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ON A CONTACT PROBLEM OF TWO-LAYER BEAMS
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TEMPERATURE FIELD
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Technical University, Saratov, Russian Federation
2Department of Automation, Biomechanics and Mechatronics, Lodz University
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3Department of Mathematics and Modeling, Saratov State Technical University,
Saratov, Russian Federation

We consider a mathematical model of two-layer beams coupled by boundary conditions
in a stationary temperature field taking into account geometric nonlinearity. The
stationary temperature field is defined by a 2D heat transfer equation with boundary
conditions of the first kind. The geometric nonlinearity is introduced via von Kármán’s
relations for both beams. Equations of beam deflection are derived due to the
Euler–Bernoulli hypothesis. The contact interaction is described using Winkler’s
model. Scenarios of a transition from regular to chaotic regimes are studied. Phase
synchronization of beam vibrations versus both character and intensity of the applied
temperature field is investigated.

Keywords: Beam; Contact interaction; Temperature

INTRODUCTION

It is well known that temperature variations have an important influence
on a structure dynamics since thermal stresses are generated due to thermal
expansion/contraction. It is clear that these effects may change nonlinear dynamics
of structural members including straight and curved beams, in particular, when
nonlinear vibrations and buckling phenomena are concerned. Since beams are
members of various constructions, mechanisms and machines operating in diverse
temperature conditions (rocket systems, satellites, engines), the thermodynamic
effects play a key role while studying their nonlinear vibrations.
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ON A CONTACT PROBLEM OF TWO-LAYER BEAMS 469

Thermoelastic, geometrically nonlinear vibrations of isotropic, straight and
curved beams using the hierarchical finite elements have been studied in [1], where
both longitudinal displacements and inertia are taken into account. The temperature
variation, thickness and ratio of curvature on the beam regular and chaotic
dynamics were illustrated and discussed. It was assumed that the temperature field
was not coupled with the beam deformation.

In reference [2] dynamic instability and transient vibrations of a pinned
beam with transverse magnetic fields and thermal loads were analyzed. However,
the truncated governing equations were strongly reduced to only one linear
second-order Mathieu differential equation. The heat phenomenon and primary
resonance were illustrated and discussed. Then, a similar study was carried out for
physically nonlinear thermoelastic natural pinned beam [3]. The influence of a few
control parameters (frequency ratio, load factor, amplitude, damping, temperature
increment) on the dynamical stability loss was investigated, but the problem was
reduced again to the Mathieu equation, though this time its nonlinear version was
studied.

Relatively high temperature variations were applied in thermodynamic
analysis for both simply supported and clamped beams assuming that fundamental
thermomechanical parameters, like modulus of elasticity, Poisson ratio, linear
expansion coefficient and shear modulus are temperature-dependent [4]. Analytical
investigations were validated by an experimental analysis.

Thermally pre-stressed laminated and functionally graded beam of variable
thickness using the Timoshenko modeling and differential quadrature method was
studied from the point of view of its dynamics [5]. It was concluded that both
free and forced vibrations of the graded beam were qualitatively similar to the
counterpart thermally loaded homogeneous beam with variable thickness.

The out-of-plane free vibration analysis of functionally graded circular curved
beam in thermal environment taking into account the first-order shear deformation
theory was carried out in reference [6]. Hamilton’s principle yielded the governing
equations and the associated boundary conditions. The effects of temperature
rise, boundary conditions, material and geometrical parameters versus natural
frequencies were studied. It was concluded that the temperature-dependent material
properties essentially influenced the natural frequencies.

Recently, carbon nanotubes have been applied in nanoelectronics, nanodevices
and nanocomposites. Reference [7] addresses a systematic development of the
nonlocal Timoshenko beam model to study multi-walled carbon nanotubes
exhibiting large-amplitude vibrations in thermal environment. The problem is
reduced to a set of coupled nonlinear ordinary differential equations which are
solved by the harmonic balance method. In particular, the effects of small-scale
parameter, nanotube geometries, temperature variation and the medium elasticity
on the dynamics of nanotubes are investigated. Nonlinear vibrations of single-
walled carbon nanotubes in an elastic medium via a single-beam model including
thermal effects are studied in reference [8]. The amplitude-frequency curves for
large-amplitude vibrations were reported. In addition, the influence of thermal
variations, boundary conditions, surrounding material constants and variations of
geometrical parameters were taken into account.

The multi-layer beams are widely applied in mechatronic systems like sensors
of inertial information (they measure circular velocity of an object rotation), in
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470 A. V. KYRSKO ET AL.

gyroscopes (micro-electromechanical systems), in micro-cantilever bio-sensors, in
optic-mechanical devices, and others. In reference [9] one-, two-, and three-layer
beam packages being subjected to the action of a constant and variable current
are analyzed. The influence of electromechanical excitation is approximated by a
concentrated load in the beam center. It should be emphasized that even for a linear
beam model, the system of layers behaves in a nonlinear way due to interaction of
the layers and occurrence of the electro-physical quantities.

In work [10] the problem of a simultaneous influence of the temperature
field of the first kind boundary conditions and local sinusoidal load on cylindrical
shells was presented. In particular, the static load versus temperature intensity of
rectangular shells for selected geometric parameters was studied.

A series of bifurcation phenomena was detected, depending on the phase
of external periodic excitation. Nonlinear vibrations of continuous systems were
investigated in works [11, 12]. In reference [13] the influence of different kinds of the
temperature field on the vibration regimes of a one-layer beam was analyzed. It was
shown that though a temperature field had a marginal influence on the vibration
amplitude, it changed the character of exhibited vibrations. Chaotic zones were
decreased with an increase of temperature input. The way in which temperature
influenced a scenario of the system transition from regular to chaotic dynamics was
also illustrated. The control of system parameters allows researchers to establish a
required vibration regime. The latter result makes it possible to keep the system
dynamic regime in a safe region, i.e., the mechanical construction may work safely
under the action of temperature field and dynamic load.

However, the problem related to investigation of the effects of thermal field
on two-layer beam chaotic dynamics and synchronization was not addressed. In
particular, our aim was to detect and illustrate the scenarios associated with routes
to chaotic vibrations. In addition, the paper discusses a need to develop novel
models being close to realistic nonlinear dynamics of continuous systems (here
beams), and illustrates novel dynamic phenomena associated with the influence of
geometric and design nonlinearity and of the temperature field.

PROBLEM STATEMENT

We study a two-layer beam, where the layers can contact each other as it is
shown in Figure 1. We consider the case when sticking between the layers of the
beam is not possible because contact pressure is small.

Figure 1 Two-layer beam studied.
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ON A CONTACT PROBLEM OF TWO-LAYER BEAMS 471

The introduced mathematical model is based on the following hypotheses:

1. Any transversal cross section normal to the beam middle curvature remains
straight and normal before and after the beam deformation, and the cross section
height is unaffected (Euler-Bernoulli hypothesis):

�x�u = −z
�2w

�x2
(1)

2. Nonlinear relation between beam deformation and displacement is taken in von
Kármán’s form:

�x = �u

�x
+ 1

2

(
�w

�x

)2

(2)

where: u �x� t� – middle beam line displacement along the axis x; w �x� t� is beam
deflection.

3. Beam material is isotropic, elastic and follows the Duhamel–Neumann rule:

�z
x = �x + �x�i + �T �x� z� (3)

4. Beam temperature is governed by a 2D heat transfer equation, and hence
there are not any restrictions on the temperature distribution along the beam
thickness; normal stresses occurring on surfaces parallel to the middle beam line
are neglected, since they are small in comparison to other stresses. We have
applied stationary temperature field. Thermal expansion coefficient (� − const)
does not depend on temperature, and the beam material is isotropic. Lack of the
temperature input �T = 0� reduces the problem to a standard one.

The 2D beam space in the rectangular coordinates is as follows: � =
	�x� z� ∈ 
0� l� × 
−h1/2� h1/2� ∧ 
h1/2 + �� h1/2 + � + h2�, where: l is the beam
length; h1� h2 is the height of the first and second layer, respectively; �− stands for
the clearance magnitude.

Equations governing dynamics of the beam layers embedded in the
temperature field have the following form:

1
�2

{
L1 �wk� uk� + L2 �wk� wk� − 1

12
�4wk

�x4

}
− �

�x

(
�wk

�x
N Tk

x

)
− �2MTk

x

�x2
(4)

− �2wk

�t2
− �

�wk

�t
+ q − qk = 0

�2uk

�x2
+ L3 �wk� wk� − �N Tk

x

�x
− �2uk

�t2
= 0� k = 1� 2 (5)

where L1 �wk� uk� = �2uk

�x2
�wk

�x
+ �2wk

�x2
�uk

�x
� L2 �wk� wk� = 3

2
�2wk

�x2

(
�wk

�x

)2
� L3 �wk� wk� =

�2wk

�x2
�wk

�x
� qk = K �w1 − � − w2� �� � = 1 + sign�w1 − w2�; wk is the displacement

along axis z; uk is the displacement along axis x; N Tk stand for the temperature
longitudinal stress; MTk is the temperature bending moment; q represents the
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472 A. V. KYRSKO ET AL.

transversal load; t is the time; � is the damping coefficient characterizing the
dissipative properties of the beam environment.; K is the Winkler-type stiffness; qk

represents the contact pressure; � is the non-dimensional coefficient.
The main idea of studying the considered contact Problems of beams

embedded into a temperature field and taking into account beam geometric non-
linearities relies on solution of Eqs. (4)–(5) assuming an explicitly defined coupling
of the contact pressure qk with the deflections wk of the beam center line. This
approach removes a need of the Green function construction on each of the
iterational step, which is widely used while solving the contact problems in a
classical way. It should be emphasized that it is impossible to describe the Green
functions analytically, and also their numerical estimations belongs rather to
difficult tasks. Here, the contact pressure is removed from the number of unknown
functions, and it is a continuous function achieving zeroth value on boundaries of
the contact zones. At each time step we construct on iterative process of finding
a solution of the non-linear differential equations, which is appropriately matched
with the process of improvement of the contact area estimation.

The given governing equations have a non-dimensional form, whereas the
transformation between dimensional and non-dimensional quantities are as follows:

wk = wk

hk

� ui = ukl

hk
2 � x = x

l
� � = l

hk

� q = q
l4

hk
4E

� t = t

�
� � = l

c
� c =

√
Eg

�
(6)

� = �l

c
� N Tk

x = N Tk
x l2

Ehk
3 � MTk

x = MTk
x l

Ehk
2 � Tk = �Tk�

2

In the following, the symbol � ¯ � is omitted for the sake of simplicity.
Governing equations require boundary conditions (BC). As an example we

take (7), which corresponds to simple support and clamping of the beam ends:

wk �0� t� = wk �l� t� = uk �0� t� = uk �l� t� = w′
kx �0� t� = Mkx �l� t� = 0 (7)

and the following initial conditions are taken

w �x� 0� = ẇ �x� 0� = u �x� 0� = u̇ �x� 0� = 0 (8)

Temperature field is defined for each beam layer via Eq. (9) with the first kind
boundary conditions (10):

�2Tk

�x2
+ 1

�2

�2Tk

�z2
= 0 (9)

Tk �x0� z� = f1�k �z� � Tk �xl� z� = f2�k �z� � Tk �x� z0� = f3�k �x� � Tk �x� zl� = f4�k �x�
(10)

To reduce PDEs to ODEs we apply FDM and Taylor series
expansion in the vicinity of point xi. We take into account the mesh GN =
	0 = xi = 1� xi = i/N� i = 0� � � � � N .
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ON A CONTACT PROBLEM OF TWO-LAYER BEAMS 473

PDEs (4), (5) are reduced to the second-order ODEs (11) using the
difference operators. In each mesh point 0� ��� n, where n is the spatial co-ordinate
partitions number, we take finite differences and construct finite difference operators
�x�·i�� �x2�·i�� �x4�·i� for approximation of the order O

(
�2

)
, where � is the mesh

step:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ük
t = �x2

(
uk

i

) + �x

(
wk

i

)
�x2

(
wk

i

) − �x

(
N

Tk
i

)
ẅk

t + �ẇk
t = �

2
�− 1

12 �x4

(
wk

i

) + �x2

(
uk

i

)
�x

(
wk

i

) + �x2

(
wk

i

)
�x

(
uk

i

)
+ 3

2

(
�x

(
wk

i

))2
�x2

(
wk

i

) − �x2

(
wk

i

)
N

Tk
i + �x

(
wk

i

)
�x

(
N

Tk
i

)
− �x2

(
M

Tk
i

)
+ q�

+K
(
w1

i − � − w2
i

)
�� k = 1� 2

(11)

Temperature terms occurring in (11) are computed with respect to the
boundary conditions of the heat transfer equation. The obtained second-order
ODEs are reduced to the first-order ODEs, and then they are solved using the
fourth-order Runge–Kutta method. Note that the boundary conditions require also
a transformation to finite differences.

RELIABILITY OF THE RESULTS

To study beam vibration regimes the following control parameters were
investigated (see Table 1). The temperature field is stationary and its intensity is
chosen in a way to keep constant the physical material characteristics.

Transversal load acts in the z axis direction and is governed by the equation
q = q0 sin

(
�pt

)
, where: q0 is the load, �p means the excitation frequency,

t represents the time. The number of mesh nodes n is implied by the investigation
of convergence of the results while applying different numerical approaches. The
clearance was set � = 1000 to implement the lack of contact interaction. All
investigations were carried out for the central point of the beam. It well represents
the vibration regimes of other beam points. Table 2 gives a comparison between
analytical data for the upper beam for Tk = 0 for x = 0�5, and for x = 0�25 on the
basis of a signal (time history), the Fourier power spectrum and phase portrait.

It follows from Table 2 that in the Fourier spectrum for x = 0�5 and x = 0�25
we have the same frequency set: �1 = 1/5�p = 1, �2 = 2/5�p = 2, �3 = 3/5 �p = 3,
�4 = 4/5�p = 4. Phase portraits exhibit 5 stable orbits.

Table 1 The values of fixed parameters

Parameter Value

n 80
�p 5
Tk 0; 200; 300
t 1836..2348
�t 1/256
q0 1 × 103��50 × 103

� 1
� 50
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474 A. V. KYRSKO ET AL.

Table 2 Time histories, frequency power spectra and phase portraits of two beam points (x = 0�5;
x = 0�25)

q0 = 16 × 103

x = 0�5 x = 0�25

To investigate convergence of the solution we applied the parameters given
in Table 3. We took into account the vibration harmonic (q0 = 500) and chaotic
(q0 = 60 × 103) regimes.

In the case of a periodic regime an increase of nodes number does not yield
any qualitative changes. Only small changes of the signal amplitudes are observed
at the amount of 1–2%. In the Fourier power spectrum there is one frequency
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ON A CONTACT PROBLEM OF TWO-LAYER BEAMS 475

Table 3 Time history, power spectra and Poincaré maps versus beam partitions n for q0 = 500 and
q0 = 60000
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476 A. V. KYRSKO ET AL.

�p = 5 for all applied variants, which is confirmed by one point on the Poincaré
map. However, though for q0 = 60 × 103 we have essential changes regarding both
form and amplitude of the signal, but till n = 90 a convergence regarding Fourier
spectrum and Poincaré map is observed.

Because a further increase of the mesh nodes yields changes of the Poincaré
map, a threshold of errors magnitude introduced by the applied numerical methods
appears. It should be mentioned that a further increase of the nodes yields the
occurrence of new frequencies which are not exhibited by a smaller number of
selected nodes. In other words, it means that the choice of n = 80 is validated.

ANALYSIS OF VIBRATIONS

We take the control parameters from Table 1 and we study the obtained
data via signals, Fourier power spectra, amplitude characteristics in time-space
coordinates for a set of q0 values. The scheme shown in Figure 2 gives a graphic
interpretation of the temperature influence on the beam. Boundary conditions for
the heat transfer equation, where Tk �x� z� is the function governing temperature
distribution along a beam, has the following form:⎧⎪⎪⎨

⎪⎪⎩
T1 �x� −h/2� = 0
T1 �x� h/2� = 0
T1 �0� z� = 0
T1 �1� z� = 0

⎧⎪⎪⎨
⎪⎪⎩

T2 �x� −h/2� = 0
T2 �x� h/2� = 0
T2 �0� z� = 0
T2 �1� z� = 0

(12)

Let us begin the analysis with the data reported in Table 4 obtained for the
lack of temperature field Tk = 0.

Range of q0 ≤ 3 × 103 (not shown) corresponds to the lack of contact between
the beams, i.e. the value of the first beam deflection w1 does not overcome the
value of 0.1 being equal to the beam clearance. The first beam vibrates periodically,
whereas the second exhibits a contact lack with the first beam. The Fourier power
spectrum shows only the frequency of excitation �p = 5 and periodic vibrations
of the upper beam. Amplitude-time characteristics and phase portraits are in
agreement with the power spectrum.

When the excitation amplitude q0 achieves the value of 4 × 103, the bottom
beam vibrates, i.e., a contact between beams is observed. The frequency power
spectrum contains the independent frequency �1 = 1�9, and the bottom beam, in
spite of the noisy frequencies, is characterized by the same frequencies as the upper
beam is, i.e., �p = 5 and �1 = 1�9. Observe that the amplitude-time surface of the
bottom beam is different from a plane surface.

Figure 2 Scheme of beam two-layers and the temperature action (T = 0).
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478 A. V. KYRSKO ET AL.

An increase to the external load up to q0 = 5 × 103 already exhibits three
frequencies� �p = 5, �1 = 1�9 and �2 = 1�1. A further increase of q0 up to 10 ×
103 (not shown) implies the occurrence of a number of vibration frequencies
of the upper beam. Namely, the frequencies �4 = 2�7 and �3 = 4�2 appear. The
following linear relations between the frequencies appear: �1 = �2 + 0�16�p, �4 =
�1 + 0�16�p� and �3 = �4 + �1. Phase trajectories of the upper beam begin to
diverge remarkably.

It is interesting to note that a further increase of the loading values for the
upper beam yields more disordered vibrations, whereas vibrations of the bottom
beam become more ordered. For q0 = 25 × 103 (not shown) peaks of the frequency
spectra of the upper and bottom beams coincide in full. The distribution of
frequencies is governed by the series �n = n × 1/5�p, where n = 1� � � � � 5�

A further increase of the load implies a noisy spectrum in the zone of
small vibrations, which manifests an increase of frequency of the contacts between
beams. Phase portraits indicate a change of the vibrational regime. Amplitude-time
characteristics of the beam deflection also indicates irregularity of the upper beam
vibrations.

For q0 = 50 × 103 on the frequency spectrum of both beams, a series of
coupled frequencies �n = n × 1

10�p
� where n = 1� � � � � 10� is observed. The time

history of the upper beams exhibits chaotic dynamics, which is also demonstrated
by the phase portrait. Amplitude-frequency characteristics also imply the occurrence
of the chaotic regime in both temporal and spatial domains.

Next, we study the data obtained for the same kind of temperature excitation,
subjected to both beam ends, with the same intensity, as it is shown in the scheme
presented in Figure 3. The boundary conditions for the heat transfer equations have
the following form:⎧⎪⎪⎨

⎪⎪⎩
T1 �x� −h/2� = 200

T1 �x� h/2� = 0
T1 �0� z� = 0
T1 �1� z� = 0

⎧⎪⎪⎨
⎪⎪⎩

T2 �x� −h/2� = 200
T2 �x� h/2� = 0
T2 �0� z� = 0
T2 �1� z� = 0

(13)

Let us analyze the data (Table 5) obtained for temperature T = 200�C on one
side of each beam. Already for small values of the external load amplitude q0 =
1 × 103 (not shown), a contact interaction between beams occurs implied by the
temperature action. The frequency power spectra for both beams, in spite of a small
noise generated by the contact, exhibits only one frequency �p = 5.

Figure 3 Scheme of beam two-layers and temperature excitation (two layers are heated).
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Increasing q0 up to 4 × 103 (not shown) does not change the dynamics
qualitatively, since only a small increase of the amplitudes of vibrating beams is
observed. For q0 = 5 × 103 the frequency power spectrum of both beams exhibits
the frequency �1 = 1/2�p = 2�5. An increase of the external load up to q0 = 10 ×
103 (not shown) causes that �1 vanishes from the upper beam spectrum, but it is
preserved on the bottom beam power spectrum.

A further increase of the external load does not change essentially the beam
vibrations regime. The frequency power spectrum, time history and phase portrait
show subharmonic vibrations of the upper beam. However, beginning from q0 =
35 × 103 a sudden change of the vibrational regime takes plane. In the frequency
power spectrum there is a set of linearly dependent frequencies governed by the
equation �n = n × 1/10�p, where n = 1� � � � � 10. Phase trajectories again present the
orbital character, though slightly deformed. For q0 = 45 × 103 the frequencies of
the upper beam as well as the phase portraits become noisy, which approves the
occurrence of chaos.

A further increase of the load implies an increase of the spatio-temporal chaos,
which is also exhibited by the temporal-spatial characteristics. It should be noticed
in power spectra of both beams that the relation between frequencies differs from
that without the temperature influence. In the case of the upper beam we have:
�1 = 1/2�p = 2�5, �2 = 1/5�p = 1 and �3 = 4/5�p = 4, whereas in the case of the
bottom beam we have �p = �3 + �2 and �1 = 1/2�p = 2�5.

We investigate further scenarios of the beam vibration regimes, when the
temperature field applies only to the upper beam (Figure 4). For this type of the
temperature influence the thermal boundary conditions take the following form:⎧⎪⎪⎨

⎪⎪⎩
T1 �x� −h/2� = 200

T1 �x� h/2� = 0
T1 �0� z� = 0
T1 �1� z� = 0

⎧⎪⎪⎨
⎪⎪⎩

T2 �x� −h/2� = 0
T2 �x� h/2� = 0
T2 �0� z� = 0
T2 �1� z� = 0

(14)

Taking into account the data reported in Table 6, the following scenarios
of the beam vibrations from regular to chaotic are detected. For q0 = 1 × 103

(not shown) the Fourier frequency spectrum associated with the upper beam
exhibits only one frequency �p = 5, just like the noisy components caused by
beam contact interactions. Temperature influences strongly the vibration forms,
which is monitored via observation of the amplitude characteristic in the space-
time coordinates. A further increase of parameter q0 up to the value 25 × 103 does
not introduce any qualitative change of the vibration regime, i.e. the subharmonic
regime is observed.

Figure 4 Scheme of beam two-layers and temperature action (the first layer is heated from the top).
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ON A CONTACT PROBLEM OF TWO-LAYER BEAMS 483

Figure 5 Scheme of beam two-layers and temperature excitation (the first layer is heated from below).

For q0 = 25 × 103 both beam layers exhibit a novel frequency �1 = 1/2�p =
2�5. Vibrations take a more complex form which is presented by the deformed
phase orbits. Increasing the excitation amplitude up to q0 = 30 × 103 (not shown)
implies the frequency power spectrum reconstruction, and the new frequencies series
appears for the upper beam, whereas the bottom beam vibration regime remains
unchanged. Phase trajectories exhibit chaotic dynamics.

At a further increase of q0 up to 40 × 103, the upper beam again shows �1 =
1/2�p = 2�5� The series of dependent frequencies and the character of vibrations is
more complex. For q0 = 50 × 103 our investigated mechanical system is in the deep
chaotic state.

We also investigated the case when the following non-symmetric temperature
boundary conditions are applied (see Figure 5):⎧⎪⎪⎨

⎪⎪⎩
T1 �x� −h/2� = 0
T1 �x� h/2� = 200

T1 �0� z� = 0
T1 �1� z� = 0

⎧⎪⎪⎨
⎪⎪⎩

T2 �x� −h/2� = 0
T2 �x� h/2� = 0
T2 �0� z� = 0
T2 �1� z� = 0

(15)

This case is different from the previously studied, since the change of the
temperature field does not change the vibration regimes for the properly chosen
control parameters. Similarity of the regimes reported in Tables 6 and 7 for all
values of the control parameter q0 should be emphasized. A negligible change of the
time history of the bottom beam is yielded by the beam change caused by the initial
beam bending due to the temperature action. Our mechanical system approaches
chaos via period doubling bifurcations. Frequency power spectra of both beams
exhibit the frequencies �p = 5 and �1 = 1/2�p = 2�5.

CONCLUSIONS

We have proposed a mathematical model of flexible elastic beams coupled via
the boundary conditions and embedded into a temperature field, when the upper
beam layer is transversally harmonically excited. Analysis of the dynamics of two-
layer beams is carried out and novel scenarios of routes from regular to chaotic
dynamics versus control parameters are illustrated and discussed. In particular,
strong sensitivity of the investigated system versus both type and intensity of the
thermal excitation is reported. Furthermore, it is shown that a symmetric change of
the thermal boundary conditions does not have a qualitative influence on the beam
vibrational regime.
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