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Non-stationary effects in the friction-induced dynamics of a two-degree-of-freedom brake
model are examined in this paper. The belt–spring–block model is designed to take into
account variations of the normal load during the braking process. It is shown that due to
the adiabatically slowing down velocity of the belt, the system response experiences

onset of squeal phenomenon. In particular, the creep-slip leading to a significant widening
of the spectrum of the dynamics is observed at the final phase of the process.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

This paper deals with friction-induced vibrations that may occur, for instance, in different brake systems during
deceleration. Such types of problems are of significant interest in the literature due to clear practical reasons, complexity of
physical effects, and mathematical challenges of the modeling; see publications [4,8,16,17] for an overview of the problem's
status. The idea of considering the decelerating sliding is due to the fact that the brake squeal phenomenon is usually
observed at the final stage of braking process. Practically, the deceleration is very slow as compared to the temporal scales of
friction induced vibrations associated with elastic modes of braking systems. This enables one of ignoring the corresponding
inertia forces when considering different transitional effects caused by the decay of relative speed at the friction interface.
Modeling such transitional effects is important for understanding physical conditions of the onset of squeal phenomenon
including possible mechanisms of excitation of acoustical modes. Although describing the acoustical squeal effects in terms
of reduced few degrees-of-freedom mechanical models seems unrealistic by many reasons, it is important to find simple
analogues of squeal conditions by keeping the key physical features of real brake systems. In particular, based on the
standard block–spring model on a moving belt, it was found earlier that stick-slip (or creep/slip) vibrations, captured at
some low enough belt speed, are preserved during further deceleration by showing increasing temporal localization of slip
phases [25]. This leads to widening spectrum of the dynamics, which can provide the possibility of interaction with
acoustical modes in real brake systems.

Such effects obtained experimental proof based on the rig designed in [9,21], however, theoretical considerations of the
present work are conducted on a new model, which accounts for the influence of gravity and geometrical nonlinearity.

Friction-induced vibrations in physical systems based on the mass—damper–spring modeling have been widely
considered in the literature for many years. In particular, such models have been used extensively as deterministic
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simulators of earthquakes [27]. The earthquake generation mechanism as a chaotic phenomenon in a two-degree-of-
freedom autonomous system with static and dynamic friction was illustrated in [15] by using the Poincaré map diagrams
showing, in many cases, a complicated chaotic behavior of the model. It was found that even perfectly symmetric systems
possess complicated quasi-periodic orbits with significant out-of-phase components. Due to the specific temporal behavior
of stick-slip phenomena [12,26] such components may lead to asymmetric broadband loads and therefore excite flexural
vibration modes/waves in both interacting parts.

A two-degree-of-freedom oscillator combining rotational and translational friction-induced vibrations and taking into
account geometrical nonlinearity was investigated in [6,7] by means of classical numerical tools based on Newton's and
shooting methods. In particular, Floquet multipliers, which are responsible for stability and bifurcations of periodic orbits,
were obtained. In particular, it was shown that both regular and chaotic dynamics including different sticking and slipping
phases are possible.

Based on a numerical study of four degrees-of-freedom model, it was found in [18] that the motion of the system
transverse to the direction of braking experiences a sharp change in excitation leading to a complicated vibration when the
slip velocity in the braking direction is low. The authors interpret the disc brake squeal as a friction induced phenomenon
caused by the transient, dissipative nature of a braking process.

Different spring–block friction models were used in order to examine the role of friction in the instability mechanism
[10,19,20,23]. Based on a model of continuous and discrete elastic elements, the self-excited oscillation in two surfaces
sliding against each other was investigated in [1]. Radiation of plane body waves caused by friction was considered in [2].
Some of the results support the interpretation that certain friction behavior is a consequence of the dynamics of the
interacting systems rather than the interfacial properties. Contact modeling with emphasis on the contact forces and their
relationships to the geometrical, material and mechanical properties of the contacting bodies was reviewed in [3]. Applied
aspects of friction-induced vibration and related stability problems are discussed in reviews [16,17,29,31].

This paper deals with the transient dynamics of a two-degree-of-freedom system due to the deceleration of the belt
carrying just one of the two inertial elements of the model. Note that the case of decelerating sliding is practically important
because deceleration is often caused by friction. For instance, stick-slip instabilities in a decelerating two-degree-of-freedom
mass–spring system with one mass subjected to friction were considered earlier in [32]. The research was motivated by the
necessity to avoid stick-slip effects in engineering practice. Effects of four different discontinuous friction laws on the system
response were investigated. Based on numerical solutions, it was concluded that the existence of stick-slip in decelerated
motions depends mainly on the properties of the mechanical systems rather than on the characteristics of the frictional
force. In particular, it was noted that rapid and abrupt changes from stick to slip motions and vice verse induce a broadband
excitation spectrum leading to squeal, rattling and possibly damage. A mechanical system with two elastically connected
masses moving vertically in a cylindrical tube under gravity and subjected to friction with the tube was considered in [33].
In this case of accelerated sliding, it was found that after some transient period, the dynamics is stabilized with regular
oscillation of the relative mass displacements.

It should be noted that rigid body models involving few degrees of freedom are generally not sufficient to adequately
describe friction-induced phenomena at friction interface. However, numerous experimental results have clearly shown that
dominant spikes of the ‘squealing spectrum’ occur at a few frequencies or sometimes just one frequency. Therefore only a
few vibration modes may eventually be involved in the interaction dynamics.

A two-degree-of-freedom mass–damper–spring model interacting with a decelerating rigid strip is analyzed in the
present work. As mentioned at the beginning of the present section, such mechanical model was designed in [21] to account
for variations of the normal pressure at friction interface within elastic degree-of-freedom in the easiest way. This model can
be viewed as a modified version of four degrees-of-freedom plane mechanical system introduced in [5] to take into account
both force decreasing segment of the friction law and the change of the normal force generated by the rigid body
movement. The proposed model combines a main block connected to base and an angular swinging body by linearly elastic
springs; see Fig. 1a. The main block is directly excited by the friction force due to the moving belt, while the role of the
angular body is two-fold. Namely, it represents an extra degree-of-freedom in the horizontal plane of main block while
creating a variable component of the normal load on the main block due to another (vertical) spring attached to the main
block and another end of the angular body. For theoretical study, however, we generalize the mathematical model suggested
[21,8] in order to account for geometrical nonlinearities and the influence of gravity. Our study focuses on investigating
non-stationary (transient) effects and the corresponding evolution of the spectral characteristics of the dynamics caused by
deceleration of the moving belt. Experimental validation is based on comparison of experimental and theoretical time
history records for the dynamic states and the corresponding Fourier spectrograms. The spectrograms appeared to be a
convenient for illustration of slow changes in spectral properties of the high-frequency friction-induced vibrations.

2. The model description and preliminary analyses

2.1. Design of experimental rig and test setup

A general view on the experimental rig and schematic diagram for mathematical modeling are given in Fig. 1. The
designed laboratory rig approximates the real braking system through the feedback reinforcement of the friction force
acting on the vibrated block. The feedback reinforcement of the friction force is provided by the increase of vertical load on
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Fig. 1. Mechanical model of a braking system [21]: (a) experimental rig and (b) theoretical model.
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the block through the angle body with the set of connecting springs and dampers. When the belt moves the block to the
right, the angle body rotates counterclockwise causing compression of the vertical spring and inducing the vertical damping
force. Such mechanism associates with the functionality drum brake in a real brake system [8].

Earlier, a laboratory rig was designed for observations and experimental research of frictional effects including the
friction force measurement [21]. With reference to Fig. 1a, the block of mass m is moving on the belt in the direction x1, and
the angle body, whose mass and moment of inertia are M and J, respectively, is rotating around point S. The two bodies of
the system are coupled by linear springs k2 and k3; the block on the belt is additionally coupled to the ground base by means
of the linear spring k1. There is no external loading applied to the angle body, except the gravity. The rotational motion of the
angle body is damped by virtual dashpots c1 and c2 characterizing air and bearing resistance. It is assumed that the angle of
rotation of the angle body is small enough, and varies within the range jφjo51. In this case, the rotation is approximated by
the linear displacement y1 of the ends of angle body as shown in Fig. 1b. The belt is moving with the velocity vb(t) assuming
no deformation of the belt in the stick-slip contact zone. A non-stretchable 25 mm thick belt made of hard rubber is placed
on solid shafts and supported by a flat bar under the examined (main) block. The propeller shaft is installed in a floating
manner to avoid belt's tension, and the rig is essentially equipped with a direct current commutator motor PZTK 60-46 J,
which is suitable for using in cross-feed drives of numerically controlled machines, supplied by voltage 30 V and possible
current load up to 4.1 A.

In addition, stabilization and control of the motor rotational velocity is by the RN12 regulator, which also serves as an
amplifier.

The system coordinates, such as displacement of the block and rotation of the equal-bar angle body, are detected by the
non-sticking measurement method, in which the laser proximity switch is assigned to measure the displacement of the
main block. A Hall-effect device, whose principle of operation is based on variations of the magnetic field, is used to detect
the rotation of angle body. It should be emphasized that both sensors have linear characteristics of the measured quantity
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versus voltage output. Also, all the sub-components of the laboratory rig are attached to a stable frame. Analog signals
acquired from the sensors are processed through a PCI card interfaced by chassis SCXI-1000 with terminals NI-1321 and
NI-1302 with the LabView software by dynamic acquisition using test instruments made by National Instruments.

The stored data are indicated on panel-situated scalable charts. Disturbances of the whole structure, noise in electrical
circuits, and other additional effects have significant influence on the accuracy of measured signals. Therefore, signals are
digitally filtered by a point-by-point polynomial interpolation. It makes significant smoothing of the time histories, but
sensitivity of the filtering is controlled by the amount of points from raw data acquisition taken in the interpolation
procedure.

Further data analysis is conducted in Matlab interface as described below in Section 4.

2.2. Mathematical modeling

The differential equations of motion of the two-degree-of-freedom mechanical system under consideration are derived
by incorporating generalized non-conservative forces into Euler–Lagrange equations of the corresponding conservative
system. A schematic diagram of the model is shown in Fig. 1b. The main (horizontal) block is driven longitudinally by the
moving belt by friction forces. The load transfer between the main block of mass m and the angular body is provided by the
spring k2 and damper c1 while the normal load from the rotating angular body on the main block is transferred by the
vertical spring k3 and damper c2. The moment of inertia of the angular body with respect to its center of rotation S is J and
the total mass is M. The main block is also connected to the base by the spring of stiffness k1.

Absolute deformation of the spring k1, which remains horizontal during its tension-compression, is simply equal to the
displacement of block m. Elongations of the two other springs, k2 and k3, are calculated as Δl2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0�x1�y1Þ2þr2ð1� cosφÞ2

q
� l0 and Δl3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21þðrþy1Þ2

q
�r, respectively, where l0 is the original length of spring k2,

and the original length of spring k3 is assumed to be equal to r as justified in Fig. 1a. Assuming that the coordinates x1 and y1
are of the same order of magnitude, the angle φ is small enough, taking into account that r2ð1� cosφÞ2 � y41=r

2, and
ignoring the third and higher degree terms in the power series expansions with respect to the coordinates brings spring
deformations to the form

Δl1 ¼ x1; (1a)

Δl2 ¼ �z1; (1b)

Δl3 ¼ y1þ
x21
2r
; (1c)

where z1 ¼ x1þy1, and high powers of the displacements in the expressions for Δl2 and Δl3 are ignored.
Assuming that all the springs are linearly elastic, the Lagrange function of the corresponding conservative system is

represented in the form

L¼ 1
2

m _x21þ J _φ2
� �

�1
2

k1Δl21þk2Δl22þk3Δl23
� �

�P φ
� �

; (2)

where PðφÞ ¼Mgl 1� cos ðπ=4þφÞ� �
is the potential energy of angular body accumulated due to the elevation of its center of

gravity (c.g.) with respect to its equilibrium position at the absence of springs, φ¼ �π=4. The angular displacement can be
approximated by φ¼ y1=r, and the distance between the center of rotation and c.g. is estimated as l¼ ð3

ffiffiffi
2

p
=4Þr.

The virtual work done against dissipation/resistance forces is

δA¼ Fδx1þQδφþc1 _z1δz1þc2 _y1δy1; (3)

where _z1 ¼ _x1þ _y1, F is the friction force between the main block and the moving belt, and Q is the resistance torque at the
suspension point S, which can be caused by dry friction, viscous damping, and some elastic forces; and δφ¼ δy1=r as soon as
the rotation angle is small enough according to the assumption.

Generalized Euler–Lagrange equations of motion are derived in the following form:

d
dt

∂L
∂ _x1

� ∂L
∂x1

¼ � δA
δx1

; (4a)

d
dt

∂L
∂ _y1

� ∂L
∂y1

¼ � δA
δy1

; (4b)

where the right-hand side represents generalized forces associated with the virtual work described by Eq. (3). Substituting
(2) and (3) in (4) gives

m €x1þc1 _z1þ k1þk2ð Þx1þk2y1þk3
x1
r

y1þ
x21
2r

	 

¼ �F; (5a)
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J
r2

€y1þc1 _z1þc2 _y1þk2z1þk3 y1þ
x21
2r

	 

þMgλr ¼ �Q

r
; (5b)

where

λr ¼
ffiffiffi
2

p

2
l
r

1þy1
r
� y21
2r2

� y31
6r3

	 


and the friction force F depends upon variations of the vertical load as follows:

F ¼ μmg 1þM
m
λr� k3

mg
y1þ

x21
2r

	 

� c2
mg

_y1

	 

: (6)

The friction law, which is the dependence of friction coefficient on the relative velocity at the friction interface,
V rel ¼ _x1�vb, is given by

μ V relð Þ ¼ μ0

1þγjV relj
1þ β

cosh αV rel

	 

tanh αV rel; (7)

where μ0 is a constant parameter controlling the ‘amplitude’ of spike in the friction coefficient, assuming that the range of
relative velocities is narrow enough, the parameter γ is responsible for the decay of friction force as the modulus of relative
velocity is increasing, α controls the curve's sharpness near zero, and finally β controls the magnitude of spikes near zero,
in other words, the rate of original drop of the friction coefficient just after the main mass quits the ‘creeping’ area. In
particular, the thin line in Fig. 2 illustrates the shape of friction law at μ0 ¼ 0:5, γ ¼ 3:0, α¼ 200:0, and β¼ 0:7. Such
parameters are chosen below for numerical simulations.

If γ ¼ 0, the friction law (7) becomes similar to that introduced in [25] for modeling the so-called “creep-slip” dynamics
of a typical 2-DOF mass–spring model on a moving belt within the class of smooth functions. In this case, the curve peaks
can be found analytically as follows.

Differentiating (7) with respect to V rel gives

μ0ðV relÞ ¼ αμ0 sechðV relαÞ 2β sech2ðV relαÞþ sechðV relαÞ�β
h i

¼ 0:

Therefore, peak locations are determined from the following quadratic equation with respect to sechðV relαÞ:
2β sech2ðV relαÞþsechðV relαÞ�β¼ 0:

This eventually gives four roots for V rel of which only two are real

V rel ¼ 7Vn; Vn ¼ 1
α
arcsech

β0�1
4β

	 

; β0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8β2

q
: (8)

Now, substituting Eq. (8) in (7) gives the peak magnitudes

μn ¼ 7
μ0

16β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0�3β
1�β

s
3þβ0

� �
β0�1þ4β
� �

: (9)

The factor 1=ð1þγjV reljÞ in (7) is added in order to better capture the decaying intervals outside the narrow area between
positive and negative spikes of the curve. Such decays were observed in the previous tests conducted with the same
experimental rig [8,9]. Note that there are very many friction laws suggested in the literature possibly due to the fact that
behavior of friction force depends upon individual geometrical and physical properties of real interacting bodies as well as
environmental conditions. Usually typical curves are used for pure theoretical studies, however, the present work deals with
comparison of the modeling and experimental results. In such case, the friction law must be as close as possible to that
Fig. 2. Friction coefficient and friction interface (dashed line), and the effective friction coefficient of the model (solid line) obtained under the following
parameter values: μ0 ¼ 0:5, γ ¼ 3:0, α¼ 200:0, β¼ 0:7.
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observed on the system under consideration.
Quick variations of the friction coefficient in the neighborhood of zero relative speed constitutes the most common

physical phenomenon, which is responsible for important qualitative features of the dry friction dynamics, in particular,
stick-slip vibration. The idea of modeling the dry friction coefficient by simple discontinuous functions enables one to
approximate the strongly nonlinear characteristics by combining exact analytical expressions for physically different
regimes of the friction process [28]. However, this non-analytic relation of the friction force versus the relative speed
requires different differential equations to be used for describing the dynamics in different regions of the phase space.
The corresponding formulations appear to be mathematically challenging [14] and require suitable conditioning for the
numerical integration since a single form of the differential equation of motion cannot be derived in this case.

Alternatively, exponential functions can be employed to approximate the abrupt changes of the friction coefficient
[10,11,13,16,17,24,30]. An obvious advantage of these analytic expressions is the direct application of nonlinear vibration
techniques such as expansion and perturbation methods. From a physical viewpoint, the static friction is considered as a
viscous force with a very large coefficient of viscosity.

Note that the strongly viscous region jV reljrVn represents a relatively narrow domain of creeping (quasi-sticking)
motion. According to Ref. [27] (see also references therein), such an area is presumably a necessary component of any
realistic friction law. The creeping area was represented by a linear viscosity assumption such that the friction law had a
‘kink’ in transiting from the ‘sticking’ regime to the ‘slipping’ regime, and remained as a non-smooth function of the
relative speed.

The adapted law has no ‘static point’ but a very narrow creeping interval. This may not be a good curve for modeling
friction interactions of stiff surfaces, such as metals and ceramic. However, it seems to be well justified when at least one of
the surfaces is relatively soft. In our experimental rig, the belt is made of a rubber type polymer material whose properties
are represented by the friction law rather than the belt itself for simplicity reason. Discontinuous friction curves are correct
from an engineering standpoint and can be indeed handled by the conditioning (event detection) during numerical
integration. However, the presence of discontinuities in the differential equations of motion may be questioned from the
standpoint of existence and uniqueness of solution including the so-called the Lipschitz condition. A numerical procedure
with detection of events in the dynamics of similar 2-DOF mechanical system with dry friction was used by the authors
in [22].

Let us assume the steady-state conditions at constant belt's speed and obtain an effective friction coefficient, which takes
into account the influence of the angular body as shown in Fig. 1. Ignoring the inertia and viscosity forces and solving
linearized equations (5) and (6) with respect to F, x1 and y1 gives the effective friction coefficient

μeff ¼
F
mg

¼ ð1þκ1Þμ
1þκ2μ

; (10)

where

κ1 ¼
3Mr k1k2þ2ðk1þk2Þk3

� �
mκ3

; κ2 ¼
4rk2k3�3Mgk2

κ3
;

κ3 ¼ 3Mgðk1þk2Þþ4r k2k3þk1ðk2þk3Þ
� �

:

The curve of effective friction coefficient (10) is shifted downward as illustrated in Fig. 2 and has as many as twice larger
amplitudes, which is caused by both structural and physical specifics of the model. It is shown in the next section that the
asymmetry of the effective friction coefficient affects the system dynamics.

3. Conditions of experimental and numerical tests

In order to numerically illustrate the effect under consideration, let us chose the experimentally estimated model
parameters [21] as follows: M¼ 0:14027 kg, m¼ 0:1052 kg, J ¼ 2:4423� 10�4 kg m2, r¼ 0:078 m, k1 ¼ 367:0 N m�1,
k2 ¼ 76:0 N m�1, k3 ¼ 69:0 N m�1, c1 ¼ 0:0156 N s m�1, c2 ¼ 0. In this case, the corresponding linearized conservative
system has the following eigen-frequencies: ω1 ¼ 9:87007 Hz and ω2 ¼ 14:1971 Hz. Therefore, in contrast to the reference
[25], no low-order internal resonances are assumed here. In order to provide ‘adiabatic’ loading conditions, let us consider
the case of slowly decelerating belt whose speed is decaying by the linear law

vb tð Þ ¼ V0 1� t
Tmax

	 

; (11)

where V0 ¼ 0:17 m s�1 is the initial speed and Tmax ¼ 45 s is the duration of process; based on such parameters, the speed
(11) can be considered as slowly varying in the temporal scale of eigen-vibrations of the model.

Eqs. (5) therefore can be rewritten in the general standard form

_x1 ¼ x2; (12a)

_x2 ¼ f ðx1; x2; y1; y2; tÞ; (12b)

_y1 ¼ y2; (12c)
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_y2 ¼ gðx1; x2; y1; y2Þ; (12d)

where the function f depends explicitly on the time parameter t in a slow (adiabatic) way through the belt speed (11).
The above listed values of parameters are close to those obtained by measurements for the experimental rig, which is

shown in Fig. 1a. Note that some of the important parameters are hardly possible to identify exactly due to both geometrical
and physical issues. For instance, it is known that friction-induced dynamics is quite sensitive to parameters of friction laws
and shapes of the corresponding curves. Also, the real block interacting with the moving belt is a three-dimensional body
creating a non-homogeneous distribution of the normal pressure on the belt across the bottom surface of the block.
In addition, the belt speed is difficult to control exactly to match the target (11). The main purpose of the present study is to
find qualitative agreement between the theoretical and experimental results describing the major transitional effects in
decelerating sliding, rather than to achieve a perfect quantitative match between the dynamic states.
4. Evolution of the creep-slip response

Preliminary illustration and some comparison of the theoretical and experimental results are given in Fig. 3.
Fig. 3. Different short-term time histories in windows of two seconds: (a and b) velocity of the main block obtained from experiment, (c and d) velocity of
the main block obtained from the modeling, and (e and f) friction force obtained from the modeling.
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Fig. 3a–d illustrates the velocity of main block x2 ¼ _x1 obtained from the test and numerical solution of (12). The time
histories are shown in time windows of 2 s covering the developed and final phases of the dynamics. Both the experiment
and the simulation show the typical spike-wise behaviors of the velocity, which is usually observed during creep-slip
vibrations. Due to the deceleration of the moving belt, the intervals between spikes are increased by the end of the process
as it is seen from comparison of Fig. 3a, c and e. Increasing irregularity of the spike amplitudes is also seen near the end of
the process. These are the factors leading to the widening of spectrum of the dynamic states as will be illustrated in detail
below in Section 5. Note that the friction force, which is obtained from the modeling, is shifted downward into the negative
area; see Fig. 3e and f. When the spikes become widely spaced, the friction force develops a small high-frequency
component in creeping phases as seen from the fragments d and f of Fig. 3. Such component is caused by the variation of
vertical load on the main block due to the rotational vibrations of the angular body. These vibrations are excited by sudden
slips of the main block through the horizontal and somewhat vertical springs as follows from the form of (5).

In order to directly characterize transient effects in spectral properties of the dynamics, the Fourier spectrogram tool is
applied to the coordinate and velocity of the main block. This sub-component is directly excited by the friction force and
therefore represents the major source of dynamic excitation to the rest of the system. The Matlab procedure

½S; F; T; P� ¼ spectrogramðsignal; 512; 256; ½ �; 1E2Þ
surfðT; ½ �; 10nlog 10ðPÞ; ‘edgecolor’; ‘none’Þ
zoom

0

2

1

Fig. 4. Time histories of the main body coordinate with the corresponding Matlab spectrograms obtained from (a) test and (b) numerical simulation for the
theoretical model; three major spectral lines at the bottom correspond to the constant shift of the main block from its initial position, and two principal
frequencies, which are close to those of the linearized conservative system; colors illustrate the power spectral density in logarithmic scale, 10 log10P. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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with a top view is consequently used to process a signal. The spectrogram representation is convenient in the present case
of temporal scales, although other methods, such as wavelet or Hilbert transforms can be applied as well for the purpose of
processing such types of signals. Also, spectral characterization seems to be most reasonable in case of mechanical systems,
since it gives a direct answer regarding possible resonance conditions. Fig. 4a and b represents spectrograms of the block
coordinate x1 obtained from the test record and numerical solution of (5).

There are some quantitative differences in terms of amplitudes, as expected due to the discussion at end of Section 3.
However, major spectral lines of the diagrams in Fig. 4 are in a reasonable match with their levels reflecting the two
principal frequencies of the linearized conservative system (see the beginning of Section 3). The natural frequencies are
found to be ω1 ¼ 9:87007 Hz and ω2 ¼ 14:1971 Hz. The second one appears to be in a match with the corresponding
spectral line, while the first frequency is somewhat higher than the spectral line. The spectral line is at level about 8 Hz by
the visual estimates, because the next grid line is 13 Hz. The above natural frequencies are estimated from the linearized
autonomous conservative system, and as such they do not have to exactly coincide with the spectral lines obtained from the
test and simulations with the entire model. The entire model is non-autonomous, non-conservative, and non-linear, and its
dynamic response may have quite different frequency contents due to different factors, i.e. third term in Eq. (6) or by
neglecting friction force when calculating natural frequencies.
Fig. 5. Time histories of the main body velocity with the corresponding Matlab spectrograms obtained from (a) test and (b) numerical simulation for the
theoretical model; see comments to Fig. 4 above.
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The bottom spectral line near zero corresponds to a constant component in the oscillating coordinate. Note a gradual
decrease of the frequencies as the belt speed decelerating with time. Keeping in mind the discussion of Fig. 3, note also a
significant spectral widening by the final phase of the process, which begins quite abruptly at about t ¼ 35 s; see also Fig. 3b
and d for a detailed characterization of temporal histories in this interval. In addition to the two major frequencies clearly
seen in the interval 0oto35, there are several sub-harmonics however of much lower power; in spectrograms, a ‘cooler’
color represents lower amplitudes of the power spectral density. Similar illustrations are used for the block's speed in Fig. 5.

Sub-harmonics are seen more developed in this case since high frequency components produce a stronger contribution to the
speed. The upper edge of the time history diagrams associated with the ‘sticking’ phase of vibrations actually reflects the belt speed;
see Fig. 3a–d for details. It is seen that the real belt of the experimental rig does not perfectly follow that of the model, however, it is
reasonably close to the target. Also, there are some irregular upward spikes in the test record for the block's velocity x2 ¼ _x1; see
also Fig. 3a and b. Such ‘overshoots’ mean that practically the block ‘sticks’ sometimes in a reverse mode. Such events are quite
irregular and rather happen due to natural imperfections in the belt surface, fluctuations of the belt speed caused by its elasticity, as
well as many other factors. Variations of the normal pressure on the block could also be a contributing factor; however, the model
did not capture such effect, although it takes into account the normal pressure variations.
Fig. 6. Experimental records in different time windows for phase plane of (a, c, and e) the main block, and (b, d, and f) configuration plane of the model.
(a) 20oto25, and (b) 20oto25, (c) 30oto35, (d) 30oto35, (e) 35oto40 and (f) 35oto40.
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Fig. 6a, c, e and b, d, f shows trajectories on the phase plane of main block and configuration plane of the system,
respectively, in three different time windows of the same length 5 s obtained from the test. Typical stick-slip vibrations can
be identified from the phase plain diagrams in Fig. 6a, c, and e. The horizontal part of every loop corresponds to the ‘sticking’
phase and therefore its level indicates the belt speed, which is gradually decreasing with time. This is also the reason why
the loops have different sizes so that the diagrams look like a bunch of curves rather than an attractor. Similar effect is seen
in configuration planes shown in Fig. 6b, d, and f, although configuration trajectories look more irregular due to contribution
of the angular body. Nevertheless, ‘fingerprints’ of some attractors, corresponding to different frequency ratios, can be seen
in fragments b and d of Fig. 6. Further, the irregularity is increasing by the end of the process as predicted already by the
Fourier spectrograms and time histories. The elevation of some loops on the right of the phase plane diagrams correspond to
the spikes as described in the discussion of Fig. 3.

Similar illustrations are shown in Fig. 7 based on numerical solutions. Although shapes of the curve and locations of time
windows are somewhat different, qualitatively the evolution of trajectories is similar to that obtained from the test.
Fig. 7. Numerical solutions for the model shown in different time windows for phase plane of (a, c, and e) the main block and (b, d, and f) configuration
plane of the model. (a) 23oto28, and (b) 23oto28, (c) 34oto39, (d) 34oto39, (e) 38oto43 and (f) 38oto43.
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5. Periodic attractors and modal transitions

The capability of the current test rig including multiple auxiliary mechatronic components does not allow sometimes to
implement any conditions achievable in numerical tests. However, interesting effects revealed from numerical simulations
can serve as a guideline for redesigning the rig and planning further experiments. From that standpoint, let us consider the
model (5) under the assumption (11) regarding the belt speed with V0 ¼ 0:25 m s�1 and Tmax ¼ 160 s. Although the initial
speed is higher than that assumed in Section 4, the decay rate is lower due to the much longer deceleration interval. Such
conditions are expected to allow different quasi attractors to develop more clearly and make observable transitional effects
during the deceleration.

For instance, Fig. 8a–c illustrates the dynamics of angular body during the entire process that points to at least six
different segments; compare the intervals 0oto98, 98oto110, 110oto130, 130oto135, 135oto140, and
140oto150, where the numbers are given in seconds, and the boundaries are indicated conditionally based on visual
estimates. As follows from Fig. 9, the friction force F behaves in different ways within different segments, and this may affect
the dynamics of entire system. In particular, Fig. 9a and b shows some decay of the amplitude of spike with a minor increase
of the interval between them, as compared the initial and final phases of the first segment. However, the spike shapes
remain qualitatively the same during the entire segment. Such a quasi steady-state dynamics during the first about 98 s is
confirmed also by the Fourier spectrograms of the system coordinates in Fig. 10. The next relatively short interval,
98oto110, is characterized by quite irregular spiking behavior of the friction force as confirmed by the fragment in Fig. 9c.
Fig. 8. Time history of the angular body position under the belt speed V0 ¼ 0:25ð1�t=160Þm s�1; different time windows (a–c) clearly show a sequence of
different segments in the dynamics with transitional effects. (a) 0oto160, and (b) 100oto160 and (c) 130oto135.
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The Fourier spectrogram shows the corresponding narrow strip of widening spectrum; see Fig. 10a and b. The irregularity of
motion is confirmed also by the diagrams in Fig. 11e and f. As follows from Figs. 9b, 11c and d, the onset of chaotic domain is
accompanied by period doubling. The chaotic area ends at about t¼110 by giving rise to a regular multiple frequency
domain of about 20 s. Then another narrow strip of widening spectrum is observed before the next interval of regular
multiple frequency motion. Interestingly enough, the frequency force spike shapes become similar to those within the first
regular interval with somewhat lower frequencies though; compare Fig. 9e and b. Nevertheless, the motion modal contents
are different; compare Fig. 11b and j. Finally, a wide strip of the dense spectrum begins at about t¼140. Note that, in this
case, the densifying spectrum is caused by the temporal localization of the friction force spikes rather than their irregularity;
see Figs. 9f and 11k. Such rare force spikes support observable high frequency vibrations of the angle body between the
spikes; see the configuration plane diagram in Fig. 11l. Such oscillations also lead to oscillations of the friction force due to
the variations of normal load on the horizontal block; see Fig. 9f. It is remarkable that such higher frequency oscillations
start forming, when the belt motion becomes very slow. Finally, comparing spectral lines of the spectrograms during
different segments in Fig. 10 with diagrams in Fig. 11a and b, g and h, and i and j points to a series of modal transitions
associated with different types of quasi attractors separated by narrow intervals of irregular motions. Further, Eq. (11) can
help to identify the belt speed at which an attractor could practically develop at steady states under the constant belt speed.
Fig. 9. Short-term temporal behaviors of friction force from different segments of the dynamics depicted in Fig. 8. (a) 1oto3, (b) 98o to100,
(c) 102oto104, (d) 120oto122, (e) 136oto138, (f) 155oto157.
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6. Conclusions

In this work, based on the mechanical mass–spring–belt system and an experimental rig designed in [21], we obtained
an experimental proof of transient effects in friction-induced vibrations revealed earlier theoretically in [25]. The
mathematical model used in [21] is generalized here in order to account for geometrical nonlinearities and the influence
of gravitation. This allowed us to obtain a reasonable qualitative match between theoretical and experimental results in
terms of time histories of the dynamic states and transient spectral properties of vibrations. In particular, both experiment
solution and numerical solution confirm the effect of densifying spectral bend by the final phase of deceleration process.
In real brake systems with much high and denser eigen-frequencies, the densifying spectral bend becomes more likely to
cover some of the acoustic modes with generation of squeal. Numerical simulations with a very gradual belt deceleration
reveal the hierarchy of modal transitions associated with different quasi steady-state multiple frequency vibrations
separated by relatively narrow time intervals of irregular dynamics.
Fig. 10. Time history with the corresponding Fourier spectrograms under the belt speed (11) for V0 ¼ 0:25 m s�1 and Tmax ¼ 160 s: (a) main block and
(b) angular body.
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Fig. 11. Numerical solutions for the model shown in different time windows at the belt speed (11) for V0 ¼ 0:25 m s�1 and Tmax ¼ 160 s: (a, c, e, g, i, and k)
phase plane of the main block and (b, d, f, h, j, and l) configuration plane of the model. (a) 1oto3, and (b) 1oto3, (c) 98oto100, (d) 98oto100, (e)
102oto104, (f) 102oto104, (g) 120oto122, (h) 120oto122, (i) 136oto138, (j) 136oto138, (k) 155oto157 and (l) 155oto157.
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