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Abstract In this paper, first, we consider corrugated rods, i.e., those in which the values of amplitude and
step corrugations are varied continuously as a function of position along a central axis direction to achieve
a required function. The latter corrugation type is called the functionally gradient corrugation (FGC). State
equations obtained via the homogenization procedure are projected onto the central direction. Second, we
study problems regarding the optimization of the FGC rods with variable amplitude and variable step of
corrugation. In result of our approach, the optimal profiles of corrugated rods are obtained guaranteeing the
largest stiffness of the FGC rods regarding a longitudinal deformation. We have applied the most important,
from an engineering point of view, constraints of keeping constant length of the curvilinear rod axis and both
linear dimension (projection onto a straight line axis of symmetry) and number of waves of corrugations.

Keywords Homogenization · Optimal design · Corrugated rod · Functionally graded structure

1 Introduction

Corrugated rods (Fig. 1) are widely used as structural elements in civil engineering, reinforced concretes
and flat springs fabrication. The corrugated rod model is also used while investigating elastic properties of
reinforced composites [1], and they are also applied in reinforced glass–plastic materials [2]. In the so-far-
mentioned areas of applications, the longitudinal deformation of corrugated rods plays a dominant role. The
problem related to a proper choice of the corrugation profile to preserve the largest longitudinal stiffness is most
important while designing corrugated rods. It has been shown in reference [3] that in the case of a regularly
fabricated corrugation profile (Fig. 1), a profile with the elliptic sinus shape is optimal one. On the other hand,
optimization of the regular corrugated rods yields a rather negligible benefit, i.e., the change of a sinusoidal
profile into an optimized one increases the longitudinal rod stiffness only about 1 % [3]. The so-far-mentioned
optimization procedure does not include important factors as a way of external load distribution along the
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Fig. 1 Regular corrugated rod

Fig. 2 FGC with squared step gradient (10)

Fig. 3 FGC with a cubic step gradient (11)

rod length as well as the influence of applied boundary conditions. The mentioned factors can be taken into
account while constructing of the so called functionally graded corrugated (FGC) rod, which characteristics
(amplitude and step) are changed along its length through a given rule. In this work, we study separately the
corrugations with variable amplitude (Fig. 2) and variable step (Fig. 3).

2 State equation

The conventional investigation of the stress–strain state of a corrugated rod requires solution to the ODEs with
variable coefficients. When the number of corrugation waves is high, the straightforward numerical solution
to these equations using FEM [3–5] or the sweep method [6] causes significant computational difficulties.
Besides, this way of calculation does not allow setting the problem of optimal design of structures.

In reference [7], the computational scheme of the stress–strain state of regularly corrugated plates using
projections of stress, moments and displacements onto the symmetry axis with a help of the homogenization
method has been proposed. In reference [3], the same scheme is carried out proving the high efficiency of the
applied method. The so-far-mentioned approach allows studying the FGC with either varied amplitude [8] or
varied stepping [9,10].

2.1 Equilibrium equation for varied amplitude

We consider the FGC rod, whose curvilinear axes are governed by the equation

z1 = h1(x)z̃(nx), (1)

where n denotes corrugation waves number; z̃(nx) is periodic function with period l1 = L
n ; L denotes length of

the rod axis, whereas h1(x) defines the corrugations amplitude gradient (small gradient is further considered,
dh1
dx ∼ 1).

The homogenized equation of the longitudinal FGC rod with a varied step coincides with the equilibrium
equation of the regularly corrugated rod [3] subjected to the longitudinal load (see Fig. 3)

d

dx

(
1

k1

du

dx

)
= A1 · P(x), (2)

where u denotes projection of the rod displacements along the neutral axis ox; k1 is the averaged coefficient
of the longitudinal stiffness, and A1 is the averaged squared form.

For the FG of profile (1), we have

k1 = 1

E I

L∫
0

(
1

ÃF
+ h2(x)z̃2(ξ) Ã

I

)
dξ, (3)
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A1 = 1

L

L∫
0

√
1 + (h′

1(x)z̃(ξ) + nh1(x)z′(ξ))2dξ, (4)

where ξ = nx, x and ξ are treated as independent quantities; Ã = √
1 + (h1(x)z̃(nz))′2; I is the moment of

inertia of the transversal rod cross section regarding its neutral axis, and F denotes the rod cross-sectional area.
Assuming that a corrugation has an amplitude larger than the characteristic cross-sectional size, first term

standing under integral in (3) can be neglected. Analogously, for large number of corrugations and a small
gradient, one may neglect h′z in formulas (3), (4). Then, formulas (3) and (4) are simplified and cast to the
form

k1 = y2
1

E I n2

1

L

L∫
0

√
1 + y2

1 z̃′2dξ, (5)

A1 = 1

L

L∫
0

√
1 + y2

1 z̃′2dξ, (6)

where y1 = nh1(x).

2.2 Equilibrium equation for varied step

In some applications, for instance, when corrugated elements are used as a middle layer in a three-layer com-
posite material [11], direct fabrication of the amplitude-graded corrugation is not possible due to technological
reasons. Equation describing a curvilinear axis of this corrugation can be presented in the following form

z2 = h2 z̃(n f (x)), (7)

where h2 = const, and f (x) denotes the change of a corrugation step.
Conditions for the function f (x), where a number of corrugations waves is constant, follow

f (0) = 0, f (L) = L , f (x) > 0, f ′(x) > 0, (8)

and the approximate formula for the changeable corrugation step is as follows

l̃2(x) ≈ l

f ′(x)
. (9)

In what follows, we consider two characteristic cases of the varied step for sinusoidal corrugation. In the
first case, the corrugation profile monotonously either decreases (Fig. 2) or increases along the rod length.
Such case can be described by a quadratic function, which taking into account (8) yields

f (x) = βx2 + (1 − 2πβ)x, (10)

where β parameter characterizing the magnitude and direction of the gradient vector should satisfy the inequal-
ity |β| < 1

2π2 . For β > 0 the corrugation step monotonously decreases, whereas for β < 0 it increases. In
other words, large values of |β| correspond to large values of gradient step changes.

The second characteristic case is associated with the increase (decrease) of the varied step into direction
of the rod center and with decrease (increase) of this step in the neighborhood of the rod edges (Fig. 3). The
so-far-described symmetric varied step can be modeled via a cubic function, which takes the following form:

f (x) = βx3 − 3βπx2 + (2βπ2 + 1)x, (11)

and for |β| < 1
2π2 , the conditions (8) are satisfied.

Equilibrium equation of the FGC rod with the varied step (7) subjected to the longitudinal deformation
can be obtained with a help of the modified homogenization approach [10,11]. This modification relies on
introduction of the variable η = n f (x), which is treated as independent, and hence, the differentiation operator
takes the following form
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d

dx
= ∂

∂x
+ n f ′ (x)

∂

∂η
. (12)

In result, the following homogenized equation is obtained

d

dx

(
1

k2

du

dx

)
= A2 · P(x), (13)

and for a small gradient and non-shallow corrugation, we get

k2 = h2
2

E I

1

L

L∫
0

z̃2(η)A2dη, A2 =
√

1 + y2
2 z̃′2(η), (14)

where y2 = nh2 f ′(x).

3 Optimization procedure

For both cases of the FGC, we take yi (x), i = 1, 2 as the control function. On the other hand, we take
deformation energy as the minimized functional

L∫
0

u Ai qdx → minyi (15)

by keeping the isoperimetric condition, which guarantees a constant length of the curvilinear rod:

L∫
0

Ai dx = S − const. (16)

Boundary conditions for equations (2) and (13) are taken as follows

u(0) = 0, u′(L) = 0. (17)

Similarly, we may carry out the optimization procedure for a sinusoidal FG corrugation of the form

z1 = h1(x) sin(nx), (18)

z2 = h2 sin(n f (x)). (19)

Further, we consider the often met in practice case, when the corrugation amplitude is essentially less than the
rod axis length (hi << L), and hence, yi < 1. Further, in order to simplify the analysis, we take L = 2π .

3.1 Varied amplitude

We consider the BVP (2), (5), (6), (15)–(18) for i = 1. We develop coefficients of Eq. (2) as well as the under
integral functional (15), (16) into series regarding y1, and we limit the consideration up to a term of second
power. In the latter case, the optimization problem is cast to the following form

2π∫
0

u
(
1 + 0.25y2

1

)
Pdx → miny1; (20)

2π∫
0

(
1 + 0.25y2

1

)
dx = S, (21)

d

dx

(
8 − y2

1

4y2
1

du

dx

)
= (

1 + 0.25y2
1

)
r P(x), (22)

where r = 1
E I n2 .
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Solving the BVP (17), (20)–(22), and following the classical scheme of variation calculus [12], the following
necessary optimality condition is obtained

(
4

y4
1

(
du

dx

)2

− 0.5λ1r

)
y1 = 0, (23)

where the Lagrange constant is defined by the isoperimetric condition (21).
If one compares to zero only the first multiplier appeared in the optimality condition (23)

4

y4
1

(
du

dx

)2

− 0.5λ1r = 0, (24)

we get a formula for the target function.
Therefore, we are going to determine the target function in the following piecewise form y1 ={

y11, 0 ≤ x < l1
y12, l1 ≤ x ≤ 2π

, which on the interval [0, l1) it serves as a solution to the equation

(
du

dx

)2

− 0.5λ1ry4
11 = 0, (25)

whereas on the interval [l1, 2π] it satisfies the following condition

y12 ≡ 0. (26)

On the other hand, the value l1 is defined via the continuity condition of the corrugation profile in the point
x = l1

lim
x→l1−0

z1 = lim
x→l1+0

z1, lim
x→l1−0

dz1

dx
= lim

x→l1+0

dz1

dx
. (27)

For profile (18), conditions (26) and (27) yield

y11(l1) = 0, lim
x→l1−0

(
dy11

dx
sin nx

)
= 0, (28)

and y11 is defined by Eq. (24)

du

dx
= ±0.71

√
λ1r y2

11. (29)

Substituting formula (29) into Eq. (22), the following equation is obtained

0.5y11
dy11

dx
= ±(1 + 0.25y2

11)λ1 P(x), (30)

where λ11 =
√

2r
λ1

.

Equation (30) yields the following solution

y11 = ±2
√

C1e±λ11
∫

P(x) − 1, (31)

where C1 is the integration constant, which can be found from the first condition of continuity (28). Sign
± appearing before the right part of formula (31) defines direction of convexity of the initial wave of the
corrugation and can be neglected due to the symmetry of the stated problem.
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3.2 Varied step

In this case, we consider the optimization problem of (2), (5), (6), (15)–(17) for the varied step (19) for i = 2.
After development of coefficients (14) into series regarding y2 up to the second power inclusively, the step
gradient optimization follows:

2π∫
0

u
(
1 + 0.25y2

2

)
Pdx → miny2 , (32)

2π∫
0

(
1 + 0.25y2

2

)
dx = S, (33)

d

dx

((
1 + 0.125y2

2

) du

dx

)
= (

1 + 0.25y2
2

)
r P(x). (34)

We are going to solve this problem with the supplemented condition regarding conservation of the corru-
gations number, which is governed by condition (8). In order to satisfy condition (8), we introduce the function
ϕ(x) using the following equation

y2 = y20 + α sin ϕ, (35)

where y20, α are constants a priori given; |α| < y20. The minimized functional (32), with respect to a new
control function ϕ(x), takes the following form

2π∫
0

u
(
1 + 0.25y2

2

)
Pdx → minϕ. (36)

Varying ϕ(x) in the optimization problem (33)–(36), (17), with a help of the method of a conjugated
variable [12], following optimality conditions are obtained

cos ϕ

((
du

dx

)2

− 2y2rλ2

)
= 0, (37)

where λ2 denotes the Lagrange constant. If we compare to zero only the second term of optimality condition
(37), the condition (8) cannot be satisfied. Therefore, we proceed in a way similar to the problem of amplitude
optimization. Namely, we search y2 in the following form

y2 =
{

y21, 0 ≤ x < l2

y22, l2 ≤ x ≤ 2π
. (38)

It satisfies (in the interval [0, l2)) the following equation

(
du

dx

)2

− 2λ2ry21 = 0, (39)

whereas in the interval [l2, 2π] it satisfies the following algebraic condition

cos ϕ = 0. (40)

Value l2 is defined via continuity condition regarding corrugation profile in the point x = l2

lim
x→l2−0

z2 = lim
x→l2+0

z2, lim
x→l2−0

dz2

dx
= lim

x→l2+0

dz2

dx
. (41)

Conditions (40), (35) and (8) yield
y22 = y0 − α. (42)



Functionally graded corrugated rods subjected to longitudinal deformation

Next, y21 is defined by Eq. (39), and hence,

du

dx
= ±√

2rλ2 y2. (43)

In the above sign “+” is associated with the extension problems, whereas sign “-“ is associated with
compression. Further, we consider only the extension problems. Substituting formula (43) into equilibrium
equation (34), the following equation is obtained

5y2
21 + 8√

y1
(
4 + y2

21

)dy21 = 2.83√
λ21

P(x)dx, (44)

where λ21 = λ2
r .

Integration of (44) yields

10
√

y21 − 1.5 ln
(
2 + 2

√
y21 + y21

) − 3 arctan
(√

y21 + 1
) + 1.5 ln

(
2 − 2

√
y21 + y21

)
−3 arctan

(√
y21 − 1

) = 2.83√
λ21

∫
P(x)dx + C2, (45)

where C2 is the integration constant, which is defined through the first condition of (8).
Developing the l.h.s. of Eq. (45) into series regarding y21, and limiting the considerations to a second

power, we get

y21 = 1

λ21

(
C2 +

∫
P(x)dx

)2

. (46)

Having in hand the target function y2(x), the function f (x) defining the varied step is found via integration

f (x) =
{

f1(x), 0 ≤ x < l2,

f2(x), l2 ≤ x ≤ 2π,

where

f1(x) = 1

nh2

∫
y21dx+C21, f2(x) = 1

nh2

∫
y22dx+C22, (47)

and C2i are integration constants, and C22 is defined by the second condition of (8), whereas C21 is defined
through continuity of the function f (x) in the point x = l2

lim
x→l−0

f (x) = lim
x→l+0

f (x). (48)

Constant λ21 is defined by the isoperimetric condition (33), which in the case of the target function (38) takes
the form

l2∫
0

(
1 + 0.25y2

21

)
dx +

2π∫
l2

(
1 + 0.25y2

22

)
dx = S. (49)

4 Computational examples

In order to compare results offered by two choices of FGC’s profile, we study the rod with parameters L =
2π, S = 3π, n = 5 subjected to the following longitudinal load action

P(x) = p − const. (50)



I. V. Andrianov et al.

Fig. 4 Schemes of optimal FGC profiles for the amplitude gradient

4.1 Amplitude optimization

For the load (50), formula (31) yields

y11 = 2
√


λ1(l−x) − 1. (51)

Substituting (51) into the second continuity condition of the profile (28), we obtain nine possible values of l1

l1 = kπ

n
, k = 1, 2, . . . , 9. (52)

Therefore, a straight part with zeros amplitude should be located in the vicinity of the free rod edge and
should be multiple of the corrugation half-wave. Isoperimetric condition (21) yields the following nine values
of the Lagrange constant

λ1k = 4.64; 1.70; 0.91; 0.58; 0.40; 0.29; 0.23; 0.18; 0.15.

Therefore, we have obtained nine optimal designs, which are schematically presented in Fig. 4.
If one applies equation (25) to estimate the extension of the optimized rods �1k = g1k p

E I , then obtained values
are located close to each other, since g1k = 0.251; 0.250; 0.250; 0.254; 0.251; 0.246; 0.257; 0.252; 0.251,
and the largest difference is of 4 %.

However, it should be noted that for small values of k the so-far-proposed design of the corrugated rods
is rather of a marginal use, since the corrugation profile is usually applicable only to small parts of the rod.
Observe that the input equilibrium equation (2) has been obtained with the help of the homogenization method
for large number of corrugations, i.e., for small k an error of proposed optimization procedure increases.
Therefore, we take k = 9 for further analysis. In what follows, we are going to study the difference between
the extension of the regular corrugated profile and the optimal one keeping the same length of their curvilinear
axes. The optimal profile is defined by the following formula

L̃1 =
l1∫

0

√
1 + z2

1x dx + 2π − l1, (53)

where z1x = d
dx

( y11
n sin (nx)

)
.

Substituting l1 of (52) and y11 of (51) into (53) for k = 9, and carrying out the integration, we find S̃ = 9.11.
Amplitude of the regular corrugation (using the same length of the curvilinear axis) is equal to h10 = 0.31.

Both graphs of the optimal and regular profiles are shown in Fig. 5, whereas in Fig. 6 both of them are
shifted with coinciding curvilinear axes.

Let us compare extension of the optimal FGC rod with the gradient �19 and that of the equivalent regular
one with the same length of curvilinear axis �01 under action of the rod specific gravity (49). For the regular
rod, we get k1 = 0.012

E I ; A1 = 1.45, and Eq. (2) yields �01 = 0.34
E I p. Therefore, the relative decrease of rod

extension being loaded by its own weight yields the following relative error

δ1 = �01 − �19

�01
× 100 % = 27 %. (54)
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Fig. 5 Optimal FGC profile, with varied amplitude (1) for the load of the rod specific gravity and the regular profile (2) of the
same length as in (1)

Fig. 6 Comparison of amplitudes of the optimal FGC and regular corrugations

4.2 Step’s optimization

Taking into account (49), formula (46) yields

y21 = 0.5λ2
21(C2 + px)2. (55)

Substituting formulas (42) and (55) into the continuity condition (41), we get

l2 = 1

p

(
C2 + √

2λ21(y0 − α)
)

. (56)

Formulas (47), (55) and (42) yield

f1(x) = 1

6λ21 y0 p
(C2 + px)3 + C21, f2(x) =

(
1 − α

y0

)
x + C22. (57)

In order to define constants C2, C21, C22, λ21, we use the condition of conservation of the number of
corrugation waves (8), coupling condition (48) and isoperimetric condition (49). The obtained equations, after
taking into account (56), can be cast to the form
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Fig. 7 Optimal FGC profile with the varied step subjected to the rod weight loading

C2 = l2 p − √
2λ21(y0 − α), C21 =

(
l2 p − √

2λ21(y0 − α)
)3

6λ21 y0 p
, C22 = 2πα

y0
, (58)

7l3
2 p2 − 9l2

2 p
√

2λ21(y0 − α) − 12παλ21 = 0, (59)(
2l2 p − √

2λ21(y0 − α)
)5 − (

l2 p − √
2λ21(y0 − α)

)5

20λ2
21 p

+ (y0 − α)2(2π − α) = 4(S − 2π). (60)

Equations (59) and (60) can be solved numerically, and we report a solution for the following fixed
parameters: y0 = 2, α = 1, p = 1. Note that for the given parameters system of equations (59) and (60) has
only one solution in the interval 0 < l2 < 2π :

l2 = 5.05,
√

λ21 = 7.72. (61)

Substituting the values (60) into formulas (19), (57) and (58), we find an optimal corrugation profile with
the varied step for the longitudinal load p = 1

z2 =
{

z21, 0 ≤ x < 5.05

z22, 5.05 ≤ x ≤ 2π
, (62)

where z21 = h2 sin(0.011(10.93 + x)3 − 14.14), z22 = h2 sin(1.12x + 7.75).
Optimal rod profile (62) for h2 = 0.31 is shown in Fig. 7.
Let us compare deformation �2 of an optimal FGC rod (Fig. 5) with �02 deformation of an equivalent

regular rod having same length of the curvilinear axis. General extension of the FGC of the rod �̃s is �2 =
�21 + �22, where �21 denotes the extension of the FGC rod part (0 ≤ x ≤ l2) ; �22 is the extension of its
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regular part (l2 ≤ x ≤ 2π). Both extensions are yielded by equation (13) for the coefficients k2, A2, for the
profiles z21 and z22 of (62), respectively. In result, we get �2 = 0.32

E I for p = 1.
In order to define the extension of the equivalent regular rod, we need to estimate its amplitude. However,

a direct use of the results obtained for FGC with the varied amplitude cannot be applied. The so-far numerical
study of the FGC rods is based on the same averaged length of the curvilinear axis S, but it does not mean that
they have the same real length, since different under integral terms (21) and (33) are averaged. Length of the
curvilinear axis FG of the rod (62) follows

S̃ =
l∫

0

√
1 +

(
dz21

dx

)2

dx +
2π∫

0

√
1 +

(
dz22

dx

)2

dx = 9.98. (63)

Amplitude of a regular corrugated having the length of its curvilinear axis (62) is h20 = 0.32, and its
extension for p = 1is �20 = 0.35

E I . Therefore, relative decrease of the rod extension under action of its weight
and the change of the regular FGC with the varied step is of amount of δ = �20−�2

�20
× 100 % = 8.6 %.

5 Conclusions

Analysis of the optimization results of FGC with varied amplitude and step has shown that for the given
parameters of the weight loading, the varied amplitude is more suitable to increase the rod longitudinal stiffness.
Physical modification of the obtained optimal FGC forms of rod profiles (Figs. 5, 7) follows. Longitudinal
loading of the corrugated rod results in its extension due to the bending phenomenon, which mainly takes place
in the corrugation tops. Its stiffness against compression–extension is defined by the magnitude of the profile
curvatures on its tops. This curvature is defined mainly by the corrugations step rather than by its amplitude.
Therefore, in the case of the varied amplitude, the role of a key factor of the rod extension decrease plays a
shift of the rod mass into its clamping, which is displayed by the optimal rod profile shown in Fig. 5. In the
case of the varied step, the source of optimization is given by the change of the longitudinal stiffness, i.e., the
curvatures in the corrugation tops. Owing to the corrugation step changes of the optimal rod profile (Fig. 7),
the reinforced rod stiffness is transmitted into the upper more uploaded rod part.

Inversed problems related to the general FGC rod with a simultaneous change of varied amplitude and step
can be solved in a few successive steps: find an optimal profile, define its gradient amplitude and then solve
the problem of the optimal varied step.
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