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Mathematical modeling and analysis of spatio-temporal chaotic dynamics of flexible simple and

curved Euler-Bernoulli beams are carried out. The K�arm�an-type geometric non-linearity is

considered. Algorithms reducing partial differential equations which govern the dynamics of

studied objects and associated boundary value problems are reduced to the Cauchy problem

through both Finite Difference Method with the approximation of Oðc2Þ and Finite Element

Method. The obtained Cauchy problem is solved via the fourth and sixth-order Runge-Kutta

methods. Validity and reliability of the results are rigorously discussed. Analysis of the chaotic

dynamics of flexible Euler-Bernoulli beams for a series of boundary conditions is carried out with

the help of the qualitative theory of differential equations. We analyze time histories, phase and

modal portraits, autocorrelation functions, the Poincar�e and pseudo-Poincar�e maps, signs of the

first four Lyapunov exponents, as well as the compression factor of the phase volume of an

attractor. A novel scenario of transition from periodicity to chaos is obtained, and a transition from

chaos to hyper-chaos is illustrated. In particular, we study and explain the phenomenon of

transition from symmetric to asymmetric vibrations. Vibration-type charts are given regarding two

control parameters: amplitude q0 and frequency xp of the uniformly distributed periodic excitation.

Furthermore, we detected and illustrated how the so called temporal-space chaos is developed

following the transition from regular to chaotic system dynamics. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4838955]

Several recent studies address the issue of turbulent

behavior of structural members. In particular, a weak

wave turbulence has been observed experimentally in

thin elastic plates. We are aimed on considering the

issue of a transition from regular to spatio-temporal

dynamics of the Euler-Bernoulli beams. Contrary to

majority of works reducing the infinite dimensional

problem governed by PDEs to that of a few (mainly

two) degrees of freedom, we propose and apply more

rigorous and numerically validated reduction to a

system of ODEs (ordinary differential equations) using

both FDM (Finite Difference Method) and FEM (Finite

Element Method). The obtained novel results include

various transitions into chaotic and hyper-chaotic

vibration regimes of the studied Euler-Bernoulli beams.

We also illustrate and discuss their spatio-temporal

chaotic dynamics. We show that the scenario of transi-

tion from regular dynamics into chaotic one is realized

simultaneously in time and space. We also illustrate

how the application of wavelet analysis allows us to

detect and monitor novel non-linear phenomena exhib-

ited by studied beams, which cannot be found using the

standard FFT (Fast Fourier Transform) methods.

I. INTRODUCTION

Non-linear vibrations of beams are studied by numerous

researchers. Many problems occurring in real constructions

of mechanical and civil engineering can be reduced to beam

analysis. Many researchers take into consideration various

types of beam materials, shape, design, and hence various

types of non-linearity models are applied including geomet-

ric, physical and design non-linearity.

Wang1 studied transverse vibrations of a tapered beam

by Frobenius method and generalized hypergeometric func-

tions while solving the Euler-Bernoulli equations with vari-

able coefficients. The Adomian decomposition method was

used by Hsu et al.2 to solve the eigenvalue problem of the

uniform Timoshenko beams. Yeih et al.3 estimated natural

frequencies and modes of the Euler-Bernoulli beams using

the singular value decomposition. Pitchfork bifurcations, sta-

bility of equilibrium, and the post bifurcation velocity range

of the Euler-Bernoulli beam with fixed ends were analyzed

by Moon and Wickert.4
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Abu-Hilal5 obtained exact solutions in closed form of

forced vibrations of prismatic damped Euler-Bernoulli beams

applying Green’s function.

Gutschmidt and Gottlieb6 analyzed bifurcations and orbital

stability loss of N non-linear coupled micro-electromechanical

parametrically actuated Euler-Bernoulli beams.

On the other hand, the Euler-Bernoulli curved beams

belong to less investigated, and hence we mention only a

few works devoted to this problem. The exact formula

between deflections and resultants of the Timoshenko and

Euler-Bernoulli curved beams was proposed by Lim et al.7

A complete second order deformations field together with

the governing Euler-Bernoulli beams dynamic equations is

reported in Ref. 8. Zohoor and Khorsandijou9 developed a

novel 3D Euler-Bernoulli beam model governed by ten

coupled PDEs.

On the other hand, chaotic dynamics of beams is rather

rarely investigated, since mainly the problems regarding a

few degrees of freedom of lumped mechanical systems are

addressed, i.e., strong truncation of the original infinite

model is introduced. Here, we mention only a few funda-

mental works,10–13 including also the research published by

the co-authors of this paper.14,15

This paper also addresses another novel research track

regarding turbulence and wave turbulence in a solid. In this

context, structural members (plates and shells) displaying

large amplitude motions reveal weak turbulent dynamics

quantified via broad band Fourier components. This point of

view has been initiated by a series of works devoted to nu-

merical analysis,16–25 and recently supported by experimen-

tal investigations reported by Nagai et al.26 and Maruyama

et al.27 The von K�arm�an kinematic plate model was verified

experimentally regarding its behavior.28–34

Another challenging part of this paper concerns the

application of wavelet analysis to chaotic/turbulent dynamics

of structural members which allows us to detect, contrary to

the standard approach relying on the FFT (Fast Fourier

Transform), new dynamic phenomena (see Refs. 35–39 for

more details).

The analysis of available references implies that works

addressing the problems of dynamics of the Euler-Bernoulli

beams are restricted to the approximation through the sys-

tems with a few degrees of freedom. In addition, phenomena

associated with the transition from regular to chaotic dynam-

ics are sometimes not widely illustrated and discussed. There

is a lack of rigorous analysis of the chaotic dynamics of

structural members through a spectrum of the Lyapunov

exponents and in many cases algorithms for the estimation

of the Lyapunov spectrum are doubtful. There is a need to

compute a scenario of transitions from regular to spatio-

temporal chaotic dynamics of flexible Euler-Bernoulli

beams. There is no report, either, on the construction of the

so called vibration-type charts regarding non-linear dynam-

ics of beams (periodicity, chaos, bifurcations) versus control

parameters. Chaotic vibrations of the Euler-Bernoulli beams

within a wide interval of the exciting load frequency are not

analyzed. Our aim is to fulfill these gaps in the existing liter-

ature dedicated to the analysis of dynamics of the Euler-

Bernoulli beams.

II. A SIMPLE EULER-BERNOULLI BEAM MODEL

Achievements in the field of numerical solutions to

PDEs allowed us to use the non-linear theories of mechanics

of deformable bodies and hence to solve directly numerous

problems of vibrations of complex structural mechanical sys-

tems. Flexible beams are widely applied as members of the

constructions of aviation and rocket-cosmic industries and

they are frequently used by car manufacturers and factories

producing various measurement devices. The investigation

of such elements subjected to dynamic load action belongs

to one of the fundamental steps in carrying out the full analy-

sis of the whole construction. In particular, it is important to

study the dynamic regime evolution versus external excita-

tion parameters (amplitude and frequency) and dispersion

properties of a surrounding medium.

Application of the deterministic chaos theory allowed us

to discover new dynamic phenomena of nonlinear vibrations

of beams, panels, plates and shells, and their interactions. In

this work, we study one-layer thin flexible beams with length

a and height h excited by normal load qðx; tÞ (see Fig. 1).

The mathematical model relies on the following hypoth-

eses: (1) deformations remain normal to the mean beam

surface and hence the height of the beam cross section is

unchanged; (2) although we do not take into account inertial

effects of the rotation of beam elements, we consider inertial

forces responsible for beam displacement along the normal;

(3) external forces do not change their direction during beam

deformations; and (4) geometric non-linearity is taken in the

form proposed by K�arm�an.

The so far mentioned hypotheses are based on the Euler-

Bernoulli ideas, and even though they are within the first

modeling approximation, they are accurate enough and suita-

ble for the numerical analysis.

Non-linear PDEs governing beam dynamics describe

equations of motion of a beam element with the energy dissi-

pation, and they have the following non-dimensional form:
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where L1ðu;wÞ, L2ðw;wÞ, and L3ðw;wÞ are the non-linear

operators; wðx; tÞ represents beam deflection in the normal

FIG. 1. A studied beam.
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direction; uðx; tÞ, beam displacement in the beam longitudi-

nal direction; e, damping coefficient; E, Young modulus; h,

beam height; c, specific material gravity; g, acceleration due

to gravity; t, time; and q ¼ q0sinðxptÞ, external load.

The non-dimensional parameters are introduced in the

following way:

k ¼ a

h
; �w ¼ w

h
; �u ¼ ua

h2
; �x ¼ x

a
; �t ¼ t

s
;

s ¼ a

p
; p ¼

ffiffiffiffiffiffi
Eg

c

s
; �e ¼ a

p
; �q ¼ qa4

h4E
: (2)

Bars in Eqs. (1) are omitted. Equations (1) are supple-

mented by one of the following boundary conditions:

1. Fixed support (both ends are fixed) (x ¼ 0, x ¼ a)

wð0; tÞ ¼ wða; tÞ ¼ uð0; tÞ ¼ uða; tÞ ¼ w0xð0; tÞ ¼ w0xða; tÞ ¼ 0:

(3)

2. Pinned (hinged) support (both ends are pinned) (x ¼ 0,

x ¼ a)

wð0; tÞ¼wða; tÞ¼ uð0; tÞ¼ uða; tÞ¼w00xxð0; tÞ¼w00xxða; tÞ¼ 0:

(4)

3. One beam end is fixed (x ¼ 0), whereas the second one is

pinned (x ¼ a)

wð0; tÞ¼wða; tÞ¼ uð0; tÞ¼ uða; tÞ¼w0xð0; tÞ¼w00xða; tÞ¼ 0:

(5)

4. One beam end is fixed (x ¼ 0), whereas the second one is

free (x ¼ a)

wð0; tÞ ¼ w0xð0; tÞ ¼ uð0; tÞ ¼ 0; Mxða; tÞ ¼ Nxða; tÞ
¼ Qxða; tÞ ¼ 0 (6)

and the following initial conditions:

wðx; 0Þ ¼ _wðx; 0Þ ¼ uðx; 0Þ ¼ _uðx; 0Þ: (7)

III. METHODS OF SOLUTION

We cannot solve analytically Eqs. (1)–(7), and hence we

solve them numerically by reduction to ODEs using Finite

Difference Method (FDM) of the second order with respect

to x, and using Finite Element Method (FEM).

A. FDM application

In order to reduce PDEs to ODEs, we apply the finite dif-

ference approximations relying on the development into the

Taylor series in the vicinity of point xi. Consider the mesh

GN ¼ 0 � xi � 1; xi ¼ i=N; i ¼ 0; :::;Nf g:

We introduce the following difference operators with

the approximation Oðc2Þ, where c stands for the spatial co-

ordinate step:

Kxð�iÞ ¼
ð�Þiþ1 � ð�Þi�1

2c
;

Kx2ð�iÞ ¼
ð�Þiþ1 � 2ð�Þi þ ð�Þi�1

c2
;

Kx4ð�iÞ ¼
ð�Þiþ2 � ð�Þiþ1 þ 6ð�Þi � ð�Þi�1 þ ð�Þi�2

c4
:

We transit from PDEs (1) to the following ODEs with

respect to time co-ordinate:

€us ¼ Kx2ðuiÞ þ KxðwiÞKx2ðwiÞ;

€wt þ e _wt ¼ k2 � 1

12
Kx4ðwiÞ þ Kx2ðuiÞKxðwiÞ

�

þKx2ðwiÞKxðuiÞ þ
3

2
KxðwiÞð Þ2Kx2ðwiÞ þ q

�
: (8)

The system of the second order ODEs (8) with the asso-

ciated boundary and initial conditions is then transformed to

the first-order ODEs. The latter system is solved via the

Runge-Kutta methods of the fourth and sixth orders.

B. FEM application

Now, we apply FEM to system (1)–(7). In general, FEM

is applied either via minimization of various energy func-

tionals or by other approximation methods like the Bubnov-

Galerkin approach. In the latter approach functions, wðxÞ and

uðxÞ are approximated by the following forms:

w
_ ¼

XN

i¼1

wiðxÞwi; u
_ ¼

XN

i¼1

uiðxÞui; (9)

where ui and wi denote the values of functions uðxÞ and wðxÞ
in nodes ði ¼ 1; :::;NÞ, respectively; uiðxÞ and wiðxÞ are the

known analytical test (mode) functions.

Owing to the theory of FEM, 4 degrees of freedom

w1;w2; h1; h2ð Þ are attached to each beam element, and the

following cubic polynomial is applied:

wðxÞ ¼ a1 þ a2xþ a3x2 þ a4x3;

hðxÞ ¼ � dw

dx
¼ � a2 þ 2a3xþ 3a4x2

� �
: (10)

After determination of the values of constants, the fol-

lowing formula for the approximation of wðxÞ is proposed:

w ¼ Nw½ � Wf g; (11)

where Nw½ � ¼ ð1� 3n2 þ 213;�ln n� 1ð Þ2; 3n2 � 2n3;�ln
n2 � n
� �

Þ is mode matrix; Wf g ¼ w1; h1; w2; h2ð ÞT , node

displacements matrix; n ¼ x=a, non-dimensional quantity

(local co-ordinate). The approximation of displacement uðxÞ
is as follows:

u ¼ Nu½ � Uf g; (12)

where Nu½ � ¼ 1� n; nð Þ Uf g ¼ u1; u2

� �T
: Applying the

Bubnov-Galerkin procedure the following equations are

obtained:

043130-3 Awrejcewicz et al. Chaos 23, 043130 (2013)



M1
€WðtÞ þ C1

_WðtÞ þ K1WðtÞ ¼ F1 qðtÞ;UðtÞð Þ;
M2

€UðtÞ þ C2
_UðtÞ þ K2UðtÞ ¼ F2 WðtÞð Þ;

(13)

where Mi, Ci, Ki are the mass, damping and stiffness matri-

ces, respectively.

C. Reliability of results

In order to verify the numerical results obtained via

FDM, they were compared with the FEM solutions. Figure 2

includes the signals (wð0:5; tÞ), power spectra obtained

through the FFT, as well as the 3D Morlet wavelet spectra.17

The obtained results correspond to the following fixed

parameters: k ¼ 50, n ¼ 80, e ¼ 1, xp ¼ 8:625, q0 ¼ 5:5
�104, where n denotes the number of partitions x 2 0; 1½ �. In

Figure 2, the following notation is used: A—wð0:5; tÞ,

t 2 ½1836� 1838�; B—Fourier power spectra yielded by

FDM and FEM; C—Morlet wavelet spectra associated with

FDM and FEM. The following relations hold for the frequen-

cies: x1, xp- independent, x2 ¼ 1=5x1, x3 ¼ 3=5x1,

x4 ¼ 7=5x1, x5 ¼ 9=5x1, x6 ¼ 11=5x1, x7 ¼ 7=8xp,

x8 ¼ 6=8xp.

Results given in Figure 2 indicate the coincidence of

signals obtained by two different methods within the chaotic

regime and we further use FDM only.

D. Charts of vibrations

The developed algorithms allow for analysis of the

time histories ðwð0:5; tÞ, wðx; tÞx 2 ½0; 1�Þ, power spectra,

phase portraits (wð _wÞ,wð _w; €wÞ for any point of the space

co-ordinate x), Poincar�e map ðw wðtÞ;w tþ Tð Þ
	 


Þ, as well

FIG. 2. Checking reliability of numerical results.
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as the Lyapunov exponents for any parameters of the set

q0; xpf g. The results are collected in the form of the so

called vibration type charts in the parameters plane q0; xp.

Charts of the vibration regimes may serve as engineering

recipes to keep the system dynamics in the required (safe)

regime. However, first we have to determine the optimal

value of nodes number (n) of the spatial co-ordinate, and a

suitable number of partition of both excitation frequency

(xp) and excitation amplitude (q0) n1 � n2ð Þ.
Fundamental notation of the beam vibration regimes

versus control parameters xp; q0f g for the spatial co-

ordinate partition n ¼ 40, n ¼ 80, and n ¼ 120 is given in

Figure 3.

However, results yielded by the chart are not sufficient

to validate convergence of the number of partitions (n) of

the spatial co-ordinate. In order to remove this drawback, we

are going to analyze the system for the following fixed

parameters: e ¼ 1, xp ¼ 8:625, q0 ¼ 59 000, where the

system exhibits chaotic dynamics. This is approved by the

constructed charts (a point with co-ordinates n1; n2ð Þ
¼ 250; 59ð Þ, ðxp; q0Þ ¼ ð8:625; 59 000ÞÞ:

Figure 4 gives time series (1st row), the Fourier power

spectra (2nd row), Poincar�e maps wtðwtþTÞ (3rd row),

deflection changes wðx 2 ½0; 1�; tÞ (4th row), 2D Morlet (5th

row) wavelet spectra for n ¼ 40; 60; 80; 120 partitions

regarding the spatial co-ordinate x 2 ½0; 1� obtained by FDM.

An increase of number n implies a solution to the ODEs of

the order 160, 240, 320, and 480 on each of the computa-

tional step. Time step has been chosen via the Runge princi-

ple. Analysis of the results indicates that by increasing n
while dividing interval x 2 ½0; 1�, we may achieve conver-

gence of the solution not only with respect to the average

Fourier spectrum but also through other system characteris-

tics like the time series and the Morlet wavelets. The so far

obtained results validate the applied numerical approach

used for solution of the studied beam, i.e., the system

with infinite degrees of freedom, since a further increase of

the beam partitions number of interval x 2 ½0; 1� does not

change the results. Here, the following frequency relations

have been detected: x1, xp—independent, x2¼ 7=8xp,

x3¼ 3=2x1, x4¼ 2x1, x5¼ 5=2x1, x6¼ 3x1, x7¼ 1=8xp,

x8¼ 6=8xp.

Note that the wavelet transform belongs to one of the

most effective tools for the analysis of dynamic systems,

and after checking other wavelets like Gauss 1, Gauss 8,

Mexican hat vs. Morlet wavelet, the latter one is more

FIG. 3. Applied vibration type charts.
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suitable for the investigation of beam vibrations, and has

been further applied.

For further study, we take the following parameters: FDM

of the second order accuracy; charts resolution n1 � n2ð Þ are

taken as 300� 200; the number of partitions—n ¼ 120. We

address here the following query: Is the fourth-order Runge-

Kutta method sufficient in getting the reliable results? We

apply (for the pinned support) the sixth-order Runge-Kutta

method (Butcher’s method). Figure 5 gives a comparison of

results obtained via two different algorithms for the following

FIG. 4. Time series, power spectra, Poincar�e maps, and wavelets for different n.

FIG. 5. Charts obtained through differ-

ent Runge-Kutta methods.
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fixed parameters: n ¼ 80, k ¼ 50, e ¼ 1, xp ¼ ½0; 10:35Þ,
q0 ¼ ½0; 2� 105Þ.

One may conclude that although the obtained results

coincide, one needs 1.5-2 longer computational time in the

case of application of the sixth-order Runge-Kutta method.

Therefore, the fourth Runge-Kutta method is used further on.

IV. COMPUTATION OF LYAPUNOV EXPONENTS

A. Benetin’s algorithm

The Lyapunov exponents characterize stability of

dynamic systems in a phase space. A mathematical back-

ground for the existence of exponents gives the multiplicative

ergodic Oseledec theorem40,41 valid for the lumped mechani-

cal systems. However, it cannot be applied directly to a

continuous system. Schauml€offel42 addresses the concept of

generalization of the theorem of Lyapunov exponents for the

case of an infinite dimensional phase space. In order to get an

approximate solution, one may reduce the problem to that of

a finite system using the truncated number of ODEs. In the

latter case, we get well defined Lyapunov exponents.

In this work, we study a dissipative continuous system

which exhibits attractor compression during its evolution.

Therefore, its attractor can be embedded into a so called iter-

ation manifold with the finite dimension.42 It means that its

dynamics can be described via ODEs, which allow us to

compute the Lyapunov exponents of the studied continuous

system with infinite degrees of freedom. There is no practi-

cally realized procedure for the computation of inertial mani-

folds. Yang et al.43 showed that it was possible to find

directions of active system tangential dynamics sufficient for

the description of the whole dynamics on a chaotic attractor.

On the other hand, a set of finite active directions stand for

the choice of local basis of the inertial manifold.

In this work, we apply the generalized Benettin’s

algorithm41 with a simultaneous application of the neural net-

works. It allows us to use only one most suitable system’s co-

ordinate. The proposed algorithm includes the following steps:

1. Computation of a suitable time delay on the basis of the

co-ordinate choice.

2. Computation of embedding space dimension.

3. Pseudo-phase reconstruction of a trajectory via time

delays.

4. Construction of the approximating neural network.

5. Teaching of the neural network for the successive vector

prediction.

Repeating the so far described procedure M times, one

may estimate k as an average value of the quantities ~kl

obtained on each step. A neural network with the following

properties is highly required:

• The network should be robust with respect to the input in-

formation given by real numbers.
• The network should be self-organized with respect to its

learning (only input information is used to construct an

output space of solutions).
• The network should have straight extension (all couplings

go from input to output neurons).

• The network should exhibit dynamic couplings with

respect to the setting of synapses (adjustment of synapses

links takes place during the network learning (dW=dt 6¼ 0),

where W are the weight network coefficients).

Let point x0 belong to the attractor A of a dynamic

system. We call the evolution trajectory of x0 the base trajec-

tory. We choose a positive e sufficiently smaller than the

attractor dimension. Furthermore, let us take an arbitrary

perturbed point ~x0 that the following equality is satisfied

k~x0 � x0k ¼ e. We consider the evolution of chosen points

x0 and ~x0 within a small time interval T, and we denote

the obtained points by x1 and ~x1, respectively. The vector

Dx1 ¼ ~x1 � x1 is called the perturbation vector. This allows

us to estimate the quantity k

~k1 ¼
1

T
ln
kDx1k

e
: (14)

Time interval T is chosen in a way to keep the excitation

amplitude lesser than the linear dimensions of the phase

space non-homogeneity and dimension of the attractor itself.

Consider the normalized perturbation vector ~x01 ¼ x1 þ Dx01.

The so far described algorithm is applied to points x1 and ~x1

instead of points x0 and ~x0, respectively. Repeating the so far

described algorithm M times, one may estimate k as the aver-

age arithmetic value of quantities ~kl obtained on each of the

computational steps.

However, there are a few drawbacks of the proposed

method:

(1) It takes longer computation time in comparison to the

classical methods, since in order to keep the required ac-

curacy a large number of learning iteration loops are

expected.

(2) The achieved accuracy is usually smaller in comparison

to the existing classical approaches.

However, there are the following advantages:

(1) The proposed method is very suitable to use for short

time series.

(2) It works better in comparison to the classical approaches

for noisy data, since their influence can be sufficiently

reduced while learning of the neural networks.

(3) Only one input co-ordinate is sufficient for the computa-

tion of Lyapunov spectrum.

(4) The proposed algorithm yields the Lyapunov exponents

for systems without knowledge of their governing equa-

tions which is similar to the Wolf algorithm.44 We note

that Benettin’s algorithm does not make it possible to

solve the latter task.

It is well known that one of the important issues while

analyzing dynamic systems is a construction of the Poincar�e
maps and analysis of the Kaplan-Yorke dimension. Consider

a certain part of a surface in the phase space (Poincar�e sec-

tion) located transversally to the system vector field. Let us

generate a system trajectory from point x lying on the trans-

versal direction. We assume that for a certain time instant

the trajectory intersects the transversal surface for the first

time, and we denote this point by y. The Poincar�e map
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associates point x with that of the first intersection y. If the

trajectory generated by x never returns to the intersection

surface, we say that the Poincar�e map is not defined in that

point.

Fractal dimension of an attractor in the phase space RN

can be estimated through the Lyapunov exponents. It is

called the Kaplan-Yorke dimension Dky and it is defined via

the Kaplan-Yorke formula. Assume that the spectrum of

Lyapunov exponents is known for the N-dimensional system

(it is ordered in the following way: k1 > k2 > ::: > kN). The

sum of all exponents is negative due to the system dissipa-

tion. We consider first k spectrum exponents, where k is the

largest number satisfying the condition

Xk

i¼1

ki � 0: (15)

Note that the number of exponents includes also positive

ones, all zero ones, and a certain part of negative ones in

order to keep the non-negative sum. Since the sum of expo-

nents defines the character of a local change of the element

of a phase volume on the attractor, then the phase volume of

dimension k < N is not decreased on the average. An

increase of the subspace dimension by 1 implies already a

compression of the element volume

Xkþ1

i¼1

ki < 0: (16)

Therefore, one may assume that the attractor dimension

is within the interval k � Dky � k þ 1. On the other hand,

we may assume that the movement on the attractor is physi-

cally recognized as the stationary process, and hence

k1 þ k2 þ � � � þ dkkþ1 ¼ 0: (17)

Here, d stands for the fractional part of dimension. The

full Kaplan-Yorke attractor dimension consists of a sum of

integer k and fractional d parts

DL ¼ k þ d ¼ k þ

Xk

i¼1

ki

jkkþ1j
: (18)

V. SCENARIOS TO CHAOS

A. Introduction

In the last years, the problem devoted to chaotic dynam-

ics of continuous systems belongs to challenging tasks. It is

associated with the investigation of Ginzburg-Landau

equations,45–48 multi-dimensional models of radio-physics

systems describing coupled oscillators and generators,49,50 as

well as chains of oscillators and generators.51–55 Majority of

the works address the problem of finite dimension investiga-

tion of infinite dimensional (original) systems.

On the other hand, an important role in the continuous

systems chaotic behavior plays their correspondence to the

approximations via only a few degrees of freedom, regarding

the attractors dimension, a number of the positive Lyapunov

exponents and the Kolmogorov-Sinai entropy.

In the case of an additional positive Lyapunov exponent

a novel unstable direction appears on the system trajectory,

and hence its dynamics should be qualitatively changed.

However, the Lyapunov dimension defines the average

dimension of the attractor local volume which is conserved,

i.e., neither compressed nor extended. It is known that while

defining the Lyapunov dimension we take into account the

positive, zeroth, and negative exponents. The latter ones

only influence the metric system properties rather than its

nonlinear dynamics (see Ref. 43).

B. From periodicity to chaos and hyper-chaos

In this section, we consider transitions into chaos for the

pinned flexible beams. A pinned flexible beam is subjected

to the action of the uniformly distributed periodic load q ¼
q0sinðxptÞ for d ¼ l

h. Its scenarios of transition from regular

to chaotic dynamics are reported in Figures 6–16. Cells of

those figures include the following characteristics: (a) signal

t 2 ½1836; 1855�; (b) Fourier power spectrum; (c) phase por-

trait; (d) deflection in time instant t ¼ 1836; (e) deflection

w x; tð Þ, x 2 0; 1½ �, t 2 1836; 1855½ �; (f) pseudo-Poincar�e map;

(g) phase portrait (neural network); (h) Lyapunov exponents;

(i) 2D Haar wavelets; (j) 2D Morlet wavelets; (k) 3D Haar

wavelets; and (l) 3D Morlet wavelets.

We discuss the results shown in Figures 6–16.

1. The amplitude of excitation q0 ¼ 0:125� 103 corre-

sponds only to one frequency xp ¼ 6:9 in the Fourier

power spectrum. An increase of the excitation amplitude

up to q0 ¼ 0:5� 103 yields the occurrence of independent

frequency x1 ¼ 0:63, which is also visible in the associ-

ated wavelets and has a rather small magnitude. All

Lyapunov exponents are negative which means that the

Kaplan-Yorke dimension is zero and the KS entropy (h) is

negative. Both time history and beam vibrations are sym-

metric in a fixed time instant. All mentioned characteris-

tics validate the signal periodicity. Compression of the

phase volume (d) is rather large and negative.

2. An increase of the excitation amplitude up to

q0 ¼ 4� 103 wakes up the first dependent frequency

x2 ¼ 5:64, which satisfies the formula x2 ¼ xp � 2x1.

This frequency is also visible on the Morlet wavelets, but

owing to its small value it is hardly recognized through

the Haar wavelets. The first Lyapunov exponent and the

Kaplan-Yorke dimension become positive, and the KS en-

tropy becomes positive and equal to the value of the first

Lyapunov exponent. A small deviation from the previous

full symmetry is noted regarding the time series and beam

vibrations in the fixed time instant. The phase portrait

shows the attractor as a collection of a few rings. The

phase compression coefficient is decreased. The system

starts to approach chaos.

3. Load amplitude q0 ¼ 5� 103 awakes the frequency

x3 ¼ 1:89 which is defined via the ratio x3=x1 ¼ 3. The

wavelets exhibit an increase of the amplitude of frequency

x2, but still it is not possible to identify x3. Phase space

orbits are remarkably divergent. Two of the Lyapunov
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FIG. 6. Beam characteristics for q0 ¼ 0:125� 103.

FIG. 7. Beam characteristics for q0 ¼ 0:5� 103.
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FIG. 8. Beam characteristics for q0 ¼ 4� 103.

FIG. 9. Beam characteristics for q0 ¼ 5� 103.
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FIG. 10. Beam characteristics for q0 ¼ 6� 103.

FIG. 11. Beam characteristics for q0 ¼ 7� 103.
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exponents are positive and the Kaplan-Yorke dimension

is increased. The KS entropy achieves its maximum value

for the second Lyapunov exponent, and it is large in com-

parison to the load q0 ¼ 4� 103. The phase portrait

exhibits a torus. Although the phase volume compression

increases, it still remains negative. This illustrates a

higher chaotic intensity of the flow, and the system

approaches the chaos-hyper chaos state.

FIG. 12. Beam characteristics for q0 ¼ 8� 103.

FIG. 13. Beam characteristics for q0 ¼ 9� 103.
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FIG. 14. Beam characteristics for q0 ¼ 104.

FIG. 15. Beam characteristics for q0 ¼ 5� 104.
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4. When the load achieves q0 ¼ 6� 103 the new frequency

occurs x4 ¼ x2 � 2x1 ¼ 4:38. The Lyapunov exponents

and the Kaplan-Yorke dimension increase comparing to

the previous state. The KS entropy value and the phase

space compression become positive. Both Haar and

Morlet wavelets exhibit slightly the frequencies x3 and

x4, but their amplitudes are small which is also approved

by the Fourier power spectra. The phase portrait tends to

a planar ring structure with a simultaneous collapse.

Beginning with a certain time instant the system starts to

pulsate which is also validated by the phase portrait and

Lyapunov exponents. In other words, the system is in the

chaos-hyper-chaos regime.

5. Load amplitudes q0 ¼ 7� 103 and q0 ¼ 8� 103 do not

change the system chaotic level. The Lyapunov exponents

are slightly decreased for q0 ¼ 7� 103, and then they

increase again to their previous level. Both the phase volume

compression and RS entropy are changed (for q0 ¼ 7� 103

they decrease, but for q0 ¼ 8� 103 they increase again).

The Kaplan-Yorke dimension as well as the amplitudes of

frequencies x3 and x4 is increased (in both the power spec-

trum and Haar and Morlet wavelets). Then, signal asymme-

try is increased. Although the phase portrait again loses

its ring structure, the attractor becomes more ordered. The

system still remains in the chaos-hyper-chaos state.

6. Load amplitude q0 ¼ 9� 103 yields a collapsed ring

structure. The Lyapunov exponents become smaller. The

amplitudes of frequencies x3 and x4 are still increasing.

Here, a transition from chaos-hyper chaos state into chaos

is observed which is also validated by essential changes

of the Poincar�e maps.

7. A further increase of load amplitude up to q0 ¼ 10� 103

causes the occurrence of independent frequencies that sat-

isfy the relations: x6 ¼ 2x5 ¼ 5:02, x5 ¼ 2x7 ¼ 2:5,

x8 ¼ 2x3 ¼ 3:78. Both Haar and Morlet wavelets are

noisier, but in the Haar wavelets the separable frequencies

cannot be practically distinguished. Only the first

Lyapunov exponent is still positive, but its magnitude is

by two orders higher than its previous values. Again, the

magnitude of KS entropy coincides with the value of the

first Lyapunov exponent. Orbits are more broad-banded

and the geometric attractor structure is not clearly defined.

Beam vibrations and time series exhibit large asymmetry.

However, the load amplitude q0 ¼ 50� 103 forces the

system to exhibit small developed chaotic regime in com-

parison to its previous chaotic state which is recognized

through the phase portrait. The time series asymmetry is

decreased. Two first Lyapunov exponents become posi-

tive and the magnitude of the first exponent is by one

order smaller than that corresponding to the load

q0 ¼ 10� 103. The Kaplan-Yorke dimension is lesser

than that regarding the loading amplitudes q0 ¼ 6� 103

to q0 ¼ 9� 103. The KS entropy value is now equal to

the value of the second Lyapunov exponent and remains

relatively large. The Fourier spectrum exhibits the lack of

frequencies x7, x8, and x2, which is also validated by

both wavelets. Time history remains symmetric again,

and the beam vibrations monitored in an arbitrary time

instant have rather small asymmetry. It means that the

system is withdrawn from its previous deep chaotic state.

8. Finally, the system approaches a deep chaos regime

whose power spectrum is reported for the load amplitude

FIG. 16. Beam characteristics for q0 ¼ 105.

043130-14 Awrejcewicz et al. Chaos 23, 043130 (2013)



q0 ¼ 100� 103. Time series and beam vibrations exhibit

the largest asymmetry, whereas the Lyapunov exponents

achieve the highest values comparing to all previous illus-

trated cases. The phase portrait does not have a clear geo-

metric structure. Wavelets versus time consist of a non-

homogeneous structure regarding all frequencies.

9. Equations (1) are strongly non-linear PDEs, where the

function of beam deflection w(x,t) and beam displacement

u(x, t) depends both on time and spatial co-ordinate, and it

is tempting to expect spatial chaos in spite of timing chaos

occurrence, i.e., the beam should exhibit chaotic deflection

changes along the length x 2 ½0; 1� and time. In previous

points 1–8, we have illustrated a scenario of changes of

beam vibrations versus time. In the input equations, the

function w and its derivatives clearly express physical

meanings of the beam vibrations: w(x, t)—beam deflec-

tion, w0xðx; tÞ—tan of an angle of a tangent to the beam

deflection curve in points, where the derivative

w00xxðx; tÞ is estimated. Since the latter one yields an

approximate formula governing the beam curvature shape

along its length, those functions can be understood as

modal characteristics of changes of the beam surface in

time. This characteristic extends the classical plane phase

concept to its 3D version, since w(x,t), _wtðx; tÞ and

€wttðx; tÞ describe the beam deflection, velocity and accel-

eration, respectively. In order to study the space chaos,

one may follow windows (e) reported in Figures 6–16. A

transition into chaos is associated with serious and

remarkable changes of the beam surface. Furthermore,

these changes include simultaneous transition from sym-

metric to non-symmetric beam vibration states and vice

versa. Fully developed chaos is reported in Figure 16.

Changes of the Lyapunov exponents, the Kaplan-Yorke

dimension illustrated in previous paragraphs, supplement

the so far studied transition into the spatio-temporal chaos.

It should be emphasized that the spatial chaos and timing

chaos practically occur synchronously. Figure 4 illustrates

results showing beam surface changes in time interval t 2
½1835; 1855� for different degrees of freedom of the beam

model (partition of the interval x 2 ½0; 1� into parts of

n¼ 40, 60, 80, 120). This means that we do really monitor

the spatio-temporal chaos exhibited by our beam, treated

as a continuous system and not a lumped object modeled

by a few degrees of freedom. Observe that the obtained

results are validated and reliable, since the full coincidence

of bending surfaces occurs for n¼ 80 and n¼ 120.

In Figure 17, the following characteristics are given:

(a) Kaplan-Yorke dimensions, (b) Lyapunov exponents, (c)

entropy h versus load amplitude q0, (d) phase space com-

pression d versus q0.

Table I includes the values of the quantities regarding

drawings of Fig. 17.

VI. ON THE SYMMETRIC AND NON-SYMMETRIC
BEAM VIBRATIONS

We have already mentioned that when investigating cha-

otic vibrations of the harmonically excited flexible Euler-

Bernoulli type beams with symmetric boundary conditions

we detected a non-symmetric solution. However, this is

possible to achieve under the assumption that we have either

initial non-symmetric imperfections, non-symmetric initial

vibration forms, or small errors due to numerical computa-

tions through the Runge-Kutta method. In the so far reported

results, all of the mentioned initial imperfections have

been symmetric and hence the non-symmetric solutions are

yielded through the errors introduced by the Runge-Kutta

methods. Namely, the previous step solution error is then

FIG. 17. Four beam vibration char-

acteristics.
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transmitted to the next one which plays a crucial role while

monitoring the beam chaotic dynamics. The obtained solution

can be understood as the non-symmetric one. In order to get

symmetric solutions, we have to preserve symmetry condi-

tions. An increase of the partition points of interval 0; 1½ � and

the use of the sixth-order Runge-Kutta method instead of the

fourth-order one do not allow us to change the obtained

results. It should be emphasized that asymmetry in the solu-

tion on each computational step plays here a key role.

An analogous effect can be achieved by an artificial

introduction of the load areas located symmetrically with

respect to the beam center with almost the same loading

amplitudes. In other words, in order to validate the numerical

simulation we need to preserve full coincidence of the solu-

tions regarding the left and right hand sides of the studied

space. This can be achieved by mapping one half of the

space into the second one with appropriate signs on each

step of the modeling process.

Next, we present a numerical experiment for the beam

dividing the interval of x 2 0; 1½ � for n ¼ 80, e ¼ 1, xp ¼ 9,

q0 ¼ 5� 104. Experimental results are given in Fig. 18. One

may recognize that in case (a), (b), and (c) the power spectra

obtained using the FFT procedure coincide regarding the

frequency values and they are divergent with respect

to power.

The power spectra imply the following relations

of the occurring frequencies: xp—independent frequency,

x1 ¼ 1=3xp, x14¼ 1=3xp, x2¼ 3=18xp, x3¼ 4=18xp,

x4¼ 6=18xp, x5¼ 8=18xp, x6¼ 9=18xp, x7¼ 17=18xp,

x8¼ 14=18xp, x9¼ 1=18xp, x10¼ 2=18xp, x11¼ 5=18xp,

x12¼ 7=18xp, x13¼ 10=18xp, x15¼ 13=18xp, x16

¼ 15=18xp, x17¼ 16=18xp.

FIG. 18. Power spectrum.

TABLE I. The values of k, Dky, h, and d.

q0 125 500 4� 103 5� 103 6� 103 7� 103 8� 103 9� 103 104 5� 104 105

k1 �0.0006599 �0.0003631 0.0002833 0.0007082 0.0009791 0.0006536 0.0009827 0.0006124 0.0192312 0.0090136 0.0138237

k2 �0.0005464 �0.0001815 �0.0016836 �0.0005367 0.0005991 0.0005538 0.0006877 0.0004597 �0.5624457 0.0027311 0.0036397

k3 �0.0911141 �1.3026389 �0.0038560 �0.0006610 �0.0004654 �0.0004171 �0.0009066 �0.0004892 �0.6462801 �0.0306106 �0.0114446

k4 �2.0560221 �2.0799312 �0.0050447 �0.0022174 �0.0008653 �0.0010024 �0.0018324 �0.0009136 �0.9727997 �0.0321723 �2.7301685

Dky 0 0 1.168 2.594 2.681 3.788 3.627 3.638 1.824 2.645 3.002

h �0.0006599 �0.0003631 0.0002833 0.0007082 0.0015782 0.0012074 0.0016704 0.0010721 0.0192312 0.0117447 0.0174634

d �2.1483425 �3.3831147 �0.0103010 �0.0027069 0.0002475 �0.0002121 �0.0010686 �0.0003307 �2.1622943 �0.0510382 �2.7241497

FIG. 19. Beam deflection versus x.
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Figure 19 gives beam deflections versus x obtained for

the time instant t ¼ 1836. Solutions marked by (b) and (C)

fully coincide and they are symmetric, whereas solution (a)

is non-symmetric.

Figure 20 shows vibration type charts for the following

fixed parameters k ¼ 50, e ¼ 1, xp ¼ ½0; 10:35Þ, q0 ¼
½0; 2� 105Þ for either symmetric or non-symmetric stability

loss for n ¼ 40, n ¼ 60, n ¼ 80, n ¼ 120.

FIG. 20. Vibration charts for non-symmetric and symmetric set of equations.
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VII. CHAOS VERSUS k AND BOUNDARY CONDITIONS

Figure 21 includes the vibration type charts with the con-

trol parameters n ¼ 120, xp ¼ ½0; 10:35Þ, q0 ¼ ½0; 2� 105Þ
for different boundary conditions (pinned support on both

ends, hinged support, and fixed support) and different beam

thickness (k ¼ 50 and k ¼ 100). In the case of symmetric

boundary conditions, the vibration regimes almost coincide

for small and average frequencies. In the case of non-

symmetric pinned-fixed supports, the symmetric forms are

obtained only for small frequencies.

Non-symmetric type of support is associated with a larger

domain of chaotic vibrations. A decrease of the beam thickness

causes an increase of the periodic beam vibrations with respect

to the areas of amplitude and frequency of harmonic excitation.

VIII. THE INFLUENCE OF EXCITATION FREQUENCY

We take the pinned beam with q0 ¼ 105, e ¼ 1, k ¼ 50

and we monitor its vibrations versus excitation frequency.

Computational results given in Figure 21 should be consid-

ered together with those presented in Figure 22(a). The exci-

tation frequency (xp) essentially influences the beam

vibration modes. In the case of periodic vibrations we may

have one wave from xp ¼ 1(a) up to xp ¼ 7(a), and more.

During the transition into chaos, the space-temporal chaotic

vibrations are observed (bending surface exhibits changes in

time in the chaotic manner xp ¼ 6, xp ¼ 11 (a)). In other

words, the system transition in timing chaos implies its tran-

sition into temporal-space chaos. Transition into chaos can

be realized through various scenarios. For instance, for

xp ¼ 8(b) the Feigenbaum scenario takes place with clearly

manifested four Hopf bifurcations.

Cells in Figure 22 include the following characteristics:

(a) time series wðx; tÞ; x 2 0; 1½ �; t 2 1836; 1855½ �; (b)

Fourier power spectrum w 0:25; tð Þ for the time interval

t 2 1836; 2348½ �; (c) phase portrait; (d) modal portrait; (e)

pseudo Poincar�e map; (f) autocorrelation function; (g) 2D

Morlet wavelet; (h) 3D Morlet wavelet.

IX. SPATIO-TEMPORAL CHAOS EXHIBITED BY
A CURVILINEAR EULER-BERNOULLI-BEAM

A. Mathematical model

Mathematical model of a curvilinear beam is described by

the following system of non-linear non-dimensional PDEs:

@2u

@x2
� kx

@w

@x
þ L3ðw;wÞ �

@2u

@t2
¼ 0;

1

k2
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@w

@t
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@2u
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@w

@x
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@x
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;

L2ðw;wÞ ¼
3

2

@w
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� �2
@2w

@x2
; L3ðw;wÞ ¼

@w

@x

@2w

@x2
; (19)

where: L1ðu;wÞ, L2ðw;wÞ, L3ðw;wÞ are non-linear operators;

wðx; tÞ, beam element normal deflection; uðx; tÞ, beam ele-

ment longitudinal displacement; e1, damping factor; E,

Young modulus; h, height of transversal beam cross section;

c, specific beam material density; g, Earth acceleration; kx,

beam geometric curvature; t, time; q ¼ q0sinðxptÞ, external

excitation; q0, amplitude of excitation; xp, excitation fre-

quency. Non-dimensional quantities follow (bars over non-

dimensional parameters are omitted in Eqs. (19))

k ¼ a

h
; �w ¼ w

h
; �u ¼ ua

h2
; �x ¼ x

a
; �t ¼ t

s
;

s ¼ a

p
; p ¼

ffiffiffiffiffiffi
Eg

c

s
; �e ¼ a

p
; �q ¼ qa4

h4E
; �kx ¼

kxa

k
: (20)

FIG. 21. Vibration charts versus k and boundary conditions.

043130-18 Awrejcewicz et al. Chaos 23, 043130 (2013)



FIG. 22. Beam vibration characteristics.
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FIG. 22. (Continued)
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One beam end is pinned (x ¼ 0), whereas the second

one is fixed (x ¼ a)

wð0; tÞ ¼wða; tÞ ¼ uð0; tÞ ¼ uða; tÞ ¼w0xða; tÞ ¼w00xxð0; tÞ ¼ 0;

(21)

and the initial conditions have the form

wðx; 0Þ ¼ _wðx; 0Þ ¼ uðx; 0Þ ¼ _uðx; 0Þ ¼ 0: (22)

B. Method of solution and numerical results

The system of PDEs (19)–(22) is reduced to ODEs

via FDM of the second order and FEM, and then it is

solved via both fourth and sixth-order? Runge-Kutta

methods.

The following characteristics are constructed:

(1) Fourier power spectrum, Poincar�e map, phase portrait—

wð _wÞ, modal portrait (wðw0 xÞ), autocorrelation function

for x¼ 0.5, deflection graph for a given time instant,

changes of beam deflections wðx; tÞ in the given time

instants, 2D and 3D Morlet wavelets. For q0 ¼ 86 500

(Figure 23(a)), the Fourier spectrum exhibits only one

excitation frequency xp ¼ 5:7615. Elliptic form of the

phase curve implies beam periodic vibrations. Maximum

beam deflection is shifted into left, since we have non-

symmetric boundary conditions.

FIG. 22. (Continued)
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FIG. 23. (a) q0 ¼ 86 500; xp ¼ 5; 76151, (1) Fourier power spectra, (2) Poincar�e pseudo-maps, (3) phase portraits, (4) modal portraits, (5) autocorrelation

functions (ACF), (6) beam deflections for t ¼ 1836, (7) 3D beam deflections in time interval t 2 ½1836; 1852�, (8) 2D Morlet wavelets, (9) 3D Morlet wave-

lets. (b) q0 ¼ 87 000, xp ¼ 5; 76151. (c) q0 ¼ 87 500 , xp ¼ 5; 76151; (d). q0 ¼ 198 000, xp ¼ 5; 7615:
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FIG. 23. (Continued)
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(2) Increasing of the excitation amplitude up to q0 ¼ 87 000

(Figure 23(b)) yields a new independent frequency,

and a linear combination of this frequency and excitation

frequency takes place. Phase portrait is thicker, the auto-

correlation function decreases, the deflection graph is

non-symmetric, and its maximum value achieves an

order of four beam thicknesses. The wavelet spectrum

exhibits only one excitation frequency for t 2 (0; 1180),

and beginning with t¼ 1180 a new frequency birth is

reported. Note that the linear combination of frequencies

on the wavelet spectrum is not visible because their

energy is essentially lesser than that of two exhibited

frequencies.

(3) A further increase of our control parameter up to

q0 ¼ 87 500 (Figure 23(c)) implies the system stability

loss, understood in the way that a slight load increase

yields large deflection increase. Maximum deflection

graph is shifted. New frequencies, produced via linear

combination of the independent and excitation frequen-

cies, appear in the power spectrum. The space signal

presents the beam equilibrium position shift which corre-

sponds to the dynamic stability loss. Wavelet spectrum

displays three frequencies in the whole time interval.

Phase portrait reports a belt type attractor which is also

shown in the modal portrait. Poincar�e portrait contains a

closed curve.

(4) Increase of the loading amplitude up to q0 ¼ 198 000

(Figure 23(d)) forces the system transition into a deeper

chaotic state, which is indicated by a cloud-type points

distribution of the Poincar�e map. Power spectrum dis-

plays a key role of the frequencies xp and
xp

2
in the

chaotic beam dynamics. Wavelet spectrum is of the

broad band shape.

X. CONCLUDING REMARKS

The following main concluding remarks can be

formulated:

1. We investigated numerically the chaotic dynamics of flex-

ible Euler-Bernoulli beams.

2. The validity and reliability of the results obtained were

guaranteed by the coincidence of solutions obtained using

two different approaches. Namely, the reduction of PDEs

into ODEs was carried out through FDM and FEM. The

Cauchy problem was solved via the fourth and sixth-order?

Runge-Kutta methods. Convergence of the solutions versus

the beam partitions number was studied. The value of

n ¼ 120 allowed us to treat the system as the one with infi-

nite degrees of freedom which was validated by the full

coincidence of the Fourier power spectra, wavelet analysis,

time histories, and other characteristics applied.

3. We described various transitions into chaotic and hyper-

chaotic vibration regimes of the investigated Euler-

Bernoulli beams.

4. We also illustrated and discussed the temporal-space cha-

otic dynamics of the studied beam, which to our knowl-

edge, has not been reported in the available literature and

web sources. This has been achieved by analyzing the

modal portraits (w; w0x, w00xx) that characterize the beam

bending, rotation of the tangent for 8x 2 ½0; 1�, and the

approximating beam curvature. The applied modal por-

trait is analogous to the widely used phase portrait, and it

exhibits the system evolution in time. It is remarkable that

the scenario of transition of the studied system from regu-

lar dynamics into chaos was realized simultaneously in

time and space.

5. Fixing the transversal load excitation amplitude and

changing its frequency within the interval xp 2 ð0; 10:35�
implies the mode change with regard to x beginning from

1 to 7 half-waves.

6. Vibration type charts were constructed in the plane

q0; xpf g for three types (3), (4), (5) of the boundary con-

ditions which makes it possible to easily control the beam

dynamics, and in particular to omit dangerous beam

vibrations.

7. Spatio-temporal chaos exhibited by a curvilinear Euler-

Bernoulli beam has been illustrated and discussed.
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