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Abstract In this work a lumped mass mechanical model of
a thorax subject to a blast pressure wave is taken into consid-
eration. A thorax spring-dashpot model developed by Lob-
dell is implemented in numerical modeling of dynamics of
the multibody system. The five degrees of freedom mechani-
cal model of a chest adjacent to the elastic backrest is subject
to an impulse loading generated by the blast pressure wave
released by an explosion. The so-called coupling of the pres-
sure wave to the thorax is reconsidered. With respect to the
evident existence of inherent time delays of displacements,
the system of coupled bodies is described by a time delay
differential equations that are derived from the large-scale
systems approach. Numerical solutions present interesting
dynamical behavior of the bio-inspired system resulting from
inherent time delays and a time of arrival of the blast pressure
wave. There is pointed out that the inherent state time delays
change dynamical response of the multibody system. Proper
time of deployment of the foam-based armor plate reduces
relative compression of the thorax, which is to be protected
by a bullet-proof waistcoat.
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1 Introduction

Intrinsic delays in states of physical quantities characterize
many dynamical systems in physics, material engineering,
ballistics, biology and chemistry [1–5]. Natural or artificial
control systems have delays from the sensing of a variable and
the initiation of appropriate response. Mathematics of sys-
tems with time delays pose basic mathematical challenges.
They can be described mathematically by delay differential
equations, which belong to the class of functional differen-
tial equations [6]. The effect of a delay influences dynamical
responses of investigated systems, and is strongly visible in
behavior of multibody systems. The time delay terms of dif-
ferential equations produce an infinite number of roots of the
characteristic equation, making the corresponding dynami-
cal behavior difficult to analyze. One solves such problems
indirectly by applying some approximations, but a limitation
in accuracy that leads to the instability of systems can occur
[7]. More effective methods based on an analytic approach
to obtain the complete solution of systems represented by the
delay differential equations based on the concept of Lambert
W function was developed in [8].

From the other side, numerical methods can be used to aid
any mathematical modeling.

Numerical methods are today popular in biodynamics and,
in particular, in dynamical analysis of primary blast lung
injuries caused by the pressure wave released by an explo-
sion [9]. Rapid motion of the human’s chest wall creates a
pressure wave in the lung material [10]. A concept to protect
the chest is to use a layer foam material behind a massive
armor plate worn over the chest. Coupling of the blast wave
to the thorax causes that soft tissues like lungs placed in the
contents of the thorax can sustain large stress and strain rate
[11]. To investigate the mechanical responses of the inter-
nal organs, a complex modeling is required. Homogeneous
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and linear elasticity material properties are assigned to each
part of the model, whereas the human cartilages and bones
may have different material properties. Such conditions are
taken into consideration by Lobdell’s model which has been
reconsidered in this work to perform numerical solutions of
a large-scale time-delay system.

In this paper the problem of modeling of a multibody bio-
mechanical system of thorax is considered. On the basis of the
theory of large-scale continuous-time systems an uncertain
model of thorax has been written in the representation allow-
ing to define its parametric uncertainties and complex inter-
actions between its subsystems. The parametric uncertainties
make the discontinuous system more difficult to solve, but
it is compensated by more accurate numerical solution and
evident possibility of inclusion of time delays in the impulse
responses.

The fact is that, if we consider an exponential decaying
response that takes about 0.2 ms, then the time delay super-
posed on each body of the system play an important role.

A large-scale dynamical system can be characterized by a
large number of state variables, system parametric uncertain-
ties, and a complex interaction between sub-systems [12,13].
In view of reliability and practical implementation, time
delays have to be incorporated into the numerical modeling
of the large-scale physical systems due to the real transport
of mass, propagation of vibrations and computation times.

2 Variation of the air-blast over-pressure wave

Explosions in air create intense shock waves capable of trans-
ferring large transient pressures and impulses to the objects
they intercept [14]. The free-field pressure time response
from an explosion in air is described by known Friedlander’s
waveform

p(x, t) = p0e(x−v0t)/(v0ti ), (1)

where p(x, t) is the pressure at a point x and time t , p0 is
the blast over-pressure (maximum amplitude), ti is the wave
decaying time and v0 is the sound speed in air. A blast wave
propagates outward from an explosion. It consists of a shock
front, which precedes a phase of positive pressure and can
be followed by a negative pressure phase, which is not taken
into the analysis.

For the numerical experiment carried out in this work one
assumes that the wave has arrived after the explosion in time
tarr at the buffer mass m1 placed at x = 0 in front of the inves-
tigated multibody system (see Fig. 2). Therefore, the simpli-
fied time-dependent characteristics of the pressure wave [9]
is given

p(t) = p0e−t/ti . (2)

It will be more useful in numerical computations to rep-
resent the pressure wave as the effective impact force ub(t)
per an effective area a of the chest subject to the air shock.
Temporal variation of the blast wave that reaches the armor
plate is estimated using the following conditions:

(C1) The most harmful positive phase of the blast wave
profile is assumed [15].

(C2) Maximum amplitude p0 = 1 MPa due to a 10 kg TNT
explosion at 2.2 m standoff.

(C3) Wave decay time ti = 1.66 ms causes a decrease of
p0 to zero within tr = 1.2 ms, such that the impulse
I = 0.4 kPa s impinges onto the armor buffer plate.

(C4) The effective area a = 1.825 × 10−2 m2 of the PUR-
foam plate and the chest.

(C5) Maximum amplitude of the effective impact force
u0 = 18.25 kN (see Fig. 1).

(C6) Impact force u(t) decreases after time ti to u0/e.
(C7) Arrival time of blast wave after detonation tarr = 1 ms.
(C8) Mass of the buffer plate m1 = 0.365 kg for the foam’s

density ρ f = 20 kg/m2.
(C9) Reaction force of the armor plate worn over the chest

to the blast wave during buffer deployment depends on
the foam’s unloading properties (see σu(ε) in Table 1).

(C10) Buffer deployment time for an active mitigation con-
cept depends on σu(ε) as well.

(C11) Maximum incident over-pressure cannot exceed
13 kN, which is determined from the lung damage
threshold on Bowen curve [16], and for duration of
positive incident over-pressure equal to 1 ms.

If a sensor capable of detecting the electromagnetic emis-
sion [17] created at the instant of detonation affords a time
delay, ta , between detonation and the arrival of the blast wave
then a buffer deploys by using a high-speed actuator, such

Fig. 1 Blast load with u0 peak pressure and ti decay coefficient. A
time history of positive phase of the blast over-pressure wave arrived
after ta at the buffer mass
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Table 1 Foam model
parameters for estimation of
σ(ε) curve with hysteresis

σ k16 c62 kp γ n

σl (ε) 16.46 0.465 0.085 0.176 6

σu(ε) 3.408 0.111 0.085 0.037 6

σd (ε) 0 0 0.085 0 0

as a propellant. The force exerted on the buffer as it deploys
must assure that the reaction pressure exerted on the pro-
tected chest does not exceed 0.3 MPa. For detonations of
high explosives the peak over-pressure can cause injury to
the thorax.

In the study, the foam deploys with a lower peak over-
pressure determined by σu(ε) (see Table 1), and the impact
time-response dynamics is assessed for a model problem con-
sisting of 10 kg of a high explosion TNT at 2.2 m standoff.
The relevant ConWep [16] computations of peak pressure p0

over the atmospheric pressure, impulse I and arrival time tarr

as a function of range are found in [14]. Finally, we can write

ub(t) = u0e−t/ti . (3)

Corresponding time history of positive phase of the blast
wave is depicted in Fig. 1.

3 The foam-based armor with buffer plate

Foam materials have the ability to deform at low stress level
while absorbing mechanical energy. Foam is used in appli-
cations of impact protection, to absorb the kinetic energy of
an impact, and reduce the maximum stress on the protected
object [9]. The foam material reduces peak acceleration while
increasing the duration of the impact.

Pressure waves released by explosions cause the so-
called primary blast injuries. They significantly affect the
air-containing organs of human body [18], and in particu-
lar, lungs. A lung injury caused by the pressure wave occurs
after rapid motion of the chest wall, which creates a follow-
ing pressure wave in the lung structure. This is referred to as
coupling of the blast wave to the thorax. A concept to protect
lungs against primary blast injury is to use a layer of foam
material behind a massive armor plate worn over the chest [9].

Capability of energy absorbing is the basic feature of
foams. They are deformed and absorb the impact energy [19]
while keeping the stress acting on the armor plate loaded
with the blast wave. One of the common features of energy
absorption foam materials is that there is a discernible plateau
in their compression stress–strain curves. It means, that the
foam materials can absorb energy by deformation, but keep
the stress almost constant [19,20].

The typical shape of the stress–strain curve for solid foams
has been presented in [21], and including hysteresis, in [22].

Fig. 2 The biomechanical model of a thorax subject to frontal blast
over-pressure wave (m1—proof mass of the armor plate, m2, m3—
masses of posterior and anterior wall of the chest, respectively, m4—
mass of the backrest)

The model proposed by Goog encompasses few parame-
ters dependent on relative density, because Young modulus
and plateau stress usually increase and densification strain
decreases with increasing foam density.

In this work the assumed foam model is a little modifica-
tion of Goog’s model that is completed with a hysteresis. It
consist of three systems in parallel, (see in Fig. 2):

(G1) The Maxwell arm, containing a spring (linear stiffness
k16) and dashpot (viscosity c62) in series. First com-
ponent describes the first and second region of foam
compression and deformation, if the plateau stress is
constant.

(G2) Linear spring kp. The second stiffness represents a
shape of the plateau. It is integrated to describe the
increasing or decreasing part of the plateau.

(G3) Nonlinear spring kD . The third stiffness is responsible
for densification part. It is given by the formula

kD(ε) = γ (1 − eε)n, (4a)

ε = x1 − x2

h f
, (4b)
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where γ and n are the model parameters, ε is the strain
and h f is a thickness of the foam.

Each element of the spring-dashpot model will produce
the following components of reaction force:

Fp = aσp = akpε = a

h f
kp(x1 − x2), (5a)

FD = aσD = akDε = a

h f
γ (1 − eε)n(x1 − x2), (5b)

Fc = aσc = ac62ε̇c = a

h f
c62(ẋ2 − ẋ6), (5c)

Fk = aσk = ak16εk = a

h f
k16(x1 − x6), (5d)

where kp, γ, c62, k16 are stresses in MPa.
Polymeric open-cell foams exhibit complex nonlinear

behavior [22]. As it was mentioned, the stress–strain curve
for uniaxial compression shows three well distinguishable
regimes (G1–G3). The same three regimes are present during
unloading of the foam but the response exhibits a hysteresis
loop. For the numerical experiment, loading σ(ε)|ε̇>0 and
unloading σ(ε)|ε̇≤0 curves are estimated, respectively, for
the model parameters of foam densities ρl = 50 kg/m3 and
ρu = 40 kg/m3 (divided by two) listed in Table 1 (compare
with [21]).

4 Mechanical model of the idealized thorax supported
from behind

The problem of time-varying position- and velocity-
dependent system parameters is reflected in the modeling by
many factors, i.e. Maxwell elements. Skeletal deflection of
the thorax was determined by the difference between dis-
placements of its anterior and posterior walls. The para-
meter discontinuity observed in connections between the
directly coupled lumped masses of the mechanical idealiza-
tion appear in four cases:

(U1) If a relative displacement x21(t) − x31(t) < 0 mea-
sured between the front and back walls of the thorax
exceeds d = 3.8 cm, then a bi-linear spring stiffness
k23 doubles its value that satisfies the Kroell corridors
at large deflection. Stiffness of contents of the thorax
changes due to the nonlinear material behavior of the
rib cage.

(U2) If a velocity of relative displacement of front and
back wall of the thorax becomes negative, i.e. x22(t)
−x32(t) < 0, then a parameter c23 of viscous damp-
ing doubles its value. A different damping coefficient
responsible for elongation and compression is assumed
in order to satisfy the descending part of the Kroell cor-
ridors.

(U3) If a foam material is compressed (in loading state) or
relaxed (in unloading state), then two different phe-
nomenological solid foam models, which are nonlin-
ear according to (G1–G3) are assumed (see σl(ε) and
σu(ε) in Table 1).

(U4) If the foam is fully deployed and there is not compress-
ing force acting on it, then its modeling is changed from
the full nonlinear viscoelastic foam model (G1–G3) to
a reduced one, which is modeled by a spring connec-
tion of elasticity kp between the proof mass m1 and the
front wall’s mass m2 of the thorax (see σd(ε) in Table
1).

(U5) If the foam achieves a state of full deployment, then the
proof mass m1 (the armor plate) starts to pull the poste-
rior wall of the chest via the waistcoat. In consequence,
the spring-dashpot model is being activated, so k13 and
c13 become different from zero. It is because a deploy-
able foam-based armor plate is assumed in the experi-
ment to be integrated on an outer side of the bullet-proof
waistcoat, which is worn over the chest.

In general, discontinuity sources (U1–U5) in the sys-
tem’s stiffness and damping produce coexisting time-varying
uncertainties. Modeling of the investigated system dynamics
is quite complicated, but the large-scale system’s represen-
tation does make it easier.

An idealized biomechanical model of a thorax supported
from behind has been depicted in Fig. 2. Extended models
of a sitting human are analyzed in [23]. The concept of the
thorax model bases on Lobdell’s approach that was developed
by General Motors to study the response of the human thorax
in automobile crashes [24]. An application of the model has
been presented in [9], where the model was consisted of a
configuration of springs and dashpot elements. Injury which
results from the pressure wave released by an explosion is
referred to as primary blast injury [14]. Primary blast injury
most significantly affects the air-containing organs of the
body [18].

The Lobdell’s model was developed through measuring
the thoracic response of a human subject to an impact load.
Use of the Lobdell model has been extended by researchers
to the field of protection against blast, to predict the thoracic
response to a blast wave [25].

In this paper, the model and some associated concepts
of limiting injuries caused by air blasts mentioned above
are reconsidered in one system and supplemented too. The
following ones are incorporated:

(a) a support attached to the thorax from behind,
(b) basic approximation of air pressure wave given in Fried-

lander’s form [26],
(c) a phenomenological model for solid foams introduced in

[21],
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Fig. 3 Particular view of the lumped mass mechanical model of a tho-
rax subject to the frontal blast pressure wave (m1—proof mass, m4—
mass of the support, k13 and c13—spring-dashpot model of a bullet-
proof waistcoat)

(d) a deployable waistcoat with integrated (initially com-
pressed) foam-based armor plate.

An idealized air-blast pressure wave reaches an effective
area of the foam-based armor plate, which is represented by
the body of mass m1, which is by the assumed foam model
attached elastically to the second body of mass m2 (front wall
of the thorax, see Fig. 3).

4.1 Formulation of the large-scale problem

Let us take into consideration a class of uncertain conti-
nuous-time system composed of N -coupled sub-systems as
follows

dx̄i (t)

dt
= (

Ai + ΔAi i (t)
)
x̄i (t)

+
∑

N
j �=i

(
Ai j + ΔAi j (t)

)
x̄ j (t

′
j )

+(
Bi + ΔBi (t)

)
ū(t) , (6a)

ȳi (t) = Ci x̄i (t) + Di ū(t), i = 1, . . . , N , (6b)

where x̄i (t) ∈ R
ni ×2, ū(t) ∈ R

mi , and ȳi (t) ∈ R
li denote,

respectively: vectors of system states, control inputs, and sys-
tem outputs, t ′j = t − τ j .

The dynamical system (6) of i coupled sub-systems is
described by the internal behavior time-independent state
matrices Ani ×ni

i , while the control inputs matrix Bni ×mi
i , the

system output matrix Cli ×ni
i and the control inputs transition

matrix Dli ×mi represent connections between the external
world and the system, τ j is the time delay of j th coupled sys-
tem. In current investigations, control inputs do not directly
influence the system outputs, therefore matrix Dli ×mi

i is zero.
For the purpose of solution of the proposed problem there
are introduced in Eq. (6) time-dependent matrices ΔAni ×ni

ii

ΔAni ×ni
j i and ΔBni ×mi

i that define, respectively: the system’s
state and control input uncertainties. It allows for a more or
less precise inclusion of the system’s parameters disturbances
(U1–U5) given in a form of known time-dependent function
or in a quite different form of a dynamically dependent func-
tion on the internal system state (time- or state-varying prop-
erties are allowed to be modeled as well). Matrices ΔAni ×ni

j i
represent all possibilities of connections between intercon-
nected sub-systems of the entire system.

Particular view of the biomechanical model of a thorax
subject to frontal blast pressure wave has been shown in Fig.
3. From the left side: effective foam armor’s mass m1 under
the pressure impact, front body of mass m2 in anterior surface
of the chest wall, rear body of mass m3 in posterior surface
of the chest wall, m4 – mass of the support.

Equations (6) can be expanded to the following form

˙̄x1(t) = (A11 + ΔA11)x̄1(t) + (A12 + ΔA12)x̄2(t
′
2)

+ΔA13 x̄3(t
′
3) + ΔA16 x̄6(t

′
6) + B1ū(t), (7a)

˙̄x2(t) = (A22 + ΔA22)x̄2(t) + (A21 + ΔA21)x̄1(t
′
1)

+(A23 + ΔA23)x̄3(t
′
3) + A25 x̄5(t

′
5)

+ΔA26 x̄6(t
′
6) (7b)

˙̄x3(t) = (A33 + ΔA33)x̄3(t) + (A32 + ΔA32)x̄2(t
′
2)

+ΔA31 x̄1(t
′
3) + A34 x̄4(t

′
4) + A35 x̄5(t

′
5)

+B3ū(t), (7c)
˙̄x4(t) = A44 x̄4(t) + A43 x̄3(t

′
3), (7d)

˙̄x5(t) = A55 x̄5(t) + A52 x̄2(t
′
2) + A53 x̄3(t

′
3), (7e)

˙̄x6(t) = ΔA66 x̄6(t) + ΔA61 x̄1(t
′
1) + A62 x̄2(t

′
2), (7f)

y(t) =
[

0 1 −1 0
0 0 0 0

]
x̄i , (7g)

where x̄i = [
xi1, xi2

]T
, ˙̄xi = [

ẋi1, ẋi2
]T

, ū = [
ub, us

]T
,

impact force of blast pressure wave ub(t) is given by Eq. (3),
and a reaction force of the support

us(t) = −ks x41(t) − cs x42(t). (8)

Note, displacements x5 and x6 marked in Fig. 3 of massless
points in Maxwell elements are expressed in Eq. (7e) by x51

and in Eq. (7f) by x61, while corresponding velocities are
obtained directly from a two-point method for approximating
the derivative of displacements

ẋi2 = xi1(t + h) − xi1(t − h)

2h
, i = 5, 6.
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Non-zero state-space matrices are as follows:

A11 =
[

0 1
−kp
m1

0

]

, A12 =
[

0 0
kp
m1

0

]

,

A22 =
[

0 1
−k23−k′

23−kp
m2

−c23
m2

]

, A21 =
[

0 0
kp
m2

0

]

,

A23 =
[

0 0
k23
m2

c23
m2

]

, A25 =
[

0 0
k′

23
m2

0

]

,

A33 =
[

0 1
−k23−k34

m3

−c23−c′
23−c34

m3

]

, A32 =
[

0 0
k23
m3

c23
m3

]

,

A34 =
[

0 0
k34
m3

c34
m3

]

, A35 =
[

0 0

0
c′

23
m3

]

,

A44 =
[

0 1
−k34
m4

−c34
m4

]

, A43 =
[

0 0
k34
m4

c34
m4

]

,

A55 =
[
− k′

23
c′

23
0

0 0

]

, A52 =
[

k′
23

c′
23

0

0 0

]

, A53 =
[

0 1
0 0

]
,

A62 =
[

0 1
0 0

]
, B1 =

[
0 0
1

m1
0

]
, B4 =

[
0 0
0 1

m4

]
,

ΔA11 =
[

0 0
− kd(t)−k16(t)−k13(t)

m1
− c13(t)

m1

]

,

ΔA12 =
[

0 0
kd(t)
m1

0

]

,ΔA16 =
[

0 0
k16(t)

m1
0

]

,

ΔA13 =
[

0 0
− k13(t)

m1

c13(t)
m1

]

,

ΔA22 =
[

0 0
−k23(t)−kd(t)

m2

−c23(t)−c62(t)
m2

]

,

ΔA21 =
[

0 0
kd(t)
m2

0

]

,ΔA23 =
[

0 0
k23(t)

m2

c23(t)
m2

]

,

ΔA26 =
[

0 0
0 c62(t)

m2

]

,

ΔA33 =
[

0 0
−k23(t)−k13(t)

m3

−c23(t)−c13(t)
m3

]

,

ΔA32 =
[

0 0
k23(t)

m3

c23(t)
m3

]

,ΔA31 =
[

0 0
k13(t)

m3

c13(t)
m3

]

,

ΔA66 =
[−k16(t)

c16(t)
0

0 0

]

,ΔA61 =
[

k16(t)
c16(t)

0
0 0

]

,

In (7g), a difference x21(t) − x31(t) in displacements of
bodies denoted by m2 and m3 will be the observed system
output. In Eq. (7) zero matrices are neglected.

4.2 Uncertainties and the switching matrices

The problem definition uncovers some new features of the
investigated bio-inspired system shown in Fig. 3. The prob-
lem of time-varying parameters that introduce to the model
some uncertainties have been solved numerically by def-
inition of multivalued matrices switched in accordance to
cases (U1–U5). Stiffness of chest cave interior with organs
increases at condition (U1) about two times to appropri-
ately approximate the real chest’s compression. It obviously
means, that stiffness of the rheological coupling increases
discontinuously with regard to a greater than d compres-
sion of the thorax xr , and that damping ability of the cou-
pling varies in time as the thorax is subject to a suitable
compression or relaxation. Such discontinuity in the sub-
system’s stiffness and damping produces parameter uncer-
tainties dependent on state variable.

4.2.1 Uncertainties (U1–U2)

One can encounter in Eqs. (7b) and (7c) four ΔAi j (t) para-
meter uncertainties of the analyzed dynamical system:

ΔAi j (t) =
[

0 0
σ(i, j)k23(t)

mi

σ(i, j)c23(t)
mi

]

= Di F(t)Ei j ,

(9a)

σ(i, j) = −sgn
(
(−1)i+ j

)
, (9b)

where i, j = 2, 3.
Distribution of entries in ΔAi j (t) does not change over

their all possibilities. Therefore, the unknown time-varying
real-valued matrix F(t) is assumed to be defined in the same
way, but FT (t)F(t) ≤ I must hold for t ∈ R

+, I is the
identity matrix. The introduced decomposition DFE includes
some known constant real-valued matrices Di and Ei j of
appropriate dimensions that need to be estimated to use them,
for instance, in a solution of LMI problems [12,27].

Dependently on xr (t) and vr (t) the following forms of
the uncertainty matrix ΔA22(t) = ΔA(k)

22 in Eq. (7b) are
possible:

ΔA(k)
22 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 0

0 0

]

if s1 then k = 1 ,

[
0 0

−k23
m2

0

]

if s2 then k = 2 ,

[
0 0

0 −c23
m2

]

if s3 then k = 3 ,

[
0 0

−k23
m2

−c23
m2

]

if s4 then k = 4 ,

(10)

where the remaining ΔAi j (t), for i, j = 2, 3 are to be defined
in a similar way, sk = {xr (t), vr (t) : xr (t) < d ∧ vr (t) >
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0; xr (t) ≥ d ∧ vr (t) > 0; xr (t) < d ∧ vr (t) ≤ 0; xr (t) ≥
d ∧ vr (t) ≤ 0} defines rheological properties of the biome-
chanical system. Switching conditions si will select only one
of k possibilities ΔA(k)

i j for k = 1 . . . 4 dependently on values
of pairs (xr (t), vr (t)) creating the discontinuous time history
of uncertainties ΔAi j (t) of the state matrices of coupled two
degrees-of-freedom neighboring subsystems.

To find better description of the existing switching nature
it is now required to choice Di and Ei j matrices of a decompo-

sition. For instance, an exemplary decomposition of ΔA(k)
22 ,

for k = 3 could be made accordingly to the scheme presented
in [28].

Perturbation matrix F(t) will depend on k cases that have
been delivered in the case statement (10). Therefore, with
regard to FT (t)F(t) ≤ I and using Eq. (9) the following
formula reads

ΔA(k)
i, j = Di F(k)Ei j

=
[

0 0
0 δ4i

]
F (k)

[
σ(i, j)β1

γ
0

0 σ(i, j)β4
γ

]

,

k = 1 . . . 4 ,

(11)

where i, j = 2, 3, σ (i, j) is given in Eq. (9b), and F(t) will
switch between

F(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 0

0 0

]

if s1 then k = 1 ,

[
0 ±γ

±γ 0

]

if s2 then k = 2 ,

[
±γ 0

0 ±γ

]

if s3 then k = 3 ,

[
0 ±γ

±γ ±γ

]

if s4 then k = 4 .

(12)

The case statement (12) captures switching properties of
ΔAi j (t) described in comments to (10). As it was expected,
F(t) is defined in the same way for four uncertainties of the
model, matrices Di and Ei j are constant and their entries will
depend on the sub-system that they are related to.

To check correctness of the previously made estimations
let the following parameters be assigned for the uncertainties:
δ42 = 1/m2, δ43 = 1/m3, β1 = k23, β4 = c23, γ �= 0.
For example, ΔA(4)

2,2 = D2 F̄ (4)E22 = [[0, 0], [0, 1/m2]] ·
[[0, γ ], [γ, γ ]] · [[−k23/γ, 0], [0,−c23/γ ]] = [[0, 0],
[−k23/m2,−c23/m2]] what is in agreement with the fourth
case of Eq. (10). Parameter γ = 0.618033 was estimated
numerically [28].

4.2.2 Uncertainties (U3–U4)

While a foam material is compressed (in loading state) or
relaxed (in unloading state), two different phenomenologi-

cal solid foam models σl(ε) and σu(ε), which are nonlinear
according to (G1–G3) are assumed (see in Table 1). If the
foam is fully deployed and there is not compressing force
acting on it, then its modeling is changed from full nonlinear
viscoelastic foam model (G1–G3) to a reduced one σd(ε),
which states a spring connection of elasticity kp between the
proof mass m1 and the front wall’s mass m2 of the chest (see
in Table 1).

σ =

⎧
⎪⎨

⎪⎩

σl(ε) if ε > 0 and ε̇ > 0 ,

σu(ε), if ε > 0 and ε̇ ≤ 0 ,

σd(ε), if ε ≤ 0

(13)

4.2.3 Uncertainty (U5)

While the foam achieves a state of full deployment, the proof
mass m1 (the armor plate) starts to pull the posterior part of
the thorax via the waistcoat. The spring-dashpot model is
being activated, k13 and c13 become different from zero. It
is because in the experiment a deployable foam-based armor
plate is integrated on an outer side of the bullet-proof waist-
coat, which is worn over the chest.

F13(t) =
{

−k13(x11 − x31) − c13(x12 − x32), if ε ≤ 0,

0, if ε > 0,

(14)

Numerical integration of 12 differential equations of first
order is a bit conditioned, but it better approximates complex
dynamics of the biomechanical model of the chest subject to
an impulsive loading. It is equipped with additional bodies
like armor plate and backrest of a seat which have an influence
on behavior of the investigated multibody system.

5 Numerical experiments

Two sources of variability are applied in the numerical sim-
ulation to investigate responses of the analyzed multibody
system:

(1) Various arrival times of impact force ub(t) at foam-based
armor plate.

(2) Various inherent time delays τi of each subsystem of the
thorax.

Parameters of the simulation:

1. m1 = 0.365, m2 = 0.45, m3 = 27, m4 = 10 kg;
2. k13 = 105, k23 = 0.263 × 105, k′

23 = 0.132 ×
105, k34 = 0.05 × 105, ks = 0.1 × 105 N/m;

3. c13 = 0.02 × 103, c23 = 0.52 × 103, c′
23 = 0.18 ×

103, c34 = 0.1 × 103, cs = 0.1 × 103 N/m;
4. foam thickness h f = 0.1 m;
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5. number of iterations N = 5 × 104;
6. step time of numerical integration h = 2 × 10−6;
7. time delays used: t ′1i = t ′2i = t ′3i = ih (i = 1 . . . 5);
8. all initial conditions of state variables are zero except

x11(0) = 0.7h f (compressed foam thickness equals
3 cm);

9. the remaining conditions are provided in (C1–C11), (G1–
G3), (U1–U5) and Table 1.

Stress Fch in the thorax’s model is calculated according to
the formula

Fch = k23(x21 − x31) + c23(x22 − x32), (15)

where k23, x̄2, x̄3 are time-dependent.
Deployment of the foam initiates all the numerical exper-

iments presented below.

5.1 Influence of blast wave time arrivals

Figures 4 and 5 exhibit significant differences in the system’s
dynamical behavior. The time histories were computed for a
few time delays of arrival (ranging from 2.5 ms to 0) of the
air-blast pressure wave that reaches the foam-based armor
plate. It is seen that for ta equal about 0.5 ms the relative
deformation is about 4 cm. If the foam’s deployment delay is
greater, then the strain in the thorax rises comparing with the
non-delayed counterpart. The results prove that even small
time delay affects the dynamics, but in this particular case,
both the deformation (Fig. 7) and maximum stress (Fig. 8)
decrease.

5.2 Influence of inherent time delays

Figures 6 and 7 exhibit significant differences in behavior of
the dynamical system.

The time histories were computed at very small time
delays (ranging from 5h to h = 2 × 10−6) and com-
pared with the non-delayed counterpart. The results prove
that even small time delay affects the dynamics, but in this
particular case, both the deformation (Fig. 7) and maxi-
mum stress (Fig. 8) decrease, as well as a side effect in
a form of small amplitude vibrations of higher frequency
appears.

Figure 8 presents a comparison of stress–strain charac-
teristics of the chest’s model deformation estimated for a
non-delayed (for τ6) and the delayed displacements of bod-
ies mi , i = 1, 2, 3. One could observe, that even small time
delays of about a few time steps of numerical integration
play significant role in the blast pressure wave response.
Inherent time delays in modeling of the chest are important.
Condition (C11) will be satisfied if the time delay τ = 5h
(see Fig. 8).

(a)

(b)

(c)

Fig. 4 Time histories of displacements x11(t), x21(t) and x31(t) as a
function of ta
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(a)

(b)

(c)

Fig. 5 Time histories (a, b) of a relative displacement x21 − x31 and
the corresponding stress–strain curve (c) as a function of blast wave
time arrivals

(a)

(b)

(c)

Fig. 6 Time histories of displacements x11(t), x21(t) and x31(t) as a
function of inherent time delay τi
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Fig. 7 Time history of the relative displacement x21(t) − x31(t) as a
function of inherent time delay τi

Fig. 8 Stress–strain curve as a function of τi

5.3 Animation of motion

The six degrees of freedom dynamical system has been
numerically solved using dedicated procedures coded in
Python. Numpy and matplotlib libraries served as the
tools for manipulation on multidimensional tables, plotting
of frames and saving them in png files. A set of 1000 frames
has been generated and joined to make an animation. Exem-
plary frame is shown in Fig. 9.

6 Conclusions

Importance of time delays in numerical solution of the ana-
lyzed multibody system is confirmed. Modeling of response

Fig. 9 A frame taken from animation of motion of the investigated
multibody system

of the thorax when energized by air-blast over-pressure has
gained new quality. There were mentioned in the literature
overview some attempts regarded to the study, but signif-
icance of time delays have not been sufficiently empha-
sized. Therefore, this work sheds new light on mathematical
description and modeling of the phenomenon. The system
under investigation has received a new useful representation
by application of the large-scale systems approach. It allowed
to include many uncertainties of parameters and time-delay
dependencies of state variables making the modeling more
flexible and ready for future improvements.

Interesting dynamical behavior of the bio-inspired system
is solved numerically. There is pointed out that the inherent
state time delays change dynamical response of the multi-
body system. Proper time of deployment (initiated about
0.6 ms before an impact of the blast wave) of the foam-based
armor plate reduces (at some conditions of the experiment)
relative compression of the thorax.
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