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a b s t r a c t

There are many examples of mechanical systems with non-point friction contacts (billiard ball,
Thompson top, wobblestone, electric polishing machine, the wobblestone, the Celtic stone), where the
assumption of one-dimensional dry friction model do not necessarily lead to satisfactory accuracy of the
numerical simulation. Moreover the rolling resistance often plays an important role in such systems. The
paper is devoted to the problem of developing an approximate coupled model of resulting dry friction
force and moment as well as rolling resistance, suitable for fast numerical simulation of rigid bodies with
friction contacts, i.e. allowing to avoid the space discretization. An integral model of dry friction com-
ponents is built under assumption of classical Coulomb friction law and fully developed sliding on the
contact area of general shape and arbitrary contact pressure distribution. Then the special model of stress
distribution over the elliptic contact area is developed, being a kind of generalization of Hertzian normal
stress distribution, with addition of special distortion related to the rolling resistance. Finally some
original approximate models of friction force and moment are proposed, based on Padé approximants
and their generalizations as well as in the form of piecewise polynomial functions.

� 2013 Elsevier Masson SAS. All rights reserved.
1. Introduction

If the contact between two bodies is very small (the point
contact), the sliding friction force opposes the sliding relative ve-
locity and can be successfully modelled by the use of classical one-
dimensional Coulomb friction law. In this case the friction torque
(drilling friction) and its influence on sliding friction force can be
neglected (since the contact point cannot transmit a torque). But
there are many cases of dynamical behaviour of mechanical sys-
tems (billiard ball, Thompson top, wobblestone, electric polishing
machine) which cannot be mathematically modelled (in order to
obtain correct numerical simulation) or explained by the use of the
assumption of one-dimensional dry friction model. One can find in
the literature some attempts to develop approximate models of
friction forces for finite contact area, which would be suitable for
fast numerical simulation of rigid bodies, i.e. allowing to avoid the
space discretization around the contact area.

Contensou (1962) noticed that relative normal angular velocity
(spin) is important for the dynamics of some mechanical systems
where the contact between two bodies or spin is relatively large.
Assuming fully developed sliding and Coulomb friction law valid on
a).

son SAS. All rights reserved.
some circular contact area, he presented friction force as a function
of two variables: relative sliding velocity of the centre of the contact
between two interacting bodies and relative normal angular ve-
locity. He presented the results in integral and numerical forms for
the contact stress distribution according to Hertz theory. Then the
results of Contensouwereessentially developedbyZhuravlev (1998,
2003) by giving exact analytical expressions for friction force and
torque as well as corresponding linear Padé approximations
more convenient to use in practical problems of modelling and
simulation. We will refer to the coupled model of friction force and
torque as CoulombeContensou friction model. This direction of
research led subsequently to the second-order Padé approximants
(Kireenkov, 2008), more accurate and suitable for qualitative anal-
ysis. Using the samemethodology, the problemof frictionmodelling
in the case of axial symmetry of the contact stress distribution over
the contact area is approached (Kireenkov, 2005) (the elliptic con-
tact patch with Hertzian stress distribution is such a case). The in-
tegral forms of coefficients of the corresponding Padé approximants
were given, however, without any concrete, even numerical
example. A three-dimensional friction model for circular areas but
with the coupling between friction and rolling resistance, where
rolling resistance is a result of distortion of contact stress distribu-
tion is developed in the work (Kireenkov, 2008). It can be noticed
that the proposed model of rolling resistance is compatible and
logically coherent with the mechanism of rolling friction caused by
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elastic hysteresis losses (themain component of rolling resistance in
many real systems) (Greenwood et al., 1961; Johnson, 1985).

There exist other approaches to the above described problem. In
the work (Leine and Glocker, 2003) the coupled friction model for
circular contact area with fully developed sliding and central sym-
metry of contact stress distribution (without rolling resistance) was
approximated by the use of Taylor expansion of the velocity pseudo
potential and then used in the Thompson top modelling and simu-
lation. Thepiecewise linear approximationof the three-dimensional
friction model for elliptic contact area and the Hertz stress distri-
bution (without rolling resistance)was presented inpaper (Kosenko
andAleksandrov, 2009)which showed that theproposedmodelwas
more accurate than the linear Padé approximants.

As mentioned above, there were some approaches to model roll-
ing resistance alongwith the frictionmodelling. However, a question
of the nature of rolling friction arises. Classically, it is understood as a
resistance against relative angular velocity of the contacting bodies
tangential to the plane of contact. But this model often leads to
cumbersome and questionable results. Some authors use the concept
of contour friction as resistance against the movement of contact
point along thebody (Leine, 2009; Leine et al., 2005; Leine andVanDe
Wouw,2008). These twomodels give the sameresults in somespecial
cases (for examplewhen there is no slip between contacting bodies),
but in general they differ essentially. However, the proposed models
of contour friction do not take into account the shape of the contact
patch. Moreover, coupling with the contact stress distribution and
components of the dry friction model is also neglected.

In the present work, based on some extensions of Padé approx-
imants, we propose an approximate coupled model of dry friction
components (spatial force and torque) and rolling resistance for the
contact with fully developed sliding and Coulomb friction law
assumed. The paper is organized as follows. In Sect. 2 the integral
model of friction force and torque for general shape of plane contact
is introduced and some expressions useful in developing of different
approximate models are given. Sect. 3 limits the considerations to
the elliptic shape of contact, where the model of normal stress
distribution and integrals fromexpressions is given. The solutions to
certain integrals occurring in the general integral model of friction
are given. In Sect. 4 we develop and present approximate friction
models. Sect. 5 gives some final remarks.
2. Integral model of sliding friction force and torque for
general shape of plane contact

Let us consider two bodies 1 and 2 (Fig. 1) in contact on a certain
area F of general shape. In what follows, we assume the following
properties of the contact:
a)

Fig. 1. Two bodies in contact: contact forces and relative ve
1. The contact F is locally plane.
2. On every element dF of the contact F, the classic Coulomb

friction laws are valid, and the friction coefficient does not
depend on local relative velocity.

3. The friction coefficient is constant on whole contact area F.
4. The sliding on the contact area F is fully developed.
5. The strains of the bodies do not influent on local relative ve-

locities in the contact plane.

The assumptions 1, 4 and 5 mean that the relative motion of the
bodies in the contact plane can be treated as locally planemotion of
rigid body.

Although the bodies in their global dynamics can be assumed as
rigid (i.e. the deformations are negligible) and the contact between
them can be non-conforming, the shape and size of small contact
area F can play a considerable role in the friction model. Point A is
the nominal point of contact. In the case of non-conforming con-
tact, this is a point at which two bodies touch, brought into contact
by negligibly small force. In the case of conforming (but plane)
contact this is a certain arbitrarily chosen point in the contact plane.
We introduce the coordinate system Axyz, where axes x and y lie in
the contact plane and z axis coincides with the common normal to
the two surfaces at A. The directions of axes x and y are chosen for
convenience to coincidewith certain characteristic directions of the
body or contact area profiles.

The motion of body 1 (taken as a rigid body) is defined by the
linear velocity v1 of point A1 (the body-fixed point instantly coin-
cidingwith the point of contact A) and angular velocityu1. Likewise,
we define themotion of body 2 by velocities v2 (the velocity of point
A2) andu2.We can nowdefine sliding (Johnson,1985) as the relative
linear velocity between the two bodies at point A and denote it by vs

vs ¼ v2 � v1: (1)

The component of vs along the axis z is equal to zero (vsz ¼ 0)
sincewe assume here the continuous contact, i.e. the surfaces of the
bodies are neither separating nor overlapping.

Similarly, we define the relative angular velocity between the
two bodies and denote it by Du

Du ¼ u2 �u1: (2)

The above vector can be decomposed into two perpendicular
components in the following way

Du ¼ Duxex þ Duyey|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ur ¼urxexþuryey

þ Duzez|fflfflffl{zfflfflffl}
us ¼usez

¼ ur þus; (3)
b)

locities (a) and general case of plane contact area (b).



G. Kudra, J. Awrejcewicz / European Journal of Mechanics A/Solids 42 (2013) 358e375360
where ex, ey and ez are the unit vectors of the corresponding axes,
whileur andus are the angular velocities of rolling and spinmotion,
respectively (Johnson, 1985). Now, any relative motion of contact-
ing surfaces can be regarded as a combination of sliding, rolling and
spin (see vectors vs, ur and us, respectively exhibited in Fig. 1a).

Fig. 1a shows also forces and torques acting on body 2 at point A.
Resultant force R transmitted from one surface to another through
the point of contact is decomposed into normal force N and
tangential force Ts sustained by friction. Likewise, the resultant
torque transmitted by the contact is decomposed into rolling
resistance Mr (lying in the tangent plane) and spin moment Ms

(along the common normal to the two surfaces at A) arising from
friction within the contact area.

Very often, rolling velocity ur is used as a basic kinematic
quantity in the process of modelling of rolling resistance Mr un-
derstood in a classical way, i.e. as resistance against rolling angular
velocity. However, this approach is sometimes replaced by the
concept of contour friction as certain resistance opposing the con-
tour velocity understood as the relative motion of contact point A
with respect to the body (cf. Leine, 2009; Leine et al., 2005; Leine
and Van De Wouw, 2008 and Sect. 3.1). Each body has its own
contour velocity for which the contour friction can be defined.
Assuming that the frame of reference Axyz moves at linear velocity
vA of its origin and rotates at angular velocityuA, we can now define
(for the further purposes of the work) contour velocities vr1 and vr2
(for body 1 and 2, respectively) in the following way

vr1 ¼ vA � v1; vr2 ¼ vA � v2: (4)

In order to develop a dimensionless model of friction for the
contact area presented in Fig. 1b, we now assume that all quantities
defined above refer to the dimensionless length related to some
characteristic real dimension ba of the contact area, therefore
dimensionless coordinates of the element dF (point P) position are
x ¼ bx=ba and y ¼ by=ba, where bx and by are the corresponding real
coordinates, whereas dimensionless element of the area equals
dF ¼ dbF=ba2, where dbF is the real element. A consequence of
dimensionless length is the relation vs ¼ bvs=ðabaÞ, where bvs is the
real sliding velocity of point A and a is the additional parameter
defining the used time t ¼ abt , where bt is the real time. Then, spin
velocity reads us ¼ bus=a, where bus is the real spin velocity of the
contact. In addition, coordinate system Asy lying in the contact
plane is introduced, where s axis has the direction of velocity vs
specified by angle 4s.

Assuming that the classical Coulomb friction law is valid on each
element dF at relative velocity vP ¼ bvP=ðabaÞ (where bvP is its real
counterpart), we obtain the following dimensionless form of the
infinitesimal sliding (dry) friction force dTs ¼ dbTs=ðmbNÞ (where
dbTs is the corresponding real force, bN is the normal component of
resultant real force of interaction between bodies and m is the dry
friction coefficient), acting on the body lying above area F, and the
corresponding dimensionless infinitesimal moment of friction
force dMs ¼ dcMs=ðbambNÞ (where dcMs is its real counterpart) with
respect to pole A

dTs ¼ �sðx; yÞ vP
kvPkdF;

dMs ¼ r� dTs:
(5)

In Eq. (5), the dimensionless normal stress distribution sðx; yÞ ¼bsðx; yÞba2=bN has been introduced (where bsðx; yÞ is the real stress

distribution), whereas r ¼ br=ba ¼ AP
�!

is the dimensionless vector
coupling pole A with element dF (where br is its real counterpart).
One can find easily that the non-dimensional relation is equivalent
to the dimensional differential form of the Coulomb friction law for
element dbF : dbT s ¼ �mbsðx; yÞdbF bvP=kbvPk and dcMs ¼ br � dbTs.
Note, that relations (5) and all further formulae and models pre-
sented in this section do not depend on parameter a.

The resultant dimensionless friction force and dimensionless
friction torque are as follows

Ts ¼ � RR
F
sðx; yÞ vP

kvPkdF;

Ms ¼ � RR
F
sðx; yÞ r�vP

kvPkdF:
(6)

Taking into consideration that vP ¼ vs þ us � r (where
us � r ¼ vP/A, vs ¼ vscos 4sex þ vssin 4sey, us ¼ usez and
r ¼ xex þ yey) we obtain the following relations

vP ¼ vPxexþ vPyey ¼ ðvscos4s�usyÞexþðvssin4sþusxÞey;
r�vP ¼ �xvPy�yvPx

�
ez ¼

�
us
�
x2þy2

�þ vsxsin4s� vsycos4s
�
ez:

(7)

By the use of vs and us we have denoted the projections of
vectors vs and us onto axes s and z correspondingly, i.e. vs ¼ vss
and us ¼ usz. Since the direction of axis s is determined by the angle
0 � 4s < 2p, without loss of generality, one can assume that
vs ¼ kvsk � 0. On the other hand, assuming generalization of vs,
taking any real value can be convenient in some cases. Then angle
4s, defining the direction of the s axis, can be limited to the half of
full rotation (e.g. 0 � 4s <p).

From Eq. (6) and taking into account (7), we get the following
integral form of dry friction model in the Axyz coordinate system

Tsxðvs;us;4sÞ ¼
RR
F
sðx;yÞ vscos 4s�usyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvscos 4s�usyÞ2þðvssin 4sþusxÞ2
p dxdy;

Tsyðvs;us;4sÞ ¼
RR
F
sðx;yÞ vssin 4sþusxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvscos 4s�usyÞ2þðvssin 4sþusxÞ2
p dxdy;

Msðvs;us;4sÞ ¼
RR
F
sðx;yÞ usðx2þy2Þþvsxsin 4s�vsycos 4sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvscos 4s�usyÞ2þðvssin 4sþusxÞ2
p dxdy;

(8)

where the signs were changed in order to simplify the notation. It
means that the friction force and torque are Ts ¼ �Tsxex � Tsyey and
Ms ¼ �Msez, respectively.

Assuming the following relations

vs ¼ lscos qs; us ¼ lssin qs; where ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2s þ u2

s

q
(9)

(geometrical interpretation of 4s and �p=2 � qs � p=2 variables is
presented in Fig. 2), one can reduce the number of arguments of the
functions (8), obtaining the following form of the model

Tsxð4s;qsÞ ¼
RR
F

sðx;yÞ½cos qs cos 4s�ysin qs�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos qs cos 4s�ysin qsÞ2þðcos qs sin 4sþxsin qsÞ2

p dxdy;

Tsyð4s;qsÞ ¼
RR
F

sðx;yÞ½cos qs sin 4sþxsin qs�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos qs cos 4s�ysin qsÞ2þðcos qs sin 4sþxsin qsÞ2

p dxdy;

Msð4s;qsÞ ¼
RR
F
sðx;yÞ sin qsðx2þy2Þþxcos qs sin 4s�ycos qs cos 4sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcos qs cos 4s�ysin qsÞ2þðcos qssin 4sþxsin qsÞ2
p dxdy:

(10)

The exact integral forms ((8) and (10)) of the friction model are
inconvenient to use directly in mathematical modelling and nu-
merical simulations for most typical special cases of shape of the
contact area and normal stress distribution. One of the difficulties is
time consuming numerical integration over contact area F during
the simulation process. An additional difficulty in numerical inte-
gration process is the existence of singularities of the functions ((8)
and (10)) in the instant rotation centre. On the other hand, for some



Fig. 2. Geometrical interpretation of 4s and qs variables.
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cases, e.g. for circular contact region, it is possible to find an
analytical solution to Eq. (8) (Kireenkov, 2005; Leine and Glocker,
2003; Zhuravlev, 1998). But the mathematical model obtained in
this way is relatively complex and inconvenient in direct use. The
solution to the problem can be some kind of approximation of the
exact integral model.

On this level of generality one can find some universal relations
for the plane region of contact, concerning values and partial de-
rivatives of functions (8) for vs ¼ 0 (assuming us s 0) and for us ¼ 0
(assuming vss 0), which can be useful in developing some kinds of
approximating models. The corresponding values of functions (8)
are as follows

Tsxjvs¼0 ¼ �cðx;yÞ0;1;1
us
jusj; Tsxjus¼0 ¼ cðx;yÞ0;0;0c4

vs
jvsj;

Tsy
��
vs¼0 ¼ cðx;yÞ1;0;1

us
jusj; Tsy

��
us¼0 ¼ cðx;yÞ0;0;0s4

vs
jvsj;

Msjvs¼0 ¼ cðx;yÞ0;0;�1
us
jusj; Msjus¼0 ¼

�
cðx;yÞ1;0;0s4� cðx;yÞ0;1;0c4

	
vs
jvs j ;

(11)

where for brevity the following notation has been used

s4 ¼ sin 4s; c4 ¼ cos 4s; (12)

cðz;hÞi;j;k ¼
ZZ

F

zihj
�
z2 þ h2

	�k
2
sðz; hÞdzdh; (13)

and where

cðz;hÞ0;0;0 ¼
ZZ

F

sðz;hÞdzdh ¼ 1; (14)

(because of the non-dimensional form of the normal stress distri-
bution s(x,y)) and where (z,h) are the coordinates of an arbitrary
a) b)

Fig. 3. Elliptic contact area between two
rectangular coordinate system in the plane of the contact zone F.
The analogous expressions for the first and second order partial
derivatives of the functions (8) are given in Appendix A.

One can notice that the corresponding values and derivatives of
functions (8) for vs ¼ 0 (assuming us s 0) and for us ¼ 0 (assuming
vs s 0) for an arbitrary normal stress distribution depend only on
integrals (13) which can be found for many special cases of contact
area shape and normal stress distribution. Moreover, in the case of
invariant contact pressure distribution, the integrals cðz;hÞi;j;k are the
constant parameters, and they can be identified from the
experiment.

3. A coupled model of sliding and rolling friction for elliptic
contact shape

3.1. A model of normal stress distribution coupled with rolling
friction

We start from an assumption of certain non-dimensional
normal stress s00ðr0Þ distribution over the non-dimensional circu-
lar zone F 0ðRR

F 0
s00dF

0 ¼ 1Þ presented in Fig. 3a, depending only on

distance r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

p
from centre A of the area F0, where x

0
and y

0

are the coordinates of a point of contact zone in the Cartesian co-
ordinate system Ax

0
y
0
. Each quantity corresponding to the area F0

and being the counterpart of a quantity X corresponding to the area
F exhibited by Fig. 1, is denoted by X0.

Then, in order to generate the rolling resistance torque M0
r , we

assume that initial stress distribution s00ðr0Þ undergoes distortion
along the axis s0r of the rectangular coordinate system As0ry0r and gets
the following form

s0ðx0; y0Þ ¼ s00


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

q �
ð1þ dðx0cos g0 þ y0sin g0ÞÞ; (15)

where g
0
is the angle describing direction of the axis s0r , while 0 � d

� 1 (the upper limit results from the condition of non-negative
normal stress values) is a certain non-dimensional rolling resis-
tance coefficient related to the magnitude of the contact zone. In
the above expression, x0cos g0 þ y0sin g0 is the distance of point
(x

0
,y

0
) from the axis y0r . The pressure distribution s

0
(x

0
,y

0
) has the

centre at point S0 lying on the axis s0r and generate the non-
dimensional rolling resistance torqueM0

r of magnitudeM
0
r ¼ AS

0 ¼RR
F
s

0
x
0
; y

0� �
s0rdF

0
=
RR
F
s

0
x
0
; y

0� �
dF

0 ¼ pd
R 1
0 s

0
0 r

0� �
r
03dr

0
(the resultant

normal reaction is equal to one).
Model (15) corresponds to the proposition of Kireenkov (2008)

based on the work of Svedenius (2003), concerning modelling of
the rolling resistance of motor-car wheels. However, they define
direction s0r in such a way that the rolling resistance torque M0

r

c)

bodies with the coordinate systems.
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opposes angular velocity u0
r of the rolling, i.e. M0

r ¼ �M0
ru

0
r=ku0

rk,
therefore they represent a rather classical approach to the rolling
friction. However, this way of understanding of the rolling resis-
tance can lead in certain cases to cumbersome and questionable
results (Leine, 2009; Leine et al., 2005; Leine and Van De Wouw,
2008). If we, for example, consider the case of two bodies moving
over each other with no relative angular velocity, contact point A
still moves over the surfaces of both bodies. The classical approach
to the rolling resistance results in no dissipation in this case, which
is not true. Therefore, a certain group of researchers (Leine, 2009;
Leine et al., 2005; Leine and Van De Wouw, 2008) replace the
classical rolling friction model by the concept of contour friction as
a resistance against relativemovement of the contact point over the
body surface. This movement can be different for each body (and
the contour friction can also be different) and is defined by contour
velocities v0r1 and v0r2. The classical rolling resistance and contour
friction models lead to the same results in certain special cases (e.g.
in rolling without sliding or in the case of rolling of a deformable
body over the rigid plane), but in general they differ essentially one
from the other. However, the proposed model of contour friction
does not take into account the shape of the contact region and
coupling between rolling resistance and components of the friction
model (by a proper model of normal stress distribution over the
contact area).

Going back to model (15) and Fig. 3a, we will rather use the
concept closely related to the contour friction. It means that the
axis s0r corresponds to the direction of the velocity of relative mo-
tion (contour velocity) of point A over the body. Let us assume now,
temporarily, that only one such direction exists, i.e. directions of v0r1
and v0r2 coincide (the case of rolling without sliding) or only one of
them is significant (the case when, for example, only one of the
bodies undergoes deformation at the contact region). Now, the
distortion in normal stress distribution (15) along the direction s0r
can be explained, to a certain extent, by the dissipation processes
proceeding in the deformed material. Assuming function s00ðr0Þ to
be decreasing, we can note that on the leading half of the contact
(dotted region in Fig. 3a), where the nominal normal stress s00 in-
creases in time (we can say that the strain energy of material ele-
ments increases due to the work of compression done by the
contact pressure), the actual normal stress s

0
is greater than s00. On

the rest of the contact region, where the nominal normal stress s00
decreases in time, the actual normal stress s

0
is smaller than s00 and

we can talk of the process of unloading.
For the constant value of parameter d, the rolling resistance

torque M0
r does not depend on the contour velocity and its

dimensional counterpart cM0
r ¼ ba bNM0

r is proportional to the
dimensional radius of contact ba and dimensional normal load bN .
The last effect is consistent with the results obtained assuming the
hypothesis of the so-called elastic hysteresis (Greenwood et al.,
1961; Johnson, 1985; Tabor, 1955), i.e. the simplified theory of
dissipation processes proceeding in the deformed material within
the so-called elastic limit. In this theory the energy loss is expressed
as a certain fraction a of the maximum elastic strain energy stored
in the body during the cycle of loading and unloading. Then
assuming rolling with the frictionless Hertz contacts of line (e.g. a
cylinder rolling over the plane) or elliptic (or circular) shape they
calculate the strain energy from the work done by the contact
pressure on the leading part of the contact. It results in a simple
rolling theory where resistance torque is proportional to normal
load and contact size in the direction of the deformation region
motion. These results are then confirmed experimentally quite
well, especially for materials such as rubber. The other mechanisms
of rolling resistance, such as micro-slips and roughness of the
surfaces usually play a much less important role (Johnson, 1985). A
bit greater errors of the assumed model of rolling resistance can
arise from a different than assumed mechanism of energy dissi-
pation during inelastic deformation of the material.

Now, we will try to extend the model of distorted distribution
of normal stress (15) on circular area to the corresponding model
on elliptic zone. We do it by the contraction of area F0 (see Fig. 3)
along y0 axis. We obtain elliptic area F shown in Fig. 3b, where the
position of each point is determined by the use of coordinates x
and y of rectangular coordinate system Axy. The relations between
coordinates of each point of the contact area before (x0, y0) and
after contraction (x, y) are x ¼ x

0
and y ¼ by

0
, respectively. The

dimensionless quantities used in Fig. 3 are a ¼ ba=ba ¼ 1 and
0 < b ¼ bb=ba � 1, where ba is the real characteristic dimension of
the contact zone (in this case it is the real length of the major
semi-axis of the elliptic contact).

The dimensionless normal stress distribution sðx; yÞ ¼
b�1s0ðx; b�1yÞ over the area FðRR

F
sdF ¼ RR

F
s0dF ¼ 1Þ equals

sðx; yÞ ¼ s0ðx; yÞ
�
1þ dxcos g0 þ db�1ysin g0

�
;

where s0ðx; yÞ ¼ b�1s00
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ b�2y2
p 	

:
(16)

Togetherwith the contraction of the contact area, the direction of
contour velocity changes from s0r to sr. Thanks to it (assuming func-
tion s00ðr0Þ to be decreasing) the dotted region in Fig. 3b, where the
actual stress s is greater than the nominal one s0, is also the leading
part of the contact, i.e. nominal stress s0 is increasing in time (the
process of loading takes place). Note however, that we do not take
into account the relative rotation of the deformed region (angular
contour velocity) and its influence on the normal stress distribution
and rolling resistance. The relation between angles g

0
and g reads

cos g0 ¼ cos gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 gþ b�2sin2 g

q ; sin g0 ¼ b�1sin gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 gþ b�2sin2 g

q :

(17)

On the other hand, themovement direction of deformation zone
F is different for each body (with the exception of the case of rolling
without sliding, or when only one of the bodies undergoes defor-
mation at contact region), so there are two different contour ve-
locities vr1 and vr2 (and also v0r1 and v0r2) with two different
coefficients d1 and d2. We can assume a model in which total
distortion of the normal stress distribution is the sum of distortions
related to contour resistances on each body separately

sðx; yÞ ¼ s0ðx; yÞ

0BB@1þ �d1cos g01 þ d2cos g
0
2
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dc ¼dcos g0

x

þ b�1 �d1sin g01 þ d2sin g02
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ds ¼dsin g0

y

1CCA;

(18)

where d and g
0
are the corresponding parameters of the resultant

resistance. One can note that Eq. (16) is still valid and the resultant
resistance can be understood as geometric sum d ¼ d1 þ d2, where
d1 ¼ d1v0r1=kv0r1k and d2 ¼ d2v0r2=kv0r2k and where vector d has
magnitude d (see Fig. 3c). In order to simplify the notation, we have
omitted the prime sign ð.Þ0 in relation to vectors d, d1 and d2.
Quantities g0

1 and g0
2 occurring in Eq. (18) denote the angles be-

tween the x’ axis and the directions of velocities v0r1 and v0r2 (or
vectors d1 and d2), respectively. The condition of non-negative
values of normal stresses now gets the form d1 þ d2 � 1, where
d1 > 0 and d2 > 0 (resistance should dissipate energy).



Fig. 4. Geometric interpretation of rolling resistances’ superposition.
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In practice, it is convenient to determine components dc and ds
of expression (18) in the following way

dc ¼ d1cos g01 þ d2cos g02;

ds ¼ d1sin g01 þ d2sin g02;
(19)

where

cos g01 ¼ vr1xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r1xþb�2v2r1y

p ; sin g01 ¼ b�1vr1yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r1xþb�2v2r1y

p ;

cos g02 ¼ vr2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r2xþb�2v2r2y

p ; sin g02 ¼ b�1vr2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r2xþb�2v2r2y

p ;

(20)

and where vr1x ¼ v0r1x0, vr1y ¼ bv0r1y0 , vr2x ¼ v0r2x0 and vr2y ¼ bv0r2y0
are the components of the contour velocities vr1 ¼ vr1xex þ vr1yey
and vr2 ¼ vr2xex þ vr2yey in the coordinate system Axy, where v0r1x0 ,
v0r1y0 , v

0
r2x0 and v0r2y0 are the components of the corresponding ve-

locities v0r1 ¼ v0r1x0ex0 þ v0r1y0ey0 and v0r2 ¼ v0r2x0ex0 þ v0r2y0ey0 in the
coordinate system Ax

0
y
0
. Since the corresponding real velocitiesbvr1 ¼ abavr1 and bvr2 ¼ abavr2 have the same directions as non-

dimensional ones, non-dimensional components in Eq. (20) can
be replaced by real ones.

In the process of integration of the functions of type f(x,y)s(x,y)
over the elliptic contact area F, it is convenient to use polar coor-
dinate system ðr;4Þ, where x ¼ x

0 ¼ r
0
cos 4 and y ¼ by0 ¼

br0sin 4. Then, we obtainRR
F
f ðx; yÞsðx; yÞdxdy ¼ RR

F 0
f ðx0; by0Þs0ðx0; y0Þdx0dy0

¼
Z2p
0

Z1
0

f ðr0cos 4;br0sin 4Þs00ðr0Þð1þ dcos g0r0cos 4

þdsin g0r0sin 4Þr0dr0d4

¼
Z2p
0

Z1
0

f ðr0cos 4; br0sin 4Þs00ðr0Þð1þ dr0cosð4� g0ÞÞr0dr0d4:

(21)

Position S of the centre of normal stress distribution s(x,y) over
non-dimensional area F reads

xS ¼

RR
F
sðx;yÞxdFRR

F
sðx;yÞdF ¼ pI3dc; yS ¼

RR
F
sðx;yÞydFRR

F
sðx;yÞdF ¼ pbI3ds; (22)

where I3 belongs to the following family of the parameters

Ii ¼
Z1
0

s00ðr0Þr0idr0: (23)

It results from Eqs. (17) and (22) that xs=ys ¼ tan g and point S
lies on the Asr.

Let us introduce vector f ¼ fxex þ fyey ¼ fesr , where fx ¼ xS,
fy ¼ yS and f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y

q
¼ AS. Then we can obtain the non-

dimensional rolling resistance torque from equation Mr ¼ f � N,
where N ¼ ez is the non-dimensional normal reaction, which takes
the following form

Mr ¼ ysex � xsey: (24)

Real rolling friction torque reads cMr ¼ ba bNMr , where ba is the
real characteristic dimension of the contact and bN is the real
resultant normal reaction. Real and dimensionless rolling friction
torques can also be expressed as Mr ¼ �feyr and cMr ¼ �bf eyr ,
where bf ¼ ba bNf is the real rolling friction coefficient understood
classically as a shift of the point of application of normal reaction
force.

Let us note that rolling resistance defined by Eq. (24) with
consideration of formulae (22) and (19), with the assumption of
constant values of coefficients d1 and d2, in the case of movement of
the deformation zone along one of the axes of contact
(g0

1 ¼ g02 ¼ ip=2, where i˛C), is proportional to the length of that
axis. It is consistent with the earlier discussed experimental and
theoretical results based on the hypothesis of elastic hysteresis
(Greenwood et al., 1961; Johnson, 1985; Tabor, 1955).

On the other hand, we would like to extend the above model
and have a possibility to investigate orthotropic properties of roll-
ing resistance independently of parameter b describing the shape
of contact area. It would facilitate an investigation of certain
properties of coupled friction and rolling resistance model, e.g. the
investigation of a friction model with circular contact area but
rolling resistance different along two perpendicular directions. We
wish to develop but at the same time to maintain validity of all
above equations and properties of the pressure distribution and
rolling resistance model.

Vector f ¼ xSex þ ySey defining the position of centre S of normal
stress distribution, after consideration of Eqs. (22) and (19), can be
expressed as the sum f ¼ f1 þ f2 ¼ ðf1x þ f2xÞex þ ðf1y þ f2yÞey
(see Fig. 4), where vectors f1 ¼ f1xex þ f1yey and f2 ¼ f2xex þ f2yey
include the following components in the Axy coordinate system

f1x ¼ pI3d1cos g01; f1y ¼ pbI3d1sin g01;

f2x ¼ pI3d2cos g02; f2y ¼ pbI3d2sin g02
(25)

and define the position of centre of the normal stress distribution
for d2 ¼ 0 (point S1) and d1 ¼ 0 (point S2) respectively. Let us note
that for constant values of d1 and d2, points S1 and S2 move on
elliptic trajectories of eccentricities equal to the eccentricity of
contact area F. Moreover, these points lie on Asr1 and Asr2 axes of
directions defined by velocities vr1 and vr2, respectively
ðf1x=f1y ¼ vr1x=vr1y and f2x=f2y ¼ vr2x=vr2yÞ, which can be proved
easily by the use of Eqs. (25) and (20).

Now, wewould like to change the eccentricities of trajectories of
points S1 and S2, however preserving the condition that these
points lie on Asr1 and Asr2 axes, respectively. One can do that by the
modelling of rolling resistance coefficients d1 and d2 as functions of
g1 and g2 angles

d1cos g01 ¼ da1cos g001; d1sin g01 ¼ b1da1sin g001;

d2cos g02 ¼ da2cos g002; d2sin g02 ¼ b2da2sin g002;
(26)
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where

cos g001 ¼ vr1xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r1xþb�2b�2

1 v2r1y

p ; sin g001 ¼ b�1b�1
1 vr1yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2r1xþb�2b�2
1 v2r1y

p ;
cos g002 ¼ vr2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r2xþb�2b�1

2 v2r2y

p ; sin g002 ¼ b�1b�1
2 vr2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2r2xþb�2b�1
2 v2r2y

p ;

(27)

and where da1, db1 ¼ b1da1, da2 and db2 ¼ b2da2 are the constant
coefficients of rolling resistance for bodies 1 and 2, in directions x
and y, respectively. Parameters b1 and b2 define the change of ec-
centricities of the trajectories of points S1 and S2 with respect to the
eccentricity of contact area F. The corresponding coordinates of
vectors f1 and f2 read

f1x ¼ pI3da1cos g001; f1y ¼ pbI3b1da1sin g001;

f2x ¼ pI3da2cos g001; f2y ¼ pbI3b2da2sin g002
(28)

and one can check, using Eqs. (28) and (27), that f1x=f1y ¼ vr1x=vr1y
and f2x=f2y ¼ vr2x=vr2y.

As we have noted, all relations and elements of rolling resistance
and pressure distribution modelling presented in the current sub-
section remain valid. Rolling resistance torque is determined by
relations (24) and (22), where quantities dc and ds are defined by
formulae (19). It is convenient to use these equations when
b1 ¼ b2 ¼ 1, because it follows from Eqs. (20), (27) and (26) that
g00
1 ¼ g01; g002 ¼ g0

2 and the rolling resistance coefficients
d1 ¼ da1 ¼ db1 and d2 ¼ da2 ¼ db2 are constant. In the opposite case,
when quantities d1 and d2 are variable, one should use Eqs. (26) and
(19) to obtain

dc ¼ dcos g0 ¼ da1cos g001 þ da2cos g002;

ds ¼ dsin g0 ¼ b1da1sin g001 þ b2da2sin g002;
(29)

where the functions of angles g00
1 and g00

2 are defined by Eq. (27). The
condition of non-negative normal stresses takes the form da1 þ da2
� 1 and db1 þ db2 � 1, where da1 > 0, db1 > 0, da2 > 0 and db2 > 0.

Finally, let us note that rolling resistance for certain b < 1 and
b1 ¼ b2 ¼ 1, can be replaced by model with b ¼ 1, but with
b1 ¼ b2 < 1 having earlier value of b. That property enables inves-
tigation of the friction model with circular contact area but with
orthotropic rolling friction model.

Fig. 5a illustrates normal stress distribution s(x,y) over the
elliptic area (b ¼ 0.5) resulting from distortion of Hertz distribution
s0ðx; yÞ ¼ 3=2pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 � b�2y2

p �
for s00ðr0Þ ¼ 3

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r02

p 	
being

a result of coupling with rolling resistance (d ¼ 1 and g0 ¼ p=4).
Fig. 5b exhibits sections of the stress distribution along direction of
Fig. 5. Distorted Hertz stress distribution s(x,y) over elliptic contact for parameters b ¼ 0.5
contact point compared to the corresponding stress distribution s0(x,y) before distortion (b
relative movement of the contact point (along axis sr, defined by
angle g, such, that cos g ¼ cos g0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 g0 þ b2sin g0p

and
sin g ¼ bsin g0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 g0 þ b2sin g0p

) for two different values of
coordinate yr ¼ 0 and 0.5. The sections of the distorted stress dis-
tribution s(x,y) are compared to the corresponding sections of
stress distribution before deformation s0(x,y). The use of angle g

0
in

expression (16) instead of angle g (which one could consider more
intuitive) would violate the rule stating that where during move-
ment of the deformation zone the relative nominal displacement of
the point grows (stress s0(x,y) grows), stress s(x,y) is greater than
stress s0(x,y). It is well seen in Fig. 5b, where plots of stresses s(x,y)
and s0(x,y) cross each other in the points of maximum stress s0(x,y)
along corresponding section (because the direction of sections is
one of the relative resultant movement of the deformation zone).

3.2. Integral model of friction

For stress distribution over the elliptic contact area defined by
formulae (16), the parameters cðx;yÞi;j;k (according to Eq. (13)) of the
exact integral model of friction, take the following form

c x;yð Þ
i;j;k ¼ bj

Z2p
0

Z1
0

r
01þiþj�ks

0
0 r

0� 	 1þ r
0
dcos 4� g

0� �
cos2 4þ b2sin2

4
� 	k=2

� cosi 4 sinj
4 dr

0
d4;

(30)

expressed in the polar coordinate system ðr0;4Þ (see Eq. (21)). The
integrals cðx;yÞi;j;k can be calculated analytically and some most
important examples are presented in Table 1 in Appendix B.
However full expressions for friction forces and moment are diffi-
cult to express in analytical form.

Fig. 6 shows the surfaces in space (Tsx, Tsy, Ms), defined para-
metrically by functions (10) of the integral model of friction for
normal stress distribution before distortion determined by Hertz
theory ðs00ðr0Þ ¼ 3=2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r02

p
Þ, for different values of parameters

b and d. The exhibited surfaces correspond to sliding state of con-
tact and they are obtained by the use of numerical integration of
functions (10) for parameters 4s˛h0;2pi and qs˛h0;pi. The dashed
lines connecting points of constant values of parameter 4s meet
each other in two points. One of themmarked in orange (in theweb
version) is visible in the plots and corresponds to parameter
qs ¼ p=2. The second one (invisible) corresponds to parameter
qs ¼ �p=2. Both points correspond to the non-zero positive (for
the first point) or negative (for the second point) value of us with
vs¼ 0. The zones bounded by the surfaces and containing the origin
of the coordinate system correspond to the stick mode, when
, d ¼ 1 and g0 ¼ p=4 (a) and its sections along direction of relative movement of the
).



Fig. 6. Surfaces of integral friction model components (10) in space (Tsx, Tsy, Ms) for different eccentricities of elliptic contact and rolling resistance coefficient and with the
assumption of model (16) of normal stress distribution for s00ðrÞ ¼ 3=2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
: a) b ¼ 1, d ¼ 0; b) b ¼ 1; d ¼ 1, g0 ¼ 0; c) b ¼ 0.3; d ¼ 0; d) b ¼ 0.3; d ¼ 1; g’ ¼ 0.
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relative motion of the contact patch disappears (relative motion of
the bodies can still take place as a result of rolling) and components
of the friction model result from certain equilibrium conditions of
the interacting bodies.

Fig. 7 shows sections Ms ¼ 0, Tsx ¼ 0 and Tsy ¼ 0 of the corre-
sponding surfaces exhibited by Fig. 6, where additionally the so-
lutions for two different rolling directions g’ ¼ 0 and g’ ¼ p/2 are
plotted. One can observe, that for the lack of rolling resistance
(d ¼ 0), the section in Ms ¼ 0 plane has a circular shape indepen-
dently of the value of parameter b.

A numerical construction of the boundaries of areas shown in
Fig. 7 was performed by the use of parametric functions in the polar
coordinate system. For example, curves in the TsyeMs coordinate
system are determined by functions Tsyð4xÞ ¼ ryzð4xÞcos 4x and
Msð4xÞ ¼ ryzð4xÞsin 4x, where for each value 4x˛h0;2pÞ, radius
ryzð4xÞ is computed numerically from the set of equations

Tsxð4s; qsÞ ¼ 0;

Tsyð4s; qsÞ ¼ ryzð4xÞcos 4x;

Msð4s; qsÞ ¼ ryzð4xÞsin 4x;

(31)

where the left-hand side of the equations is determined by the
model (10). Assuming that ryzð4xÞ > 0, the above system has always
only one solution with respect to variables 4s, qs and ryz.
Computation of the corresponding curves in other sections is per-
formed in an analogical way.
4. Approximations of the integral model of friction

Since the analytical solutions to exact integral model (8) are
difficult to find or do not exist, we will look for appropriate
approximate models. The simplest possible approximation of in-
tegral model is the one ignoring the coupling between friction force
and torque (that is assuming a point contact in relation to friction
force, but non-zero friction torque)

TðOÞs ¼ � vs
kvsk; MðOÞ

s ¼ � us

kusk ; (32)

where superscript (O) is used to denote a specific kind of approx-

imation. Although both dimensionless friction force TðOÞs and torque

MðOÞ
s are assumed to have magnitudes equal to 1 (for kvsks0 and

kusks0, respectively), their real counterparts are determined
independently by two parameters m and ba (see Sect. 2). Since

vs ¼ vscos 4sex þ vssin 4ey, us ¼ usez, T
ðOÞ
s ¼ �TðOÞ

sx ex � TðOÞsy ey and

MðOÞ
s ¼ �MðOÞ

s ez, from (32) we obtain the following non-
dimensional model



Fig. 7. Components of integral friction model (10) in sections Ms ¼ 0, Tsx ¼ 0 and Tsy ¼ 0: a) d ¼ 0; b) d ¼ 1, g’ ¼ 0; c) d ¼ 1, g’ ¼ p/2. Normal stress distribution corresponds to model
(16) for s00ðrÞ ¼ 3=2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
.
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TðOÞsx ¼ cos 4s; TðOÞsy ¼ sin 4s; MðOÞ
s ¼ sgnðusÞ: (33)

4.1. Padé approximations and their modifications

Let as try to assume the following general form of the nf order
Padé approximation to f component of the integral friction
model (8)

f
�
Pnf

�
ðvs;us;4sÞ ¼

Pnf

i¼0 af ;iv
nf�i
s ui

sPnf

i¼0 bf ;iv
nf�i
s ui

s

; where f ¼ Tsx; Tsy; Ms;

(34)

and where bf,0 ¼ 1, af ;i ¼ af ;ið4s; sgnðvsÞ; sgnðusÞÞ,
bf ;i ¼ bf ;ið4s; sgnðvsÞ; sgnðusÞÞ and where the dependence of the
components and coefficients on the normal stress distribution in
the Axy coordinate system is omitted for brevity. One can easily
check, that using relations (9), the above approximation can be
reduced to the function of variables 4s and qs, similarly like the full
integral model (10). In fact, all Padé approximations developed in
works (Kireenkov, 2005, 2008; Zhuravlev, 1998, 2003) are special
cases of their general form (34).

Let us introduce the following alternative notation of approx-
imant (34)

f
�
Pnf1

�
n0
f1

�
;nf2

�
n0
f2

��
ðvs;us;4sÞ ¼

Pnf

i¼0 af ;iv
nf�i
s ui

sPnf

i¼0 bf ;iv
nf�i
s ui

s

;

for f ¼ Tsx; Tsy; Ms; (35)

meaning, that the coefficients of the above approximants fulfil the
following set of conditions
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vif

�
Pnf

	
vvis

�����
vs¼0

¼ vif
vvis

�����
vs¼0

for i ¼ 0; :::; n0f1;

vif

�
Pnf

	
vvis

�����
vs¼0

¼ 0 for i ¼ n0f1 þ 1; :::;nf1;

vif

�
Pnf

	
vui

s

�����
us¼0

¼ vif
vui

s

�����
us¼0

for i ¼ 0; :::;n0f2;

vif

�
Pnf

	
vui

s

�����
us¼0

¼ 0 for i ¼ n0f2 þ 1; :::;nf2;

(36)

and where f ¼ Tsx, Tsy, Ms, nf ¼ ðnf1 þ nf2 þ 1Þ=2, nf1 � n0f1 and nf2
� n0f2. In the case of nf1 ¼ n0f1 or nf2 ¼ n0f2 we omit the corre-
sponding index in the parenthesis.

For nTsx ¼ nTsy ¼ nMs
¼ 1, from (34) we get the following Padé

approximations of first order

f ðP1Þ ¼ af ;0vs þ af ;1us

vs þ bf ;1us
; where f ¼ Tsx; Tsy; Ms: (37)

Thenmakinguseof Eqs. (11) and (59)e(61),wefind the following
coefficients of the above approximants for nTsx1 ¼ nTsy1 ¼
n0Tsx1 ¼ n0Tsy1 ¼ nMs2 ¼ n0Ms2

¼ 1 and nTsx2 ¼ nTsy2 ¼ n0Tsx2 ¼
n0Tsy2 ¼ nMs1 ¼ n0Ms1

¼ 0:
aTsx;0 ¼ c4sgnðvsÞ; aTsx;1 ¼ �sgnðvsÞcðx;yÞ0;1;1A1; bTsx ;1 ¼ sgnðvsÞsgnðusÞA1;

aTsy;0 ¼ sgnðvsÞs4; aTsy;1 ¼ sgnðvsÞcðx;yÞ1;0;1A2; bTsy;1 ¼ sgnðvsÞsgnðusÞA2;

aMs ;0 ¼ 1; aMs;1 ¼ sgnðvsÞcðx;yÞ0;0;�1A
�1
3 A�1

4 ; bMs ;1 ¼ sgnðvsÞsgnðusÞA�1
4 ;

(38)
where

A1 ¼ c4þsgnðvsÞsgnðusÞcðx;yÞ0;1;1

cðx;yÞ1;1;3s4þcðx;yÞ2;0;3c4
; A2 ¼ s4�sgnðvsÞsgnðusÞcðx;yÞ1;0;1

cðx;yÞ0;2;3s4þcðx;yÞ1;1;3c4
;

A3 ¼ cðx;yÞ1;0;0s4 � cðx;yÞ0;1;0c4; A4 ¼ sgnðvsÞcðx;yÞ0;0;�1�sgnðusÞA3�
cðx;yÞ0;2;0�cðx;yÞ2;0;0

�
s24þ2cðx;yÞ1;1;0c4s4þcðx;yÞ2;0;0

:

Making use of the above relations, from (37) we get the
following form of the friction model

TðP1;0Þsx ¼
vsc4�A1c

ðx;yÞ
0;1;1us

jvsjþA1jusj ; TðP1;0Þsy ¼
vss4þA2c

ðx;yÞ
1;0;1us

jvsjþA2jusj ;

MðP0;1Þ
s ¼

cðx;yÞ0;0;�1usþA3A4vs

jusjþA4jvsj
:

(39)

One can note rather inconvenient form of approximant (39). It,
however, will take a much simpler form in the case of circular
contact area or constant elliptic shape. But there is another disad-
vantage of these models, namely the possible existence of singu-
larities (the denominator tending to zero) for certain values of
arguments and parameters. Much more convenient and free from
the above drawback is the following construction of the
approximation
f

�
Inf

	
ðvs;us;4sÞ ¼

Pnf

i¼0 af ;iv
nf�1
s ui

s�
mf nf mf mf nf

	m�1
f

; where

jvsj þ bf jusj

f ¼ Tsx; Tsy; Ms;

(40)

where af ;i ¼ af ;ið4s; sgnðvsÞ; sgnðusÞÞ (it occurs that for odd nf, co-
efficients af,i do not depend on the signs of vs and us),mf � 0 and bf
� 0. In the above approximation we assume additionally, that
nTsx ¼ nTsy ¼ nTs , mTsx ¼ mTsy ¼ mTs and bTsx ¼ bTsy ¼ bTs . Thanks
to that one can easily pass between different coordinate systems
defined by rotation of the coordinate system Axyz around the axis z
(see Fig. 1). In particular the structure of the model does not change
during such a transformation (the denominator of the approxi-
mation does not change). Moreover, independently from the co-
ordinate system chosen for derivation of the model, one always
obtains the same structure of the friction model. The last property
is related to the another one, that is for circularly symmetric contact
stress distribution, independently from the choice of the coordinate
system, one always obtain a model, where the friction force
component perpendicular to the sliding velocity vs is equal to zero
(one can easy find that it true for full integral model).

Note, that formf¼ 1we get the following particular form of Padé
approximation (34)
f

�
Inf

	
ðvs;us;4sÞ

���
mf¼1

¼
Pnf

i¼0 af ;iv
nf�1
s ui

s

jvsjnf þ bf jusjnf
; where

f ¼ Tsx; Tsy; Ms;

(41)

and for mf ¼ n�1
f the next special form of expression (34)

f

�
Inf

	
ðvs;us;4sÞ

���
mf¼n�1

f

¼
Pnf

i¼0 af ;iv
nf�1
s ui

s�
jvsj þ b�nf

f jusj
	nf

; where

f ¼ Tsx; Tsy; Ms:

(42)

Let us assume that the coefficients mf and bf are chosen arbi-
trarily and then the rest of the coefficients are chosen in such a way
that the conditions (36) are fulfilled. Then it can be easily shown
that for i � nf and mf � i=nf

vif

�
Inf

	
vvis

�����
vs¼0

¼ i!
af ;nf�i

bf
riðusÞ; v

if

�
Inf

	
vui

s

�����
us¼0

¼ i!af ;iriðvsÞ; (43)

where riðxÞ ¼
�
x1�i=jxj
x�i

for n ¼ 1;3;5.
for n ¼ 2;4;6. and i ¼ 0;1;2.n� 1.

Each of expressions (43) and each equation of type (36) contain
only one unknown coefficient af,i, so the process of approximant
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construction is much simplified. Moreover, the derivatives of
approximant (40) do not depend on coefficient mf.

Let us introduce the following alternative notation of approx-
imant (40)

f

�
I
nf1ðn0f1Þ;nf2ðn0f2Þ

	
ðvs;us;4sÞ ¼

Pnf

i¼0 af ;iv
nf�i
s ui

s�
jvsjmf nf þ bmf

f jusjmf nf

	m�1
f

; for

f ¼ Tsx; Tsy; Ms;

(44)

meaning that the coefficients of the above approximants fulfil the
following set of conditions

vif
Inf

� 	
vvis

��
vs¼0 ¼ vif

vvis

��
vs¼0 for i ¼ 0;.;n

0
f1;

vif
Inf

� 	
vvis

��
vs¼0 ¼ 0 for i ¼ n

0
f1 þ 1;.;nf1;

vif
Inf

� 	
vui

s

��
us¼0 ¼ vif

vui
s

��
us¼0for i ¼ 0;.;n

0
f2;

vif
Inf

� 	
vui

s

��
us¼0 ¼ 0 for i ¼ n

0
f2 þ 1;.;nf2; (45)

andwhere f¼ Tsx, Tsy,Ms, nf ¼ nf1 þ nf2 þ 1, nf1 � n0f1 and nf2 � n0f2
and in the case of nf1 ¼ n0f1 or nf2 ¼ n0f2 we omit the corre-
sponding index in the parenthesis.

For nTs ¼ nMs
¼ 1 and nTsx1 ¼ nTsx2 ¼ nTsy1 ¼ nTsy2 ¼ nMs1 ¼

nMs2 ¼ n0Tsx1 ¼ n0Tsx2 ¼ n0Tsy1 ¼ n0Tsy2 ¼ n0Ms1
¼ n0Ms2

¼ 0 and us-
ing Eqs. (11), (43) and (60)e(62), we get the following coefficients
of the approximation

aTsx;0 ¼ c4; aTsx;1 ¼ �bTsx c
ðx;yÞ
0;1;1; aTsy;0 ¼ s4; aTsy;1 ¼ bTsyc

ðx;yÞ
1;0;1;

aMs;0 ¼ s4c
ðx;yÞ
1;0;0 � c4c

ðx;yÞ
0;1;0; aMs;1 ¼ bMs

cðx;yÞ0;0;�1

(46)

and the approximant models take the forms

TðI0;0Þsx ¼ vsx�bTs c
ðx;yÞ
0;1;1us�

jvsjmTs þb
mTs
Ts

jusjmTs
�m�1

Ts

; TðI0;0Þsy ¼ vsyþbTs c
ðx;yÞ
1;0;1us�

jvsjmTs þb
mTs
Ts

jus jmTs
�m�1

Ts

;

MðI0;0Þ
s ¼ bMs c

ðx;yÞ
0;0;�1us�cðx;yÞ0;1;0vsxþcðx;yÞ1;0;0vsy�

b
mMs
Ms

jusjmMs þjvs jmMs
�m�1

Ms

;

(47)

where we use relations vsx ¼ vscos 4s ¼ vsc4 and
vsy ¼ vssin 4s ¼ vss4.

For nTs ¼ nMs
¼ 3 and nTsx1 ¼ nTsx2 ¼ nTsy1 ¼ nTsy2 ¼ nMs1 ¼

nMs2 ¼ n0Tsx1 ¼ n0Tsx2 ¼ n0Tsy1 ¼ n0Tsy2 ¼ n0Ms1
¼ n0Ms2

¼ 1 and us-
ing Eqs. (11), (43) and (60)e(62), we get the following approximant
model

TðI1;1Þsx ¼ v2s vsx�cðx;yÞ1;0;0vsxvsyus�cðx;yÞ0;1;0v
2
syusþbTs

�
cðx;yÞ2;0;3vsxu

2
sþcðx;yÞ1;1;3vsyu

2
s�cðx;yÞ0;1;1u

3
s

��
jvs j3mTs þb

mTs
Ts

jus j3mTs
�m�1

Ts

;

TðI1;1Þsy ¼ v2s vsyþcðx;yÞ1;0;0v
2
sxusþcðx;yÞ0;1;0vsxvsyusþbTs

�
cðx;yÞ1;1;3vsxu

2
sþcðx;yÞ0;2;3vsyu

2
sþcðx;yÞ1;0;1u

3
s

��
jvs j3mTs þb

mTs
Ts

jus j3mTs
�m�1

Ts

;

MðI1;1Þ
s ¼ bMs c

ðx;yÞ
0;0;�1u

3
s�cðx;yÞ0;1;0v

2
s vsxþcðx;yÞ1;0;0v

2
s vsyþcðx;yÞ2;0;0v

2
sxusþcðx;yÞ0;2;0v

2
syus�

b
mMs
Ms

jusj3mMs þjvs j3mMs
�m�1

Ms

:

(48)
In an analogical way higher order approximant models can be
constructed. One can note however, that approximation (40) takes
the most convenient and regular form for the same highest orders
of the fulfilled derivatives for both vs ¼ 0 and us ¼ 0 ðnf ;1 ¼ nf ;2Þ.

Taking into account the values of integrals cðx;yÞi;j;k gathered in

Table 1, we get the following forms of models (47) and (48) for
elliptic contact

TðI0;0Þsx ¼ vsx�4bTs bGðeÞI2dsus�
jvsjmTs þb

mTs
Ts

jusjmTs
�m�1

Ts

; TðI0;0Þsy ¼ vsyþ4bTsHðeÞI2dcus�
jvsjmTs þb

mTs
Ts

jusjmTs
�m�1

Ts

;

MðI0;0Þ
s ¼ 4bMs EðeÞI2usþpI3ðdcvsy�bdsvsxÞ�

b
mMs
Ms

jus jmMs þjvsjmMs
�m�1

Ms

;

(49)

and

TðI1;1Þsx ¼ v2s vsxþusðbTsð4GðeÞI0vsxus�bdsðpI3v2syþ4GðeÞI2u2
s ÞÞ�pI3dcvsxvsyÞ�

jvsj3mTs þb
mTs
Ts

jusj3mTs
�m�1

Ts

;

TðI1;1Þsy ¼ v2s vsyþusðbTsð4HðeÞI0vsyusþdcðpI3v2sxþ4HðeÞI2u2
s ÞÞþpbI3dsvsxvsyÞ�

jvsj3mTs þb
mTs
Ts

jusj3mTs
�m�1

Ts

;

MðI1;1Þ
s ¼ 4b

mf
Ms

EðeÞI2u3
sþpI3ððv2sxþb2v2syÞusþv2s ðdcvsy�bdsvsxÞÞ�
b
mMs
Ms

jusj3mMs þjvsj3mMs
�m�1

Ms

:

(50)

4.2. Piecewise polynomial approximation

For the approximation of exact integral functions (8) wewill use
the following piecewise polynomial approximation (for the sake of
simplicity, we assume here vs � 0)

f ðWÞðvs;us;4sÞ ¼

8>>>><>>>>:
sgnðusÞ

P4
i¼0

af ;i
�
vs
us

	i
for vs � jusju0;f ;

P3
i¼0

bf ;i
�
us
vs

	i
for vs > jusju0;f ;

(51)

where f(W) is the approximation of function f ¼ Tsx, Tsy, Ms and
af ;i ¼ af ;ið4s; sgnðusÞÞ, bf ;i ¼ bf ;ið4s; sgnðusÞÞ. One can check, that
using relations (9), the approximation (51) can be reduced to the
function of variables 4s and qs, similarly like the full integral model
(10).

The approximations of functions Tsx and Tsy satisfy up to the first
order partial derivatives with respect to variable vs (for vs ¼ 0) and
up to the third order partial derivatives with respect to variable us

(for us ¼ 0), of the full integral model. Making use of relations (11)
and (60)e(62), one can obtain the following formulae for elliptic
contact

aTsx;0 ¼ �cðx;yÞ0;1;1; aTsx;1 ¼ cðx;yÞ2;0;3c4; bTsx;0 ¼ c4;

bTsx;1 ¼ �cðx;yÞ0;1;0s
2
4 � cðx;yÞ1;0;0s4c4;

bTsx;2 ¼ 1
2

�
3
�
cðx;yÞ2;0;0 � cðx;yÞ0;2;0

	
s24c4 � cðx;yÞ2;0;0c4

	
;

bTsx;3 ¼ 5
16

�
cðx;yÞ0;3;0 � 3cðx;yÞ2;1;0

	�
7s44 þ c44

	
þ 5
2

�
3cðx;yÞ1;2;0 � cðx;yÞ3;0;0

	
s34c4

þ 1
8

�
45cðx;yÞ2;1;0 � 11cðx;yÞ0;3;0

	
s24 þ 3



1
2
cðx;yÞ3;0;0 � cðx;yÞ2;1;0

�
s4c4

� 1
16

�
5cðx;yÞ3;0;0 þ cðx;yÞ2;1;0

	
;

(52)



a)

b)

c)

d)

Fig. 8. Comparison of the corresponding components (TðI0;0Þss , TðI0;0Þ
sy ,MðI0;0Þ

s , TðI1;1Þss , TðI1;1Þ
sy ,MðI1;1Þ

s , TðI2ð1Þ;2Þss , TðI2ð1Þ;2Þsy ,MðI2;2Þ
s , TðI3ð1Þ;3Þ

ss , TðI3ð1Þ;3Þ
sy ) of selected approximate models (44) and elements

(Tss, Tsy, Ms) of exact integral model (8), for b ¼ 1, 4s ¼ 0 (a); b ¼ 0.2, 4s ¼ 0 (b); b ¼ 0.2, 4s ¼ p/4 (c); b ¼ 0.2, 4s ¼ p/2 (d) and for d ¼ 0.
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a)

b)

c)

d)

Fig. 9. Comparison of the corresponding components (TðI0;0Þ
ss , TðI0;0Þsy ,MðI0;0Þ

s , TðI1;1Þss , TðI1;1Þ
sy ,MðI1;1Þ

s , TðI2ð1Þ;2Þss , TðI2ð1Þ;2Þ
sy ,MðI2;2Þ

s , TðI3ð1Þ;3Þ
ss , TðI3ð1Þ;3Þsy ) of selected approximate models (44) and elements

(Tss, Tsy, Ms) of exact integral model (8), for b ¼ 1, 4s ¼ 0 (a); b ¼ 0.2, 4s ¼ 0 (b); b ¼ 0.2, 4s ¼ p/4 (c); b ¼ 0.2, 4s ¼ p/2 (d) and for d ¼ 1 and g’ ¼ 1.

Fig. 10. Results of the optimization of the polynomial joining points for different
values of parameter b.
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aTsy;0 ¼ c x;yð Þ
1;0;1; aTsy;1 ¼ c x;yð Þ

0;2;3sf; bTsy;0 ¼ sf;

bTsy;1 ¼ c x;yð Þ
0;1;0sfcf þ c x;yð Þ

1;0;0c
2
f;

bTsy;2 ¼ 1
2

3 c x;yð Þ
0;2;0 � c x;yð Þ

2;0;0

� 	
sfc

2
f � c x;yð Þ

0;2;0sf
� 	

;

bTsy;3 ¼ 5
16

3c x;yð Þ
1;2;0 � c x;yð Þ

3;0;0

� 	
s4f þ 7c4f
� 	

þ 5
2

c x;yð Þ
0;3;0 � 3c x;yð Þ

2;1;0

� 	
sfc

3
f

þ 1
8

11c x;yð Þ
3;0;0 � 45c x;yð Þ

1;2;0

� 	
c2f � 3

1
2
c x;yð Þ
0;3;0 � c x;yð Þ

2;1;0


 �
sfcf

þ 1
16

5c x;yð Þ
3;0;0 þ c x;yð Þ

1;2;0

� 	
;

(53)

where coefficients cðx;yÞi;j;k are given in Table 1 in Appendix B and
where the coefficients equal to zero for elliptic contact area have
been removed.
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Assuming that friction torqueMs satisfies up to the second order
partial derivatives with respect to variable vs (for vs ¼ 0) and with
respect to variable us (for us ¼ 0) of the full integral model, we
obtain the following coefficients of approximation

aMs;0 ¼ cðx;yÞ0;0;�1; aMs;1 ¼ 0; aMs;2 ¼ 1
2

��
cðx;yÞ0;2;3�cðx;yÞ2;0;3

	
c24�cðx;yÞ0;2;3

	
;

bMs ;0 ¼ cðx;yÞ1;0;0s4�cðx;yÞ0;1;0c4; bMs;1 ¼
�
cðx;yÞ2;0;0�cðx;yÞ0;2;0

	
c24�cðx;yÞ0;2;0;

bMs;2 ¼
3
2

�
3cðx;yÞ1;2;0�cðx;yÞ3;0;0

	
s4c24þ

3
2

�
3cðx;yÞ2;1;0�cðx;yÞ0;3;0

	
c34�

3
2
cðx;yÞ1;2;0s4

þ3


1
2
cðx;yÞ0;3;0�cðx;yÞ2;1;0

�
c4:

(54)

The pieces of functions f(W) are joined in points
vs ¼ jusju0;f ðu0;f >0Þ satisfying the continuity conditions of up to
a)

b)

c)

d)

Fig. 11. Comparison of the corresponding components (TðWÞ
sx , TðWÞ

sy , MðWÞ
s ) of approximate m

(eeh), 4s ¼ 0 (a, e), 4s ¼ p/6 (b, f), 4s ¼ p/3 (c, g) and 4s ¼ p/2 (d, h). The values of the re
the second order derivatives, giving the following formulae for the
rest of the coefficients

af ;2 ¼ �3sgn usð Þaf ;1u�1
0;f þ 6 sgn usð Þbf ;0 � af ;0

� 	
u�2
0;f

þ10bf ;1u
�3
0;f þ 15sgn usð Þbf ;2u�4

0;f þ 21bf ;3u
�5
0;f ;

af ;3 ¼ 3af ;1u
�2
0;f þ 8 sgn usð Þaf ;0 � bf ;0

� 	
u�3
0;f � 15sgn usð Þbf ;1u�4

0;f

þ 24bf ;2u
�5
0;f � 35sgn usð Þbf ;3u�6

0;f ;

af ;4 ¼ �sgn usð Þaf ;1u�3
0;f þ 3 sgn usð Þbf ;0 � af ;0

� 	
u�4
0;f þ 6bf ;1u

�5
0;f

þ 10sgn usð Þbf ;2u�6
0;f þ 15bf ;3u

�7
0;f ;

(55)

for the approximate friction force models f ¼ Tsx, Tsy. In the case of
the friction torque model we have the following expressions
e)

f)

g)

h)

odel (51) and elements (Tsx, Tsy, Ms) of exact integral model (8), for b ¼ 1 (aed), b ¼ 0.5
maining parameters: d ¼ 1 and g’ ¼ 1.



aMs;3 ¼ �5
3
sgnðusÞaMs;2u

�1
0;Ms

� 2aMs;1u
�2
0;Ms

þ 2
�
bMs;0 � sgnðusÞaMs;0

�
u�3
0;Ms

þ 5
3
sgnðusÞbMs;1u

�4
0;Ms

þ bMs;2u
�5
0;Ms

;

aMs;4 ¼ 1
7

�
5aMs;2u

�2
0;Ms

þ 8sgnðusÞaMs ;1u
�3
0;Ms

þ 9
�
aMs;0 � sgnðusÞbMs;0

�
u�4
0;Ms

þ�8bMs ;1u
�5
0;Ms

� 5sgnðusÞbMs;2u
�6
0;Ms

	
;

bMs;3 ¼ 1
21

�
� 15sgnðusÞbMs;2u0;Ms

� 10bMs ;1u
2
0;Ms

þ 6
�
aMs;0 � sgnðusÞbMs;0

�
u30;Ms

þ 3sgnðusÞaMs ;1u
4
0;Ms

þ aMs;2u
5
0;Ms

	
:

(56)
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The additional three parameters u0;Tsx , u0;Tsy and u0;Ms
(defining

the points of the polynomial joining) are independent from the
corresponding derivatives of the integral model of friction and can
be chosen arbitrarily.
4.3. Examples for Hertz nominal stress distribution

In this section we present a comparison of some above intro-
duced approximate models with the full integral model of friction
(8) for the Hertz case of nominal stress distribution, that is for

s00ðr0Þ ¼ 3=2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r02

p
(cf. Sect. 3). In these examples we assume
a)

b)

c)

d)

Fig. 12. Comparison of the corresponding components (TðWÞ
sx , TðWÞ

sy , MðWÞ
s ) of approximate mo

(eeh), 4s ¼ 0 (a, e), 4s ¼ p/6 (b, f), 4s ¼ p/3 (c, g) and 4s ¼ p/2 (d, h). The values of the re
the coefficients cðx;yÞi;j;k of the approximate models according to

Table 1 in Appendix B, for the following parameters

I0 ¼ 3
8; I2 ¼ 3

32; I3 ¼ 1
5p; I5 ¼ 4

35p ; (57)

for both exact and approximate models. The last formulae (note
that relation Iiþ1 � Ii holds for any non-negative integer i) are ob-

tained according to definition (23) for s00ðr0Þ ¼ 3=2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r02

p
.

Figs. 8 and 9 exhibit a comparison of the components (TðI0;0Þss ,

TðI0;0Þsy , MðI0;0Þ
s , TðI1;1Þ

ss , TðI1;1Þ
sy , MðI1;1Þ

s , TðI2ð1Þ;2Þss , TðI2ð1Þ;2Þ
sy , MðI2;2Þ

s , TðI3ð1Þ;3Þ
ss , TðI3ð1Þ;3Þ

sy
of selected approximant models (44) with the corresponding
e)

f)

g)

h)

del (51) and elements (Tsx, Tsy, Ms) of exact integral model (8), for b ¼ 0.3 (aed), b ¼ 0.1
maining parameters: d ¼ 1 and g’ ¼ 1.
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components (Tss, Tsy, Ms) of the exact integral model (8) obtained
numerically. Even though the approximants have been constructed
in the coordinate system Axy, the results are presented in the co-
ordinate system Asy. The Figures exhibit plots for the range
qs˛h�p=2;p=2i only, since all the presented functions f ðqsÞ possess
the property f ðqs þ pÞ ¼ �f ðqsÞ. The coefficients mTs , mMs

, bTs and
bMs

have been determined by the use of optimization of the cor-
responding approximant and integral model matching for full
ranges of variation of the corresponding parameters and variables:
0 < b � 1, 0 � d � 1, 0 � g � 2p, �p=2 � qs � p=2 and 0 � 4s � 2p.
Fig. 8 presents results for the casewithout rolling resistance (d¼ 0),
while Fig. 9 exhibits results for rolling resistance with d ¼ 1. One
can note that the higher degree of the approximant do not always
leads to better results. In the presented examples the best fitting is
obtained for the approximations I1,1.

For f (W) approximations (cf. Sect. 4.2), parameters u0;Tsx , u0;Tsy
and u0;Ms

(defining the points of polynomial joining) have been
selected for 11 different values of parameter b basing on the opti-
mization procedure. The sum of square deviations of the approxi-
mate model from the exact integral model for different values of
the remaining parameters (4s, qs, d and g

0
) has been chosen as a

criterion being minimized. The optimization results are shown in
Fig. 10 together with the plots of polynomials fitted to the obtained
results and having the following forms

u0;TsxðbÞ ¼ 0:967þ 0:276b� 0:542b2 þ 0:706b3;
u0;TsyðbÞ ¼ 1:280þ 0:007bþ 0:106b2;
u0;Ms

ðbÞ ¼ 0:702þ 0:407b� 0:819b2 þ 0:600b3:
(58)

Figs. 11 and 12 illustrate a comparison of the corresponding

components of approximate, piecewise polynomial model (TðWÞ
sx ,

TðWÞ
sy , MðWÞ

s ) and exact integral model (Tsx, Tsy, Ms). Fig. 11 exhibits
results for the circular (b ¼ 1) and elliptic contact area of moderate
eccentricity (b ¼ 0.5). Fig. 12 shows results for higher eccentricities
of the contact (b ¼ 0.3 and b ¼ 0.1). For each eccentricity value the
four plots for different angles 4s ¼ ip=6 (i ¼ 0, 1, 2, 3) are per-
formed, while the other parameters are d ¼ 1 and g’ ¼ 1. In Fig. 11
one can observe, that for the circular contact patch the approximate
model gives practically exact results. In that case the lower order
approximation would be probably sufficient. The elaborated
piecewise polynomial model gives, however, very good results for
b ¼ 0.5 as well and quite good results for more slender (b ¼ 0.3 and
b ¼ 0.1 in Fig. 12). The highest approximation errors are observed
for b¼ 0.3 (in some cases the absolute error of the approximation of
non-dimensional component Tsx reaches the value of about 0.15,
that is about 15% of the maximal magnitude). Let us note that the
approximate model exhibits the highest errors for the Tsx compo-
nent (along the longer axis of the contact), whereas in the case of
the second component of the friction force Tsy and friction torque
Ms the approximation gives almost perfect results.
v2Tsx
vv2s

���
vs¼0

¼
��

cðx;yÞ0;3;5 � 5cðx;yÞ2;1;5

	
s24 þ 2

�
2cðx;yÞ1;2;5 � cðx;yÞ3;0;5

	
s4c4 þ 3cðx;yÞ2;1;5

	
u

v2Tsx
vu2

s

���
us¼0

¼
�
6cðx;yÞ1;1;0s

3
4 þ 3

�
cðx;yÞ2;0;0 � cðx;yÞ0;2;0

	
s24c4 � 4cðx;yÞ1;1;0s4 � cðx;yÞ2;0;0c4

	
v2Tsy
vv2s

���
vs¼0

¼
�
2
�
cðx;yÞ0;3;5 � 2cðx;yÞ2;1;5

	
s4c4 þ

�
5cðx;yÞ1;2;5 � cðx;yÞ3;0;5

	
c24 � 3cðx;yÞ1;2;5

	
u

v2Tsy
vu2

s

���
us¼0

¼
�
3
�
cðx;yÞ0;2;0 � cðx;yÞ2;0;0

	
s4c24 þ 6cðx;yÞ1;1;0c

3
4 � cðx;yÞ0;2;0s4 � 4cðx;yÞ1;1;0c4

	
v2Ms

vv2s

���
vs¼0

¼ �
�
2cðx;yÞ1;1;3s4c4 �

�
cðx;yÞ0;2;3 � cðx;yÞ2;0;3

	
c24 þ cðx;yÞ0;2;3

	
1

usjusj;

v2Ms

vu2
s

���
us ¼0

¼ 3
��

3cðx;yÞ1;2;0 � cðx;yÞ3;0;0

	
s4c24 þ

�
3cðx;yÞ2;1;0 � cðx;yÞ0;3;0

	
c34 � cðx;yÞ1;2;0s4
5. Concluding remarks

The work aims at developing the approximate models of
coupled friction and rolling resistance in the case of elliptic contact.
The resulting model is sufficient for fast numerical simulations of
rigid bodies with frictional contacts, since it allows to avoid using
numerical methods basing on space discretization.

The rolling friction model is built as a resistance against
movement of the deformed zone (contour friction) which is related
to the fact that stresses for growing strains are greater than stresses
for the same but diminishing strains (elastic hysteresis phenome-
non). In the elaborated rolling resistance model some simplifica-
tions were assumed. In the general case, rotational motion of the
deformation zone (not taken into account) can also have some in-
fluence on the contact stress distribution and rolling resistance.

The corresponding approximatemodels can easily be developed
for other shapes of the contact area and normal stress distribution,
since in Sect. 2 some expressions being the base of approximation
are given for the general case of contact.
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Appendix A. Some properties of the integral model of friction

In Sect. 2, the values of the exact integral model of friction (8),
for vs ¼ 0 (assuming us s 0) and for us ¼ 0 (assuming vs s 0), are
given. It is also possible to derive further properties of the model,
i.e. the corresponding higher order partial derivatives of the func-
tions (8). For example, the partial derivatives of the first order have
the following form

vTsx
vvs

����
vs¼0

¼
�
cðx;yÞ1;1;3s4 þ cðx;yÞ2;0;3c4

	 1
jusj;

Tsx
vus

����
us¼0

¼ �
�
cðx;yÞ0;1;0s

2
4 þ cðx;yÞ1;0;0s4c4

	 1
jvsj;

vTsy
vvs

����
vs¼0

¼
�
cðx;yÞ0;2;3s4 þ cðx;yÞ1;1;3c4

	 1
jusj;

vTsy
vus

����
us¼0

¼
�
cðx;yÞ0;1;0s4c4 þ cðx;yÞ1;0;0c

2
4

	 1
jvsj;

vMs

vvs

����
vs¼0

¼ 0;

vMs

vus

����
us¼0

¼
��

cðx;yÞ0;2;0 � cðx;yÞ2;0;0

	
s24 þ 2cðx;yÞ1;1;0s4c4 þ cðx;yÞ2;0;0

	 1
jvsj ;

(59)

and partial derivatives of the second order read
1
sjusj;

1
vsjvsj;

1
s jusj;

1
vs jvsj;

þ
�
cðx;yÞ0;3;0 � 2cðx;yÞ2;1;0

	
c4
	

1
vsjvsj

(60)
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while the derivatives of the third order equal
v3Tsx
vv3s

��
vs¼0 ¼ 3 11c x;yð Þ

3;1;7 � 9c x;yð Þ
1;3;7

� 	
s3f þ 3c x;yð Þ

4;0;7 � 15c x;yð Þ
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0;4;7

� 	
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� 	
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2;2;7 � c x;yð Þ
4;0;7

� 	
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� 	
1

u2
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1
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�
þ4c x;yð Þ
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1
v2s
��vs�� (61)
where s4, c4 and cðz;hÞi;j;k are defined by Eqs. (12) and (13).
Table 1 (continued )

Notation
of the
integral
according
to (13)

The full form of
integral in the Axy
coordinate system

Value of the
integral

Limit
lim
b/1

cðx;yÞi;j;k

Limit
lim
b/0

cðx;yÞi;j;k

cðx;yÞ0;1;1

RR
F

ysðx;yÞffiffiffiffiffiffiffiffiffiffi
x2þy2

p dxdy 4bG(e)I2ds pI2ds 0

cðx;yÞ1;0;1

RR
F

xsðx;yÞffiffiffiffiffiffiffiffiffiffi
x2þy2

p dxdy 4H(e)I2dc pI2dc 4I2dc

cðx;yÞ2;0;3

RR
F

x2sðx;yÞ
ðx2þy2Þ3=2dxdy 4G(e)I0 pI0 N

cðx;yÞ2;0;0

RR
F
x2sðx; yÞdxdy pI3 pI3 pI3

cðx;yÞ0;2;0

RR
F
y2sðx; yÞdxdy pb2I3 pI3 0

cðx;yÞ0;0;�1

RR
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
sðx; yÞdxdy 4E(e)I2 2pI2 4I2

cðx;yÞ0;2;3

RR
F

y2sðx;yÞ
ðx2þy2Þ3=2dxdy 4H(e)I0 pI0 4I0
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F

xysðx;yÞ
ðx2þy2Þ3=2dxdy 0 0 0

cðx;yÞ1;1;0
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F
xysðx; yÞdxdy 0 0 0

cðx;yÞ1;2;0

RR
F
xy2sðx; yÞdxdy p

4b
2I5dc p

4 I5dc 0

cðx;yÞ2;1;0

RR
F
x2ysðx; yÞdxdy p

4 bI5ds
p
4 I5ds 0

cðx;yÞ3;0;0

RR
F
x3sðx; yÞdxdy 3p

4 I5dc 3p
4 I5dc 3p

4 I5dc

cðx;yÞ0;3;0
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F
y3sðx; yÞdxdy 3p

4 b
3I5ds 3p

4 I5ds 0
Appendix B. The characteristic integrals of the friction model
for elliptic contact area

Table 1 shows the setting-up of values of the most important
integrals cðx;yÞi;j;k occurring in expressions (11) and (59)e(61), with the
assumption of a normal stress distribution model defined by Eq.
(16). In order to shorten the notation, the following functions have
been introduced

GðeÞ ¼ ðKðeÞ�EðeÞÞe�2; HðeÞ ¼
�
EðeÞþ

�
e2�1

	
KðeÞ

	
e�2; (62)

where K(e) and E(e) are the complete elliptic integrals of the first
and second kind, respectively

KðeÞ ¼
Zp=2
0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e2sin2f

q ; EðeÞ ¼
Zp=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e2sin2 f

q
df (63)

and where e stands for eccentricity of the contact area ð0 �
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
< 1Þ.

Beside the values of integrals cðx;yÞi;j;k for the general case of elliptic

contact, Table 1 contains also limits of the integrals for b/1 (circular
contact) and for b/0 (line contact as a degenerated elliptic one). In

the second case one can see that some of the integrals (e.g. cðx;yÞ2;0;3)

tend to infinity and make impossible to use certain approximate
models based on derivatives (11) and (59)e(61). One can use the
approximations omitting certain properties of the integral model
(these approximations may occur improper) or use approximate
models for elliptic contact of b parameter very close to zero.
Table 1
Setting-up of part of integrals occurring in expressions (11) and (59)e(61) for stress
s(x,y) distribution model according to (16).

Notation
of the
integral
according
to (13)

The full form of
integral in the Axy
coordinate system

Value of the
integral

Limit
lim
b/1

cðx;yÞi;j;k

Limit
lim
b/0

cðx;yÞi;j;k

cðx;yÞ1;0;0

RR
F
xsðx; yÞdxdy pI3dc pI3dc pI3dc

cðx;yÞ0;1;0

RR
F
ysðx; yÞdxdy pbI3ds pI3ds 0
Appendix C. Approximation of the elliptic integrals

For numerical approximation of functions K(e) and E(e) for 0 �
e < 1 one can use the following series (Milne-Thomson, 1972;
Whittaker and Watson, 2002; Kosenko and Aleksandrov, 2009)

Knq;nK ¼ p
2

 
1þ 2

PnK

n¼1
qn

2

nq

!2

;

Enq;nK ;nE ¼ 2�e2
3 Knq;nK þ p2

Knq ;nK

 
1
12

� 2
XnE

n¼1

q2nnq�
1� q2nnq

	2
1A;

where qnq ¼ Pnq

n¼1
an 34ðn�1Þþ1;

(64)

and where an is the n-th element of the series 1, 2, 15, 150, 1707, .,
whereas the 3ðeÞ function is defined as follows

3¼ 1
2
$
1� �1� e2

�1=4
1þ �1� e2

�1=4 : (65)



Fig. 13. Errors of approximations ((64) and (65)) of elliptic integrals K(e) and E(e)
(where b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
), for the following parameters: a) nq ¼ 1, nK ¼ 1 (1); nq ¼ 2, nK ¼ 2

(2); nq ¼ 5, nK ¼ 4 (3); b) nq ¼ 1, nK ¼ 1, nE ¼ 1 (1); nq ¼ 2, nK ¼ 2, nE ¼ 2 (2); nq ¼ 5,
nK ¼ 4, nE ¼ 8 (3).
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For nq;nK ;nE/Nwehave Knq ;nK ðeÞ/KðeÞ and Enq ;nK ;nE ðeÞ/EðeÞ.
Fig. 13 presents errors of approximations of functions K and E as the

functions of b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
argument for different values of param-

eters nq, nK and nE. It comes out that for sufficiently large parameter
b and taking into account uncertainties related to the real contact
pressure distribution as well as inaccuracies of the approximate
models presented in the next subsection, approximation ((64) and
(65)) can be sufficient even for nq ¼ 1, nK ¼ 1 and nE ¼ 1 (but it
depends on the kind of application of the corresponding
approximation).
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