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Abstract

In the paper we consider a four degree of freedom model of a mechanical system
with dry friction, which can explain non-regular vibrations of mechanical sliding system.
Stick-slip vibrations are studied for the case, where body is riding on a driving belt as a
foundation that moves at a constant velocity. From a mathematical point of view, the
analyzed problem is governed by a set of nonlinear ordinary second order differential
equations of motion, obtained using the Lagrangian method. Numerical analysis is carried
out with the qualitative and quantitative theories of nonlinear differential equations reduced
to the non-dimensional form. The behavior of the mentioned system is monitored via
standard phase portraits, bifurcation diagram as well as Lyapunov exponents. Some
interesting numerical results (periodic, quasi-periodic, chaotic and hyper-chaotic orbits) are
obtained and reported in the paper.
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1. Introduction

Friction phenomenon in many mechanical systems have the great impact
on the strength of elements of these systems and their dynamics. In the scientific
literature there are lots of works devoted to stick-slip vibrations in systems with dry
friction. There are stick-slip induced vibrations caused by friction as a nonlinear
function of the relative sliding velocity between surfaces of bodies rubbing
themselves in many mechanical systems (for instance in clutches, brakes, linear
sliding guide systems and others). Usually these vibrations are undesirable and
even harmful. In most cases, in the scientific literature, papers from a mechanical
point of view are mainly focused on dry friction stick-slip vibrations with various
models of friction. As mentioned earlier there are lots of references in the scientific
literature dedicated to stick-slip vibrations. Also in the last decades these kind of
vibrations were the aim of research of many authors, for instance in the references
[Galvanetto U., Bishop S., 1999, Guglielmino E., et al, 2004, Leine R.1., 1998].
Dry friction causing stick-slip vibrations belongs to one of the most known
phenomena exhibited by mechanical systems. In general, it is a complex process
and depends on different system parameters (relative velocity, normal load,
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lubrication, and many others). As an example, a literature review on models of dry
friction phenomenon can be found in the references [Andersson S..et al., 2007,
Awrejcewicz J., Lamarque C.-H., 2003, Awrejcewicz J., Olejnik P., 2005, Ibrahim
R. A., 1994, Martins J. A. C., et al., 1990].

Some parts of machines (for instance cooperating the valve with sleeve, the
movement of the piston rings during the movement in the cylinder, disc brakes,
clutches, paper movement between the rotating rolls) are a source of stick-slip
vibrations. Also important issues in the linear sliding guideways system are self-
excited vibrations. As experimental studies shown, real contact of the movable
member (slider) with a fixed element (guides) in such system as the machine even
at a very high surface smoothness, has a local character. Detailed description of
this issue is presented in the reference [Awrejcewicz J., 1981]. Moreover, in the
same work the experimental research was conducted using appropriate real
mechanical model.

In our paper we study numerically an analogue to the mentioned above the
4-DOF mechanical system with stick-slip vibrations. Our studies are carried out for
case, where body is riding on a driving belt as a foundation, that moves at a
constant velocity. The considered problem is governed by a set of nonlinear second
order ODEs of motion, and numerical analysis is carried out both with the
qualitative and quantitative theory of differential equations. The obtained solutions
as a response of a mechanical system with dry friction may include several
nonlinear effects like stick-slip vibrations, self-sustained vibrations or other
nonlinear instability phenomena [Guglielmino E., et al., 2004, Valcovici V.. 1963].
In this paper the behavior of the considered system is monitored via standard phase
portraits, bifurcational diagram and Lyapunov exponents.

2. Mechanical model

The considered in this paper 4-DOF model of mechanical linear sliding
guide system is shown in Fig. 1.
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Fig. 1.The considered 4-DOF model with dry friction [ Awrejcewicz J., Grzelczyk D.,2013].
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The considered planar system is in the Cartesian coordinate system with
horizontal and vertical axes x and y, respectively. The first body denoted by 1 has

a mass m; and moment of inertia about the pivot axis S equal to /. In turn, the
second body denoted by 2 has mass m, . In our case x, denotes the coordinate of
the body 1 in the x-direction, y, denotes the coordinate of the body 1 in the y-
direction, ¢ denotes the rotation of the body | about the pivot axis §, while x, is

the coordinate of the body 2 in the x-direction. The considered system is in the
Earth's gravitational field with the gravity coefficient g. The presented system is

characterized by lengths /;, (i=1,2,...7), which denote distances between point §
and points of fixing of springs. Moreover, the system is characterized by springs
with stiffness coefficients 4., k., Rsys Kags Kuys Ksgs Ksys Kees Koy where
indexes (1,2,3,4,5,6) denote numbers of springs, and indexes x and y denote the
appropriate directions of acting forces produced by springs. As can be seen in
figure 1, the body 2 is laying on a belt (as a foundation), which is moving with a
constant velocity v, . Dry friction force F, occur between the body 2 and the belt,
which is a nonlinear function of the relative sliding velocity v, —x, of the belt and
the body 2.

The equations of motion of the studied mechanical system have been
derived using both the Newton-Euler method and Lagrangian method, however
only a dynamic model of the system is presented obtained using Lagrangian
method (the second kind Lagrange's equations)

dfor_ar av _
dt\oq) oq dq
where: q is a vector of generalized coordinates, Q, is a vector of generalized non-

conservative forces acting in the system, 7 is a total kinetic energy, V¥ is a total
potential energy, while 7 is a time. Here a dot denotes differentiation with respect
to time . In our case the vector q has the form q=[x,,5.0.x,]", while the vector

Q, has the form Q, =[0,-mg.0,7,]".

Qa» ()

The friction force /7, is equal to product of the nonlinear kinetic friction
coefficient g (vy —x%,) and the normal force N . The friction force F, strongly
depends on the normal force N =m,g—(k;,y, —ks,lsp) pressing the body 2 to the

belt. It should also be noted, that as a result of numerical simulations calculated
value of the normal force N maybe greater than zero, equal to zero, or less than
zero. If N >0, then the friction contact between the body 2 and the belt moving at
velocity v, occur. In turn, N <0 means a loss of friction contact between the body
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2 and the belt. For this reason, in our mathematical model we added a
discontinuous step function 1(N) describing this phenomenon, and defined as

I if N>0

'(N)Z{o if N<0’

Finally, friction force in our model has the following form
Fir (o = %0, 31.0) = 1ty (vo — 32 mo g — (ks 3y — k3 50)] - Wy — (ks vy — ks lsp)) . (3)
Total Kinetic energy 7 of the system is equal
1 ; o | S
Y =5m,(x,2 + )+ Elqo2 + Emz.\'g 3 (4)
and the total potential energy ¥ of the system (for small angles ¢ ) is
1 I L
- ;kl.\"(xl "’/l(f"xz)2 + ;kl\'(xl +he—x)" + ;/‘3_-'(."1 —/,W’)Z +

l 2 I 2 l 2 I 2
+ ka0 —hp) +Zky (1) —L4p)” + ks (0 +150)" + ks, (1 —lep)” + (5

l 2 I 2
+ ;k(u'(xl _Illp)~ + ;k(,".(}ﬁ + I7q))-'

After calculating expressions —| — |, —, — and introducing into (1), finally
dt\aq ) oq’ oq

we obtain the following equations of motion

d(ar] or ov

Xy + (kye + Koy + Ky + ks + ke )x) + (R + koo —kydy + ks ds — ko dy)p +

— (K +ky )xs =0,

myy + (ks + kg, +k sy +key I + (ks s~ kayly — ksyle + keyly)p = —myg,

16+ (kyoy + kool = kg by + ks Is — kg ly)x, + (k3 3 —kyyly — ksylo + kel )3 + ©)

1+ (klxllz + klrllz + k}ylxz + /‘4.\-/:% + k4_|'/42 + "les2 T+ ki,\'l(? + /‘(»xlzz + /‘(,;-/72 )p +

_(kl.( +/(2x)/l.l‘2 =0,
myXy —(ky + ko )x) = (ki + ko Lo+ (ky + ko )x, =

M (Vo = X3 )[myg — (K3, 3y — k3 Ls0)] - Wmy g — (s, 0y — ks 130)).

3. Non-dimensional form

Let us introduce non-dimensional time ‘r=t/ m, /(ky, +k>.), non-
dimensional coordinates X,=x;//,, Y, =/, and X, =x,//,, non-dimensional
1=X/h s h=n/l 2 =X/l
parameters
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a =
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and non-dimensional functions

P I o I dX,
i \/mll(klx +ksy) ; \/mz/(kl,\~+"2.r) dr

J=fk(Vu—ff:),

l((klx +ho M [y — (ki + o (@Y, ‘9299)): 1(/, — (e}, —e9)),

where now dot denotes differentiation with respect to non-dimensional time 7.
Then equations of motion (6) can be reduced to the following non-dimensional
form

/i}l +ay X| +a,p—a; X, =0,

i;l +b Y, —bp=—1,,

<().i'+c|X|—czY, +e30—cy X5 =0, (7
X=X, —p+X,=

= /ity = X ) f, — (@Y, =)l - 1(f, — (&Y, —e20)).

4. Numerical computational methods

Numerical calculations were performed via the fourth order Runge-Kutta
method with constant time step #=0.001 and zero initial conditions. In order to
implement the computer algorithm, four second order differential equations of
motion (7) are write in the form of eight first order differential equations taking
X,=V,, =%, ¢=w and X,=V,. In this paper kinetic friction function
f (Vo —V>) is described by the Stribeck curve. Since classical signum function is
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non-smooth, in our studies we approximate the mentioned function by hyperbolic
tangent function with numerical control parameter &

Vo —V>

fk(V,,—Vz)=p,,tanh[ )_a(Vu“Vz)*‘ﬁ(Vo"Vz)}— (8)

Similarly, since function 1(f, —(¢¥, —e,p)) is also non-smooth, in our
calculations we replaced this function using smooth function Jully = (@Y, —e;p)

defined as follows

3
., = Yi—e "
Sl = (@Y, —ex)) {‘”“[Mﬂ A, (@Y, —esp)), 9)

with the same as earlier & control parameter.

Non-dimensional friction model parameters estimated and taken from the
references [Awrejcewicz J., 1981, Awrejcewicz J., Grzelezyk D., 2013] and used in

our calculations are 4, =08, @=15.59, f=4252.12, whereas £=10"*.

Dimensional parameters characterized the considered mechanical system have also
been taken from the same references. Based on the mentioned dimensional values
and previously determined relationships, numerical calculations have been carried
out for the following non-dimensional parameters: , =0.07836, a, =0.03344,

a; =0.04058, b =0.09375, b, =0.03314, ¢; =0.02689, ¢, =0.02666, c; =0.06181,
cy =0.03264, f, =0.00529, ¢, =1.37931, ¢, =0.47237.

In this paper numerical simulations were carried out for one presented
above set of system parameters. The behavior of the mentioned system was
monitored via phase portraits, detecting periodic and chaotic dynamics. Moreover,
a good and commonly used tool for the detection of periodic and chaotic dynamics
in nonlinear dynamical systems are Lyapunov exponents. However, the methods
usually used to compute the Lyapunov exponents require smooth vector fields as a
necessary condition. In classical signum model friction force is non-continuous
function of relative velocity and therefore a continuous and smooth function
JxWy=V5) is used in our paper (also £,(f, —(¢,Y; —e,9)) ), which does not posses

this disadvantage. For this reason they can be used during analysis of the systems,
where the Lyapunov exponents are computed by the standard procedures
[Awrejcewicz J., Pyryev Yu., 2006, Awrejcewicz J..et al., 2008, Kuznecov S.P.,
2001]. Note only, that while computing Lyapunov exponents, besides eight first
order differential equations also eight additional systems of equations
(n=123,..8) with respect to perturbations should be solved. Finally, seventy two
equations are solved. The obtained equations can be solved via standard the fourth
order Runge-Kutta method, as well as the Gram-Schmidt ortonormalization
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technique, for instance applied in [Awrejcewicz J., Pyryev Yu., 2006, Awrejcewicz
J.,etal., 2008, Kuznecov S.P., 2001].

5. Numerical results

Fig. 2 shows the phase trajectories of the system starting from zero initial
conditions for /;,=0.002 and ¥,=0.01. The trajectories are shown in the time

interval z [10000,12000].
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Fig. 2. Trajectories of the system for ¥, =0.002 (on the left) and ¥, =0.01 (on the right)
in the time interval 7 [10000.,12000].

The obtained results indicate an irregular dynamics of the considered
mechanical system. Numerical simulations for a given value of the parameter ¥,
carried out for longer periods of time also did not detect the periodic orbits.

However, the different character of the motion has been detected for larger values
of the parameter V.

Fig. 3 show two chosen interesting periodic solutions for the values of the
parameter ¥, equal to 0.015 and 0.032, respectively.
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Fig. 3. Periodic orbits for ¥, =0.015 (on the left) and ¥, =0.032 (on the right).
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Another character of motion has been detected for larger value of ¥,
parameter. During simulation (here for ¥}, =0.05), after a transitional period, the
system goes to steady state (fixed point), as can be shown in Fig. 4.

Fig. 4. Trajectories of the system for ¥, =0.05 in the time interval r €[0,1000] (on the
left) and in the time interval 7 &[1000,2000] (on the right).

For a more complete qualitative analysis of system dynamics bifurcational
diagram has been performed with a ¥, as a control parameter and shown in Fig. 5.
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Fig. 5. Bifurcational diagram with ¥, as a control parameter.

The presented bifurcational diagram consists of 400 Poincare sections
defined as ¥, =0 (rising). Each the Poincare section is computed by the use of
simulation starting from zero initial conditions. Then the first 1000 points are
ignored and last 150 ones are presented in the diagram. Moreover, we present the
Table 1, which contains Lyapunov exponents corresponding to the solutions
presented on the bifurcational diagram in Fig. 5.
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Table |. Lyapunov exponents corresponding to the solutions presented in Fig. 5.

Vo Ay Ao A Aa An Ay Az As
0.001 00174 00070 0.0020 0.0007 0.0000 —0.0007 —0.0044 —14.79
0.002 0.0214 0.0081 0.0028 0.0006 00000 | —0.0011 —0.0010 —13.97
0,004 | 0.0161 0.0054 0.0014 0.0001 —0.0021 —0.0086 003273 —43.11
0,005 0.0000 —0.0021 —0.0025 —0.002% —0.0031 —0.0118 —0.0121 —38.50
0.01 0.0060 0.0012 0.0000 —0.0021 —0.0051 —0.0001 —0.0103 —36.20
0.015 0.0000 —0.0012 —0.0039 —0.0041 ~0.0164 —0.0168 —0.0116 —25.03
0.02 0.0000 —0.0013 —0.0013 —0.0005 —0.0102 —0.0240 —0.0246 —20.77
0.025 0.0000 —0.0027 —0.0027 —0,0033 | —0.0052 —0.0210 —0.100 —16.15
0.03 0.00000 —0.00003 | =0.00238 | =0.01311 —0.01671 -0.03976 | —0.15022 | —13.035

0032 | 0.0000 —0.0010 —0.0045 —0.078 —0.0250 —0.0272 —0.1116 —10.07
004 —~0.0011 —~0.0011 ~0.006T — 00067 —0.0148 —0.01149 —0.260 —0.266
005 ~0.0035 ~0.0035 —0.0188 —0,0188 —0L0G38 —0.0638 —0.800 —0.800

The Lyapunov exponents for chosen ¥, parameters have been computed
using period A7 of the Gram-Schmidt reorthonormalization equal to 0.5
(AT =0.5), along the trajectory of length 10° (for ¥, =0.03 exceptionally 5-10°)

and after ignoring the initial motion, starting from the zero initial conditions.
Among the selected parameter values of ¥, chaotic behaviors are detected for ¥

equal to 0.001, 0.002, 0.004, 0.01, while periodic behaviors are detected for ¥,
equal to 0.005, 0.015, 0.02, 0.025, 0.03, 0.032. For V,=0.04 and ¥,=0.05

trajectories goes to a fixed point. The obtained values of Lyapunov exponents
confirm the periodic and chaotic behavior of the system depending on the selected
parameter V.

6. Summary and conclusions

In this paper mathematical modeling of the 4-DOF mechanical linear
sliding guideways system with dry friction is shown. The analyzed system from
mathematical point of view is presented as a nonlinear equations of motion
obtained from second kind Lagrange's equations. Numerical analysis of the system
in non-dimensional form were carried out for one set of system parameters and
various ¥, control parameter. Some interesting behaviors of the system are

detected using standard phase portraits. For a more complete qualitative analysis of
system dynamics, bifurcational diagram has been performed with a ¥, as a control

parameter. Moreover, Lyapunov exponents corresponding to the solutions
presented on the mentioned bifurcational diagram have been computed and
analysed. The obtained Lyapunov exponents confirm periodic and chaotic behavior
of the system obtained using phase trajectories as well as bifurcational diagram.
Presented results show interesting solutions, including periodic, quasi-periodic,
chaotic and hyper-chaotic orbits. Moreover, for relatively large value of control
parameter ¥, trajectories of the system goes to a fixed point. On the other hand, as

can be seen in the table 1, for relatively small value of parameter /,, we obtain
hyper-chaotic solutions with two, three or four positive Lyapunov exponents.
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