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We propose a procedure for predicting the stability loss and transition into chaos of a net-
work of oscillators lying on a curve, where each of the oscillators can move in two perpen-
dicular directions. Dynamics of the coupled oscillators are governed by the sixth-order PDE,
which is directly derived using the classical hypotheses of a curvilinear flexible beam
movement theory. We apply FDM (Finite Difference Method) to reduce PDEs into ODEs,
and the used number of spatial coordinate positions defines the number of involved oscil-
lators approximating the dynamics of our continuous structural member (beam). Our pro-
cedure has a few advantages over the classical approaches, which has been illustrated and
discussed. The proposed method has been validated for non-linear dynamical regimes by
using the classical vibrational analysis (time histories, frequency power spectra and
Poincaré maps).
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1. Introduction

We are motivated here by the recent trends of research in social sciences, where human events/dynamics exhibit high
complexity in comparison to physical sciences. A key role in social sciences play measures and indicators used to control
and possibly to predict the social complex reality including events beyond time and space (social, cultural and psychological
factors certainly influence the obtained results [1]).

There is a wide range of individual indicators which are associated with various complex structural changes of social
development including public health, sustainable production and consumption, transport, climate change, etc. There is no
hope to take into account all of these events, so only a few most adaptable and reliable indicators are usually applied. For
example, in the case of economic activity the price or currency value can be used only. The reduction of complex social prob-
lems to a few successful indicators may yield an effective composite measure which is simultaneously simple and universal.
Then, this appropriately chosen quantification indicator can also be used in other fields of human activity like housing, trans-
actions or communication.

On the other hand, a lot of ideas to identify and quantify fundamental features of the time-evolution of self-organizing
complex dynamical systems like financial market came from theoretical physics. For instance, the random matrix theory
can be successfully applied to analyze the stock market correlation matrix [2]. Recurrence plots and recurrence quan-
tification analysis are applied to monitor the dynamics of stock prices in emerging markets [3].

It should be mentioned that the applied indices (for instance the Dow Jones index) in social sciences as well as weather
and climate predictions may exhibit fractal fluctuations on different time scales. The well-known characteristics borrowed
from the theory of non-linear dynamical systems like power spectra or fractal fluctuations, golden mean motion as well as pri-
mary perturbation time periods measured by days, months and years are applied to quantify the total space-temporal social
event patterns.

There is a strong interrelation between non-linear physical dynamical phenomena and data sets of complex social pro-
cesses (structural changes, wars, shocks, political crises, etc.). Before 1980s only the theoretical background of regular
dynamics was applied directly to predict deviations from the trends of growth generated by endogenous shocks arising from
imperfections of the market [4]. However, it was discovered that the real economic time-series representing time histories of
the used indicators had not only broad band frequency spectra, but also different amplitudes, and revealed other non-linear
phenomena including jumps, time irreversibility, non-regular waves, asymmetries and so on, typical of non-linear behavior
observed in mechanical structural members like beams and plates/shells [5,6].

In reference [7] it is indicated that rich dynamical behavior of economics data sets being outcomes of the above listed
structural processes shows structural instability effects and complex non-linear dynamical behavior, including periodicity,
quasi-periodicity and chaos (see also [8]).

The method of research presented in this paper as well as results obtained are based on an interaction between the ideas
regarding dynamical processes taking place in the applied Physics/Mechanics and Economics. However, contrary to the clas-
sical (still existing) trends observed in economy relying on applications of the theoretical background developed in applied
mathematics, physics and mechanics, we use rather an inverse way of research, since the ideas originated from a study of
time series governing non-linear dynamical phenomena of various economic events. The presented approach is motivated
by recent trends in studies on behavior and analysis of complex systems dynamics. Namely, in order to achieve a quan-
titative description of dynamical properties, only a limited number of system parameters is used. In general, the description
and quantification of random functions require analysis of data of millions of points of the dynamical systems coming from
various branches of pure and applied sciences. Since the results are influenced by various errors associated with the use of
numerical approaches applied, other qualitatively different approaches are highly required.

Recently, the concept of an intermediate model [9], when the ‘‘best fit’’ model is unavailable, has been proposed using two
general principles. One of them is based on self-similar properties of the studied long-time series [9], while another one aims
at detection of quasi-periodic processes [10] via the so called Prony decomposition approach. Note that the latter one applies
the conventional Fourier transformation as a partial case. The Prony decomposition and the Prony spectrum are used to
describe quantitatively a wide class of random functions. In paper [11] a chaotic system exhibited by a triple physical pen-
dulum with one, two and three positive Lyapunov’s exponents was studied. Chaotic dynamics of the mentioned lumped
mechanical systems was illustrated via amplitude–frequency response being extracted from the corresponding generalized
Prony spectrum, and was used as a specific ‘‘fingerprint’’ characterizing the random behavior of the triple-pendulum system.
It has been shown that the latter quantitative presentation of random date yields additional possibilities in classifying chao-
tic and random behaviors of complex systems.

Motivated by the so far described approach, we present a method for fast and reliable prediction of stability loss in a thin
curvilinear beam. The study of the beam, which usually is a member of thin-walled structures, plays a key role in solving
various problems related to non-linear phenomena and stability (see the state-of-art of the stability problems regarding
strongly non-linear systems in monograph [12]).

In this paper our aim is not to give theorems and their proofs regarding the fundamental question how one can find com-
pletely rigorous results claiming chaos in a nonlinear system. However, we have solved the problem how well one can find
rigorous results regarding numerical quantifications of the system of ODEs governing dynamics of curvilinear beams. Using
the classical numerical analysis, we have shown examples of chaotic attractors which have been validated numerically.
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Here, flexibility index ET and deflection indicator I are applied to estimate the most suitable parameters characterizing a
transition of the flexible curvilinear beams from regular to chaotic dynamics. Next, we illustrate the mentioned novel
approach versus classical methods in order to predict the transition into chaotic dynamics via rather simple approach,
and we study the principal peculiarities and advantages of each of the mentioned methods.

Traditionally, the elasticity/flexibility indicators are applied in micro-economics to analyze problems on financial and
commodity markets [13,14]. Knowledge of the theory of the mentioned indexes is required for marketing services. It gives
a possibility to construct a proper price strategy, as well as to predict the decrease or increase of prices in order to achieve the
required targets. The second application of the used theory is associated with a governing politics of taxes. Since the estima-
tion of indicators requires a rigorous mathematical treatment [15], it is rational to extend the space of application of these
useful indicators to dynamics of engineering objects.

The paper structure is organized in the following way. After Introduction, in Section 2 the classical approaches aimed on
the analysis of chaotic time series are illustrated and discussed including the beam mathematical model, analysis via time
series, Lyapunov exponents and Poincaré maps. Then, in Section 3, the method of indexing is introduced followed by a
computational experiment. Concluding remarks (Section 4) finish the paper.

2. Classical approaches

2.1. Mathematical model of the beam

We consider a flexible one-layer thin curvilinear beam of length a, height h and curvature kx of its middle plane. The beam
is loaded by continuous load qðx; tÞ ¼ q0 sinðxptÞ, where x stands for a horizontal axis and coordinate z goes down in the
direction normal to the beam (see Fig. 2.1). Here q0 is the amplitude of excitation, and xp is the excitation frequency.

The mathematical model of the beam is governed by a system of non-linear non-dimensional PDEs, and is derived using
the following hypotheses:

(i) an arbitrary transversal cross section normal to the middle beam surface remains straight and normal to this surface
after deformation, and the beam cross section remains unaffected;

(ii) we apply here the Euler–Bernoulli beam model and Kármán non-linearity; the beam material is elastic;
(iii) inertial effects of rotation of the beam elements are not taken into account, but the inertial forces responsible for dis-

placement along the beam normal direction are taken into consideration;
(iv) external forces change their directions during the beam deformation.

The governing equations are as follows
1
k2 � 1

12
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– curvature; L1ðu;wÞ; L2ðw;wÞ and L3ðw;wÞ – non-linear
operators.

The correspondence between dimensional and non-dimensional parameters is as follows (note that bars over non-
dimensional quantities in (2.1) are already omitted)
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Eq. (2.1) should be supplemented by boundary conditions. We take the following conditions corresponding to stiff
clamping of one beam end and a simple support of its remaining end
Fig. 2.1. Scheme of the curvilinear beam.
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wð0; tÞ ¼ wða; tÞ ¼ uð0; tÞ ¼ uða; tÞ ¼ w0xð0; tÞ ¼ w00xða; tÞ ¼ 0: ð2:3Þ
The following initial conditions are applied
wðx;0Þ ¼ _wðx;0Þ ¼ uðx;0Þ ¼ _uðx;0Þ ¼ 0: ð2:4Þ
In order to reduce PDEs (2.1) to ODEs we introduce the mesh
GN ¼ 0 � xi � 1; xi ¼ i=n; i ¼ 0; . . . ;nf g;
and we apply the Taylor series in the neighborhood of xi. We introduce the following difference operators with approx-
imation O(c2), where c is the step of spatial coordinate:
Kx �ið Þ ¼
�ð Þiþ1 � �ð Þi�1

2c
;

Kx2 �ið Þ ¼
�ð Þiþ1 � 2 �ð Þi þ �ð Þi�1

c2 ;

Kx4 �ið Þ ¼
�ð Þiþ2 � �ð Þiþ1 þ 6 �ð Þi � �ð Þi�1 þ �ð Þi�2

c4 :
Finally, we obtain the second-order ODEs with respect to time in the following form
€wt þ _ewt ¼ k2 � 1
12

Kx4 wið Þ þ kx Kx uið Þ � kxwi �wiKx2 wið Þ½ � þKx2 ðuiÞKxðwiÞ þKx2 ðwiÞKxðuiÞþ
3
2
ðKxðwiÞÞ2Kx2 ðwiÞþ q

� �
;

€ut ¼Kx2 ðuiÞ � kxKxðwiÞ þKxðwiÞKx2 ðwiÞ:
ð2:5Þ
System of Eq. (2.5) is reduced to the first-order ODEs, and then it is solved via the fourth-order Runge–Kutta method.
Boundary conditions require also difference approximation. The obtained mathematical model can be viewed as an approx-
imation to problem (2.1). It is clear that its non-dimensional form allows us to go beyond the previously studied mechanical
structural members and to fit remaining sciences, including economy. In addition, the truncated set of the second-order
ODEs has also a general physical interpretation. Namely, the second-order ODEs define the dynamics of networks of homoge-
nous oscillators placed on part of the curve which exhibits two perpendicular movements in u and w directions. The so far
known topologies of the studied networks of oscillators include: (i) a ring or line of oscillators [16–18]; (ii) 2D array of oscil-
lators [19]; (iii) all-to-all coupled network of oscillators [20]; (iv) all-to-all coupled oscillators of two subnetworks, where
coupling takes place within a subnetwork and between two subnetworks [21].

Here, our aim is to investigate the novel network of coupled oscillators which generalizes the so far studied ring or line
oscillators (observe that we may remove curvature of the network topology to get a line or to modify it to get a ring).
Contrary to the all so far studied networks of oscillators, in our case the studied oscillator of the network may move in
two directions, i.e. horizontal (u) and vertical (w). It means that each of the oscillators located on the curve part has two
degrees of freedom. The introduced non-linearities are originated from the hypotheses and principles of Mechanics which
are reliable and validated.

Our methodology and approach differ from the mentioned papers devoted to the study of networks of oscillators (their
origin relies on artificial constructions of purely mathematical objects like maps or coupled ODEs, and then there is an
attempt to validate their existence in biology, economy or a physical world). Since our model comes directly from phy-
sics/mechanics, also all introduced non-linearities and coupling which occur in the network of oscillators have their natural
origin. The non-linear operators exhibit non-linear interactions either within one direction (L2 and L3) or between move-
ments in two different directions (L1). The curve part network of oscillators, contrary to the previously studied cases (i)–
(iv), is subjected to the action of uniformly distributed harmonic excitation. The former can be interpreted as the action
of periodic excitation at each of the non-linear oscillators which means that we study non-autonomous network.

This opens a door to extend the classical study of the networks of oscillators to real world behavior of social sciences,
where the continuously acting external perturbation may come from rich human behavior out of the modeled networks.
Furthermore, a number of the considered oscillators may change from 0 to n. It means that here we may study the depen-
dence of mixed synchronous/incoherent systems configurations versus a number of interacting oscillators to get reliable and
validated results. If we choose other n, then we may get (perhaps) interesting non-linear dynamical phenomena, but they
will be beyond the dynamics governed by the studied PDEs. Furthermore, our goal is to predict spatio-temporal chaos in
an efficient way. Note that difficulties in getting reliable results of the mechanical objects governed by PDEs, including com-
putational time stability of the applied algorithm in time and spatial steps, etc. are widely described in references [22,23],
and this discussion is omitted here.

The derived system of equations is extremely sensitive to the change of control parameters, i.e. even a negligible change
of one of them may change qualitatively the system behavior. Therefore, by fixing control parameters ðq0;xp; k; kxÞ we may
estimate reliability of the applied approaches based on getting the same numerical results. Since for our system we may get a
few possible attractors, we may investigate convergence of each method at any possible attractor excluding transitional
processes. Furthermore, validity of the results is estimated using qualitatively different methods to quantify the systems
non-linear dynamics.
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2.2. Time histories, Lyapunov spectra and Poincaré maps

In the case of periodic regime (Table 1) an increase in the number of oscillators n does not yield any quantitatively new
results. The amplitude of response is changed only by 1–2%. Phase portraits exhibit an elliptical shape (not reported here),
the Poincaré maps consist of one point, and the Fourier spectra contain sharp evidence of frequency xp ¼ 5.

Although for q0 ¼ 60 � 103 (Table 2) the system is in a chaotic regime, which is indicated by time series, power spectra and
Poincaré sections, one may observe convergence of the results up to n = 90. A further increase of the mesh nodes, i.e. the
number of oscillators ½100; . . . ;120� causes changes in the Poincaré section induced by errors introduced through numerical
computations. The increase of partitions number produces new frequencies which were not observed earlier (this indicates
the occurrence of unreliable results with respect to the modeled curvilinear flexible beam).

We have detected also a quasi-periodic regime (Table 3) for xp ¼ 2:5. For q0 ¼ 60 � 103 the Fourier spectrum contains a
series of linearly dependent frequencies which are irrational versus xp: For n = 60 there is a periodic attractor whose real
existence has not been further validated. To sum up, the numerical simulations allow us to make a validated choice of
the chains of oscillators composed of n = 80.

It should be emphasized, however, that in order to get validated results regarding a proper choice of the partitions num-
ber while applying FDM, we should first identify a vibrational regime. Namely, analysis of the Poincaré section shows that for
different n we get different shapes of attractors which does not allow us to quantify the obtained results as reliable ones.

Next, we study the system transition into chaotic regime for xp ¼ 5. In the latter case we investigated time series, Fourier
power spectra, phase portraits, deflection isoclines and the amplitude-time surface (not reported here, see for instance
[22,23]). A comparison of the results was carried out for different values of control parameter q0 with fixed frequency of
xp ¼ 5 (the numerical results are reported in the tables).

Based on the computations presented in this paper and elsewhere, one may indicate the following drawbacks associated
with the application of classical approaches to study non-linear dynamics of complex systems: (i) complexity in getting a
Table 1
Time histories, power spectra and Poincaré maps for q0 ¼ 500, xp ¼ 5; k ¼ 50; kx ¼ 0.
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proper visualization of the attractor; (ii) essential dependence of the results on the involved number of oscillators n; (iii) the
necessity of earlier estimation of the system vibration regime.

In order to avoid the above listed problems we propose to apply novel indicators which are particularly suitable for the
validation of a chaotic regime.
Table 2
Time histories, power spectra and Poincaré maps ðq0 ¼ 60000, xp ¼ 5; k ¼ 50; kx ¼ 0).



Table 3
Time histories, power spectra and Poincaré maps ðq0 ¼ 60000, xp ¼ 2:5; k ¼ 50; kx ¼ 0).
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3. The method of elasticity

3.1. The proposed algorithm

Tables 4 and 5 give results of a computational experiment regarding the beam deflection amplitude versus the load
q ¼ q0 sin xpt ðxp ¼ 5; 1836 < t < 2348; Dt ¼ 1=256 ¼ 0:00390625Þ for the governing equations (2.1).

Then we use data from Tables 4 and 5 for modeling the estimated characteristics of process deflections using the new
tools.

3.2. Application of the method

Consider discrete mesh T ¼ ft0 < t1 < � � � < tNg; whose nodes n are associated with load functions fqðn; q0; tkÞgn2N0
q02Q0

and

deflection functions fwðn; q0; tkÞgn2N0
q02Q0

; k ¼ 0; . . . ;N: In our experiment we took N0 ¼ f60;80;84;88;90;94;98g,
Q 0 ¼ f500;60000g:



Table 4
Part of the initial data for xp = 5, n = 84 (analogous data are obtained for n = 60, n = 80, n = 88, n = 90, n = 94, n = 98, n = 100, n = 120).

n = 84

q ¼ q0 sinðxptÞ q0 ¼ 500 q ¼ q0 sinðxptÞ q0 ¼ 60 � 103

t w t w

1 135.30813 1836.00155 �0.00848 16236.97539 1836.00155 �0.63745
2 135.30813 1837.25819 �0.00848 16236.97540 1837.25819 �0.69475
3 135.30813 1838.51483 �0.00848 16236.97541 1838.51483 �0.43810
4 135.30813 1839.77146 �0.00848 16236.97542 1839.77146 �0.46614
5 135.30813 1841.02810 �0.00848 16236.97543 1841.02810 �0.52006

..

. ..
. ..

. ..
. ..

. ..
. ..

.

28 135.30813 1869.93075 �0.00848 16236.97567 1869.93075 �0.36081
29 135.30813 1871.18739 �0.00848 16236.97568 1871.18739 �0.35581
30 135.30813 1872.44403 �0.00848 16236.97569 1872.44403 �0.31018

Table 5
Part of the initial data for xp = 2.5, n = 84 (analogous data are obtained for n = 60, n = 80, n = 88, n = 90, n = 94, n = 98, n = 100, n = 120).

n = 84

q ¼ q0 sinðxptÞ q0 ¼ 500 q ¼ q0 sinðxptÞ q0 ¼ 60 � 103

t w t w

1 �70.607831 1836.00342 0.01342 16776.06236 1836.00342 �0.22165
2 �70.60783106 1838.51670 0.01342 16776.06237 1838.51670 �0.05671
3 �70.60783112 1841.02997 0.01342 16776.06238 1841.02997 0.27239
4 �70.60783118 1843.54324 0.01342 16776.06240 1843.54324 0.22862
5 �70.60783124 1846.05652 0.01342 16776.06241 1846.05652 �0.21029

..

. ..
. ..

. ..
. ..

. ..
. ..

.

25 �70.60783241 1896.32200 0.01342 16776.06268 1896.32200 �0.19435
26 �70.60783246 1898.83528 0.01342 16776.06269 1898.83528 0.00049
27 �70.60783252 1901.34855 0.01342 16776.06271 1901.34855 0.31709
28 �70.60783258 1903.86182 0.01342 16776.06272 1903.86182 0.15144
29 �70.60783264 1906.37510 0.01342 16776.06274 1906.37510 �0.25113
30 �70.60783270 1908.88837 0.01342 16776.06275 1908.88837 �0.15409
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We introduce the normalized indexing load and deflection for k ¼ 0; . . . ;N; where initial values of the functions taken in
point t0 for initial load q0 serve as a basis
Iwðq0; tkÞ ¼ wðn; q0; tkÞ=wðn; q0; t0Þ; ð3:1Þ
Iqðq0; tkÞ ¼ absðqðn; q0; tkÞ=qðn; q0; t0ÞÞ: ð3:2Þ
We apply formulas (3.1) and (3.2) for the given values of initial load q0 2 Q0 :
Iwð500; tkÞ ¼ wðn;500; tkÞ=wðn;500; t0Þ; ð3:3Þ
Iqð500; tkÞ ¼ absðqðn;500; tkÞ=qðn;500; t0ÞÞ; ð3:4Þ
Iwð60000; tkÞ ¼ wðn;60000; tkÞ=wðn;60000; t0Þ; ð3:5Þ
Iqð60000; tkÞ ¼ absðqðn;60000; tkÞ=qðn;60000; t0ÞÞ: ð3:6Þ
The elasticity [13] shows approximately how the function value is changed (in percents) while changing the argument by
1%. The elasticity of deflection for each k ¼ 0; . . . ;N via the following formula
Eðn; q0; tkÞ ¼
Iwðq0; tkÞ � 1
Iqðq0; tkÞ � 1

¼ Dw=w
Dq=q

: ð3:7Þ
We apply formula (3.7) for the given values of initial load q0 2 Q0; and we get
Eðn;500; tkÞ ¼
wðn;500; tkÞ=wðn;500; t0Þ � 1
qðn;500; tkÞ=qðn;500; t0Þ � 1

;

Eðn;60000; tkÞ ¼
wðn;60000; tkÞ=wðn;60000; t0Þ � 1
qðn;60000; tkÞ=qðn;60000; t0Þ � 1

:

Maximum estimation of the elasticity is
ETðn; q0Þ ¼ max
k¼0;...;N

Eðn; q0; tkÞ: ð3:8Þ



J. Awrejcewicz et al. / Commun Nonlinear Sci Numer Simulat 27 (2015) 81–92 89
We apply (3.8) for the given data of initial load q1
0 2 Q0, q2

0 2 Q0:
ETðn;500Þ ¼ max
k¼0;...;N

Eðn;500; tkÞ; ð3:9Þ

ETðn;60000Þ ¼ max
k¼0;...;N

Eðn;60000; tkÞ: ð3:10Þ
An index of gain deflection associated with changing the initial load from q1
0 2 Q0 up to q2

0 2 Q 0 is defined as follows
Iðn; q1
0; q

2
0Þ ¼ ETðn; q2

0Þ=ETðn; q1
0Þ: ð3:11Þ
Observe that indicator (3.11) is nothing but an index of elasticity of the threshold norm of the initial load from q1
0 to ½q2

0

[13].
We apply formula (3.11) to the given volumes of the initial load from q1

0 2 Q 0 to q2
0 2 Q0 (those two arguments are

omitted in further notation):
IðnÞ ¼ ETðn;60000Þ=ETðn;500Þ: ð3:12Þ
Further analysis of the transition into chaos is carried out graphically (see Figs. 3.1 and 3.2) using indicators (3.8) and
(3.11).

3.3. Computational experiment

In order to detect a chaotic regime, formulas (3.9) and (3.10) are applied. If the elasticity of deflection monotonically
changes with an increasing number of partitions, then a chaotic regime should not appear. However, the latter conclusion
requires additional investigations, since the applied method depends on the initial data. In fact, it supplements the classical
method of analysis described in Section 3.2. If the elasticity of deflection has a stepwise shape, then the presence of a chaotic
process is doubtful.

The Fig. 3.1 shows pattern of changes in elasticity versus n. The left column refers to the data, whereas the right column
presents the graphical representation in the case of regular (a) and chaotic (b) dynamics. Both regression lines were obtained
using the least squares method.

The elasticity indices shown in Tables 4 and 5 are computed using the following algorithm. Step 1. We take initial
parameters. We fixed here xp = 5 (in what follows in Figs. 3.2 and 3.3 the computations are demonstrated also for
xp = 2.5). Step 2. We fix the initial load (here q0 ¼ 500 and q0 ¼ 60000). Step 3. We construct the mesh, where n + 1 denotes
the number of nodes (see Section 2.1). In the experiment n = 60, 80, 84, 88, 90, 94, 98, 100, 120. Step 4. For each t deflection w
(a) n ET(n,500)
60 0.0000135 
80 0.0000645 
84 0.0000728 
88 0.0000750 
90 0.0000771 
94 0.0000804 
98 0.0000789 
100 0.0000768
120 0.0000714

(b) n ET(n,60000)
60 0.6251530 
80 0.2538196 
84 0.6858018 
88 0.0053616 
90 0.2588525 
94 0.0329294 
98 0.3286061 
100 0.7272717
120 0.1475360

Fig. 3.1. The elasticity ET harmonic (a) and chaotic (b), including data (left column) and graphical representation (right column).



ET(n,500) ET(n,60000)  n I(n) 
0.0000135 0.6251530  60 46468.2 
0.0000645 0.2538196  80 3934.37 
0.0000728 0.6858018  84 9419.10 
0.0000750 0.0053616  88 71.53
0.0000771 0.2588525  90 3355.82 
0.0000804 0.0329294  94 409.65
0.0000789 0.3286061  98 4167.47 
0.0000768 0.7272717  100 9467.02 
0.0000714 0.1475360  120 2065.61 

(a)

(c)

(b)

Fig. 3.2. Critical zone estimation via ET (a), I(n) (b, c) n 2 ½88 : 94�.

ET(n,500) ET(n,60000)  n I(n) 
0.0000677 0.0000000  60  
0.0000671 0.2188168  80 3260.54666 
0.0000701 0.5000161  84 7135.20 
0.0000720 1.8169283  88 25243.89 
0.0000728 0.0057437  90 78.93
0.0000740 0.5186395  94 7007.98 
0.0000748 0.0369340  98 493.97 
0.0000752 2.0703852  100 27537.79 
0.0000729 0.0053920  120 73.9251935 

(a)

(c)

(b)

Fig. 3.3. Critical zone estimation via ET (a), I(n) (b, c) n 2 ½84 : 98�.
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is fixed. A simple computation of load q for each t and for the earlier defined fixed parameters is carried out using the formula
q ¼ q0 sinðxptÞ. As a result, all data required by formulas (3.9) and (3.10) are obtained. The assumed values of t are denoted
as t0; t1; . . . ; tN . The observation time instant is ordered in the following way: T ¼ ft0 < t1 < � � � < tNg. Step 5. Basic indies are
estimated by data (3.3) and (3.5), and their moduli (3.4) and (3.6) are taken. Step 6. We use formula (3.7), i.e. we get
Eðn;500; tkÞ ¼
wðn;500; tkÞ=wðn;500; t0Þ � 1
qðn;500; tkÞ=qðn;500; t0Þ � 1

;

Eðn;60000; tkÞ ¼
wðn;60000; tkÞ=wðn;60000; t0Þ � 1
qðn;60000; tkÞ=qðn;60000; t0Þ � 1

:
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Step 7. In order to find the elasticity indices we apply formulas (3.9) and (3.10). The earlier described algorithm steps are
shown in Fig. 3.1 for different n.

Typically, the increase of n reduces differences between the deflection index at high and low load values.
If this trend begins to change dramatically, the process migrates to the area of noise, and the choropleth map (Tables 1–3)

cannot give a correct picture of the fluctuations.
Step 8. Index I is computed using formula (3.12). The interval of n which includes one or more consecutive jumps of index

(3.12) would be referred to as the critical area (see Fig. 3.2) and is marked by yellow color.
Below, the so far described algorithm is applied to a second beam vibration regime (for xp = 2.5). The elasticity indicator

ET and index gain deflection I(n) (Fig. 3.3) show that for n = 60 the dependence of the load deflection is much less than 5%
(0.05) and harmonic vibrations take place for q0 ¼ 500 and for q0 ¼ 60000.

4. Concluding remarks

First of all it should be mentioned that in the case of many coupled non-linear oscillators (the number of second order
non-linear ODEs is 60, 80, 100 or 120) it is rather equally difficult to find any of the mentioned attractors, i.e. either regular
(periodic and quasi-periodic) or chaotic ones. This observation regarding structural members (beams, plates and shells) can
be found in references [6,22,23], where the so called charts of vibration types have been reported. In those charts the zones of
existence of regular, chaotic and bifurcation dynamics on the chosen planes of parameters are comparable with respect to
their areas/magnitudes. Furthermore, the same observation holds even for a triple pendulum (see [11]). In the latter case we
have an experimental rig and again the strongly nonlinear mechanical system exhibits rich non-linear dynamical phenom-
ena. In other words, in the latter case it is rather difficult to find regular attractors since chaotic dynamics is dominating.

We have proposed a system of indexing procedure based on a formal computation and collection of the elasticity indi-
cator (usually applied in the mathematical economy) in order to determine the parameters of transition of the flexible
curved beams into a chaotic vibrational regime. The proposed new approach allows us to avoid the disadvantages of the clas-
sical methods, i.e.:

(i) complexity of the analyzed attractor is reduced essentially owing to the introduction of numerical indexing parame-
ters (here I(n) and ET(n, qo));

(ii) dynamics of the deflection intensity indicator Ep does not depend essentially on the number of partition n;
(iii) there is no need of earlier identification of the vibrational regime.

Furthermore, the so far obtained results are promising and can also be applied directly to quantify various real physical
processes through the efficient saving of the computational time required for the analysis of different regimes of attractors
while solving numerically ordinary differential equations.
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