylindrical and spherical panels for different
values of the thickness parameter m. The non-dimensional curva-
tures equal to 0.25 have been chosen and the geometric para-
meters are defined by relations (51).

It is seen from Table 9 that the influence of parameter m
on the values of natural frequencies for the given material
(graphite-epoxy (52)) is not essential if we compare the obtained
results with the previous example (Tables 4–6). The natural fre-
quencies of the plate and shells are decreased by 2%, when the
value of parameter m increases. This problem shows that corre-
sponding investigations have to be satisfied in every case,
because there are many different factors which may influence
the behavior of the studied mechanical objects: mechanical char-
acteristics and ways of packing of the layers, geometric form,
boundary conditions, curvature, law of variation of the layer
thickness, and other factors.

Fig. 9 shows the effect of amplitude on frequency dependencies
for the clamped plate, cylindrical and spherical three-layered shal-
low shells with variable thickness of layers for m ¼ 0:25 and for the
ratios h=2a ¼ 0:01; c=2a ¼ 0:3; b1=2a ¼ 0:2; b2=2a ¼ 0:2; a=b ¼ 1.
The plate exhibits an entirely hard behavior, but in cylindrical and
spherical shells soft spring stiffness type behavior occurs. For a
cylindrical shell the soft spring response diminishes as compared
to the counterpart spherical shell behavior. The results shown in
Fig. 9 are obtained within the framework of CLT.

7. Concluding remarks

In this paper the geometrically nonlinear vibrations of the
laminated shallow shells of an arbitrary planform and variable
thickness of layers are considered. To solve this problem in the
framework of the classical lamination and first-order shear defor-
mation theories a numerical-analytical method is developed. The
proposed approach is meshless and utilizes the R-functions theory
0:25.

K3 ¼ 28:03

K3 ¼ 29:08

K3 ¼ 29:56



Fig. 7. Amplitude versus frequency for different thickness parameter m of the clamped spherical square shell (k1 ¼ k2 ¼ 0:25; h=a ¼ 0:01; b=a ¼ 1).

0.25

0.5

0

Fig. 8. Thin shallow shell with complex planform and the studied cases of the variable thickness of layers.
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as well as the variational and purely numerical methods. One of
the main advantages of the proposed approach is its universality,
given by the analytical representation of the general solution and
solutions of intermediate problems, including the problem of free
vibrations and a series of problems of the elasticity theory. The
key achievement is the analytical expressions for the coefficients
of the system of non-linear ODEs yielded by a reduction procedure
of the PDEs. It essentially simplifies the solution of nonlinear prob-
lems including PDEs with variable coefficients (shells and plates of
the variable thickness or laminated shells with layers of variable



Table 8
Convergence of frequency parameters of the first vibration mode K1 ¼ k1 ð2aÞ2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1�m12m21Þq

E2

q
of angle-ply laminated plate (h ¼45�/–45�/45�) with variable thickness of the layers.

R1=R2=R3 CLT R1=R2=R3=R4=R5 FSDT

m ¼ 0 m ¼ 0:25 m ¼ 0:5 m ¼ 0 m ¼ 0:25 m ¼ 0:5

66/66/66 144.73 144.70 143.28 45/45/66/45/45 147.69 146.38 143.76
66/66/78 144.60 144.58 143.09 55/55/66/55/55 145.30 144.65 142.75
78/78/88 144.32 144.28 142.79 66/66/78/66/66 144.57 143.97 142.04
88/88/105 144.32 144.28 142.79 78/78/78/78/78 143.72 143.27 141.49

Table 9
Effect of parameter m on natural frequencies Ki ¼ ki a

2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1�m12m21Þq

E2

q
of plates, angle-ply

(h ¼ 45�=� 45�=45�) cylindrical and spherical panels.

CST FSDT

Ki m ¼ 0 m ¼ 0:25 m ¼ 0:5 m ¼ 0 m ¼ 0:25 m ¼ 0:5

Spherical shells (k1 ¼ 0:25; k2 ¼ 0:25Þ
K1 297.36 302.94 304.00 296.98 302.48 303.42
K2 324.63 328.39 329.42 324.05 327.64 328.51
K3 364.83 367.63 364.66 361.38 363.32 360.31
K4 405.38 405.59 406.33 402.95 402.28 402.06

Cylindrical shells (k1 ¼ 0:25; k2 ¼ 0Þ
K1 207.46 209.53 209.14 206.98 208.87 208.33
K2 260.36 263.30 266.19 259.82 262.15 264.37
K3 322.51 318.87 308.91 317.45 314.01 304.46
K4 356.65 361.40 365.78 354.77 356.87 359.86

Plates (k1 ¼ 0; k2 ¼ 0Þ
K1 144.60 144.58 143.09 144.57 143.97 142.04
K2 209.47 212.93 217.34 210.12 212.52 215.83
K3 306.82 300.32 286.88 303.09 296.91 283.27
K4 324.94 331.75 337.69 325.83 329.37 333.65
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thickness and complex planforms). In order to construct analytical
representation of the solutions the method of structure solutions is
applied. The structure solutions is invariant with respect to the
geometry of the domain. The equations on the border domain
and its sections are presented in analytical forms. They can contain
literal parameters, variation of which allows for the investigation
of a wide class of shells of an arbitrary shape within the same pro-
gram. The boundary conditions are satisfied exactly and the thick-
ness of the layers is taken into account analytically.
Fig. 9. Amplitude versus frequency for various curvature ratios for angle-ply (h ¼ 45�=
plates (k1 ¼ k2 ¼ 0) and for m ¼ 0:25.
The developed method is widely tested. First four problems
regarding laminated shells of constant layers have been solved,
and our results have been compared with those obtained by other
researchers in order to validate our approach. New numerical
results in the form of backbone curves are presented for a three-
layered spherical clamped panel with square planform (outer slices
are isotropic and inner slice is orthotropic). The thickness of the
layers varies linearly. In order to illustrate the possibilities of the
proposed method nonlinear vibrations of three-layered plates,
spherical and cylindrical shells with complex shape of plan are
studied. The considered shells are angle-ply (h ¼ 45�=� 45�=45�)
orthotropic ones with a variable thickness of layers.

Based on the obtained numerical results it can be concluded
that the thickness of the layers can be controlled in order to reduce
the weight of the projected object to increase its strength, and to
change appropriately the stress–strain state, etc.

Note that like many other numerical methods, the proposed
approach has its own drawbacks. One disadvantage of the RFM is
that when using polynomial approximations of the undefined com-
ponents in the structural formulas we obtain a densely filled
matrix. In problems concerning vibrations of the laminated shal-
low shells such components may vary from three up to seven. It
depends on the order of the used theory and the type of boundary
conditions. Consequently, the order of the Ritz matrices is large.
Therefore, when solving the eigenvalue problem we have poor con-
vergence due to bad conditions of the matrices. However, this
problem can be solved by joint use of the R-functions method
and the approximation of uncertain components via finite func-
tions such as splines.
� 45�=45�) spherical shell (k1 ¼ k2 ¼ 0:25), cylindrical shell (k1 ¼ 0:25; k2 ¼ 0) and
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The multi-modes approximation of unknown functions is
tempting, but taking into account our earlier remarks it greatly
complicates the problem, and accordingly the development of a
software. The presented approach and the new results will be use-
ful for researchers dealing with this type of problems.
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