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There are many examples of mechanical systems with non-point friction contacts (billiard ball,
Thompson top, wobblestone, electric polishing machine, the wobblestone, the Celtic stone), where the
assumption of one-dimensional dry friction model do not necessarily lead to satisfactory accuracy of the
numerical simulation. Moreover the rolling resistance often plays an important role in such systems. The
paper is devoted to the problem of developing an approximate coupled model of resulting dry friction
force and moment as well as rolling resistance, suitable for fast numerical simulation of rigid bodies with
friction contacts, i.e. allowing to avoid the space discretization. An integral model of dry friction com-
ponents is built under assumption of classical Coulomb friction law and fully developed sliding on the
contact area of general shape and arbitrary contact pressure distribution. Then the special model of stress
distribution over the elliptic contact area is developed, being a kind of generalization of Hertzian normal
stress distribution, with addition of special distortion related to the rolling resistance. Finally some
original approximate models of friction force and moment are proposed, based on Padé approximants
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and their generalizations as well as in the form of piecewise polynomial functions.
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1. Introduction

If the contact between two bodies is very small (the point
contact), the sliding friction force opposes the sliding relative ve-
locity and can be successfully modelled by the use of classical one-
dimensional Coulomb friction law. In this case the friction torque
(drilling friction) and its influence on sliding friction force can be
neglected (since the contact point cannot transmit a torque). But
there are many cases of dynamical behaviour of mechanical sys-
tems (billiard ball, Thompson top, wobblestone, electric polishing
machine) which cannot be mathematically modelled (in order to
obtain correct numerical simulation) or explained by the use of the
assumption of one-dimensional dry friction model. One can find in
the literature some attempts to develop approximate models of
friction forces for finite contact area, which would be suitable for
fast numerical simulation of rigid bodies, i.e. allowing to avoid the
space discretization around the contact area.

Contensou (1962) noticed that relative normal angular velocity
(spin) is important for the dynamics of some mechanical systems
where the contact between two bodies or spin is relatively large.
Assuming fully developed sliding and Coulomb friction law valid on
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some circular contact area, he presented friction force as a function
of two variables: relative sliding velocity of the centre of the contact
between two interacting bodies and relative normal angular ve-
locity. He presented the results in integral and numerical forms for
the contact stress distribution according to Hertz theory. Then the
results of Contensou were essentially developed by Zhuravlev (1998,
2003) by giving exact analytical expressions for friction force and
torque as well as corresponding linear Padé approximations
more convenient to use in practical problems of modelling and
simulation. We will refer to the coupled model of friction force and
torque as Coulomb—Contensou friction model. This direction of
research led subsequently to the second-order Padé approximants
(Kireenkov, 2008), more accurate and suitable for qualitative anal-
ysis. Using the same methodology, the problem of friction modelling
in the case of axial symmetry of the contact stress distribution over
the contact area is approached (Kireenkov, 2005) (the elliptic con-
tact patch with Hertzian stress distribution is such a case). The in-
tegral forms of coefficients of the corresponding Padé approximants
were given, however, without any concrete, even numerical
example. A three-dimensional friction model for circular areas but
with the coupling between friction and rolling resistance, where
rolling resistance is a result of distortion of contact stress distribu-
tion is developed in the work (Kireenkov, 2008). It can be noticed
that the proposed model of rolling resistance is compatible and
logically coherent with the mechanism of rolling friction caused by
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elastic hysteresis losses (the main component of rolling resistance in
many real systems) (Greenwood et al., 1961; Johnson, 1985).

There exist other approaches to the above described problem. In
the work (Leine and Glocker, 2003) the coupled friction model for
circular contact area with fully developed sliding and central sym-
metry of contact stress distribution (without rolling resistance) was
approximated by the use of Taylor expansion of the velocity pseudo
potential and then used in the Thompson top modelling and simu-
lation. The piecewise linear approximation of the three-dimensional
friction model for elliptic contact area and the Hertz stress distri-
bution (without rolling resistance) was presented in paper (Kosenko
and Aleksandrov, 2009) which showed that the proposed model was
more accurate than the linear Padé approximants.

As mentioned above, there were some approaches to model roll-
ing resistance along with the friction modelling. However, a question
of the nature of rolling friction arises. Classically, it is understood as a
resistance against relative angular velocity of the contacting bodies
tangential to the plane of contact. But this model often leads to
cumbersome and questionable results. Some authors use the concept
of contour friction as resistance against the movement of contact
point along the body (Leine, 2009; Leine et al., 2005; Leine and Van De
Wouw, 2008). These two models give the same results in some special
cases (for example when there is no slip between contacting bodies),
but in general they differ essentially. However, the proposed models
of contour friction do not take into account the shape of the contact
patch. Moreover, coupling with the contact stress distribution and
components of the dry friction model is also neglected.

In the present work, based on some extensions of Padé approx-
imants, we propose an approximate coupled model of dry friction
components (spatial force and torque) and rolling resistance for the
contact with fully developed sliding and Coulomb friction law
assumed. The paper is organized as follows. In Sect. 2 the integral
model of friction force and torque for general shape of plane contact
is introduced and some expressions useful in developing of different
approximate models are given. Sect. 3 limits the considerations to
the elliptic shape of contact, where the model of normal stress
distribution and integrals from expressions is given. The solutions to
certain integrals occurring in the general integral model of friction
are given. In Sect. 4 we develop and present approximate friction
models. Sect. 5 gives some final remarks.

2. Integral model of sliding friction force and torque for
general shape of plane contact

Let us consider two bodies 1 and 2 (Fig. 1) in contact on a certain
area F of general shape. In what follows, we assume the following
properties of the contact:

1. The contact F is locally plane.

2. On every element dF of the contact F, the classic Coulomb
friction laws are valid, and the friction coefficient does not
depend on local relative velocity.

. The friction coefficient is constant on whole contact area F.

. The sliding on the contact area F is fully developed.

. The strains of the bodies do not influent on local relative ve-
locities in the contact plane.

[S) I SN OV

The assumptions 1, 4 and 5 mean that the relative motion of the
bodies in the contact plane can be treated as locally plane motion of
rigid body.

Although the bodies in their global dynamics can be assumed as
rigid (i.e. the deformations are negligible) and the contact between
them can be non-conforming, the shape and size of small contact
area F can play a considerable role in the friction model. Point A is
the nominal point of contact. In the case of non-conforming con-
tact, this is a point at which two bodies touch, brought into contact
by negligibly small force. In the case of conforming (but plane)
contact this is a certain arbitrarily chosen point in the contact plane.
We introduce the coordinate system Axyz, where axes x and y lie in
the contact plane and z axis coincides with the common normal to
the two surfaces at A. The directions of axes x and y are chosen for
convenience to coincide with certain characteristic directions of the
body or contact area profiles.

The motion of body 1 (taken as a rigid body) is defined by the
linear velocity v; of point A (the body-fixed point instantly coin-
ciding with the point of contact A) and angular velocity w. Likewise,
we define the motion of body 2 by velocities v (the velocity of point
A>) and w;. We can now define sliding (Johnson, 1985) as the relative
linear velocity between the two bodies at point A and denote it by vg

Vs = Vy — V. (1)

The component of v along the axis z is equal to zero (vs;, = 0)
since we assume here the continuous contact, i.e. the surfaces of the
bodies are neither separating nor overlapping.

Similarly, we define the relative angular velocity between the
two bodies and denote it by Aw

Aw = vy — ;. (2)

The above vector can be decomposed into two perpendicular
components in the following way

Aw = Awyex + Awyey + Awe; = wr + Wy, 3)

W = W€+ ey W5 = 05€;

Fig. 1. Two bodies in contact: contact forces and relative velocities (a) and general case of plane contact area (b).
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where ey, e, and e; are the unit vectors of the corresponding axes,
while w, and ws are the angular velocities of rolling and spin motion,
respectively (Johnson, 1985). Now, any relative motion of contact-
ing surfaces can be regarded as a combination of sliding, rolling and
spin (see vectors Vs, w; and ws, respectively exhibited in Fig. 1a).

Fig. 1a shows also forces and torques acting on body 2 at point A.
Resultant force R transmitted from one surface to another through
the point of contact is decomposed into normal force N and
tangential force Ts sustained by friction. Likewise, the resultant
torque transmitted by the contact is decomposed into rolling
resistance M, (lying in the tangent plane) and spin moment M;
(along the common normal to the two surfaces at A) arising from
friction within the contact area.

Very often, rolling velocity w, is used as a basic kinematic
quantity in the process of modelling of rolling resistance M, un-
derstood in a classical way, i.e. as resistance against rolling angular
velocity. However, this approach is sometimes replaced by the
concept of contour friction as certain resistance opposing the con-
tour velocity understood as the relative motion of contact point A
with respect to the body (cf. Leine, 2009; Leine et al., 2005; Leine
and Van De Wouw, 2008 and Sect. 3.1). Each body has its own
contour velocity for which the contour friction can be defined.
Assuming that the frame of reference Axyz moves at linear velocity
v, of its origin and rotates at angular velocity w4, we can now define
(for the further purposes of the work) contour velocities vy and vy
(for body 1 and 2, respectively) in the following way
Vi1 =Va—Vi, Vi =Va—Vy. (4)

In order to develop a dimensionless model of friction for the
contact area presented in Fig. 1b, we now assume that all quantities
defined above refer to the dimensionless length related to some
characteristic real dimension a of the contact area, therefore
dimensionless coordinates of the element dF (point P) position are
x = X/d and y = y/d, where X and y are the corresponding real
coordmates whereas dimensionless element of the area equals
dF = dF/a where dF is the real element. A consequence of
dimensionless length is the relation vs = V/(aa), where Vs is the
real sliding velocity of point A and « is the additional parameter
defining the used time t = «f, where t is the real time. Then, spin
velocity reads ws = ®s/a, where s is the real spin velocity of the
contact. In addition, coordinate system Atv lying in the contact
plane is introduced, where t axis has the direction of velocity v
specified by angle ¢;.

Assuming that the classical Coulomb friction law is valid on each
element dF at relative velocity vp = Vp/(ad) (Where Vp is its real
counterpart), we obtain the following dimensionless form of the
infinitesimal sliding (dry) friction force dTs = dTs/(uN) (where
dT; is the corresponding real force, N is the normal component of
resultant real force of interaction between bodies and u is the dry
friction coefficient), acting on the body lying above area F, and the
corresponding dimensionless infinitesimal moment of friction
force dM; = dM; / (auﬁ ) (where dM; is its real counterpart) with
respect to pole A

dTs = —o(x,y) pdF, 5)
dM; = p x dTs.

In Eq (5), the dimensionless normal stress distribution a(x,y) =

a(x,y)a /N has been introduced (where a(x,y) is the real stress

distribution), whereas p = p/a = AP is the dimensionless vector
coupling pole A with element dF (where p is its real counterpart).
One can find easily that the non-dimensional relation is equivalent
to the dimensional differential form of the Coulomb friction law for

element dF : dTs = —ud(x,y)dFVp/|Vp| and dM; = p x dTs.
Note, that relations (5) and all further formulae and models pre-
sented in this section do not depend on parameter a.

The resultant dimensionless friction force and dimensionless
friction torque are as follows

= ffox.y) Tws1dF:

(6)
= —j;fa(x,y) F\)I\XI:YITdF'

Taking into consideration that vp = vi + ws x p (where
Ws X P = Vpja, Vs = vsCOS ¢s€x + vsSin gs€y, w5 = wse, and
p = xey + ye,) we obtain the following relations

Vp = Upx€x +Upy€y = (UsCOS @5 — WsY)€x + (UsSIN @5 + wsX) ey,

P xVp = (Xvpy —Yupy)€; = (ws (X% +¥?) +UsXSin g5 — vsyCOS @5 ) €.
(7)

By the use of vy and ws we have denoted the projections of
vectors Vs and ws onto axes 7 and z correspondingly, i.e. vg = vg;
and ws = wg. Since the direction of axis 7 is determined by the angle
0 < ¢,<2m, without loss of generality, one can assume that
vs = ||vs]] > 0. On the other hand, assuming generalization of vy,
taking any real value can be convenient in some cases. Then angle
o5, defining the direction of the 7 axis, can be limited to the half of
full rotation (e.g. 0 < ¢ < T).

From Eq. (6) and taking into account (7), we get the following
integral form of dry friction model in the Axyz coordinate system

Tox(vs, s, 05) = [[0(X,y) - w;—wsy- sdxdy,
F \/(vscos @s—WsY) +(vsSiN g +0sX)
Tsy (vs, Ws, a(x v,sin s dxdy,
{5:05,95) ff el V/ (15€08 95y +(usSin pg+wsx)? Y (8)

s (X2+y?)+usXsin o, —vsycos g, dxcly
\/ (15€0S @y —)5y)*+(sSin g+wsX)* ’

M (vs, ws, @5) = fl[a(xvy)

where the signs were changed in order to simplify the notation. It
means that the friction force and torque are Ts = —Tsvex — Tsyey and
M; = —M;e,, respectively.

Assuming the following relations

vs = AsCOS fs, ws = Assinfs, where As = y/v2 + w? 9)

(geometrical interpretation of ¢5 and —7/2 < s < /2 variables is
presented in Fig. 2), one can reduce the number of arguments of the
functions (8), obtaining the following form of the model

r \ 0 cos o, —ysin 0]
Tsx(os,05) = 7(xy)[cos 0 Cos o, —ysin b dxdy
(95,05) jg \/(cos 05 coSs ps—ysin )%+ (cos f sin p,-+xsin 6;)* ’
\ 0s sin g +xsin 6]
Ts (ﬂ 03 a(X.y)[cos s sin ¢ s dxdy
Vi ff \/ (cos b; cos p,—ysin fy)*+(cos b sin ¢,+xsin ;) ’
sin s (x%+y? ) +xcos s sin ¢, —ycos b cos ¢
My (g, 05) = [[7(x.y) — et iacos e sos yeoslcose_ gy,
F \/(cos 0 cos s —ysin ;)" +(cos Ogsin pg+xsin by)
(10)

The exact integral forms ((8) and (10)) of the friction model are
inconvenient to use directly in mathematical modelling and nu-
merical simulations for most typical special cases of shape of the
contact area and normal stress distribution. One of the difficulties is
time consuming numerical integration over contact area F during
the simulation process. An additional difficulty in numerical inte-
gration process is the existence of singularities of the functions ((8)
and (10)) in the instant rotation centre. On the other hand, for some
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X

Fig. 2. Geometrical interpretation of ¢; and 6 variables.

cases, e.g. for circular contact region, it is possible to find an
analytical solution to Eq. (8) (Kireenkov, 2005; Leine and Glocker,
2003; Zhuravlev, 1998). But the mathematical model obtained in
this way is relatively complex and inconvenient in direct use. The
solution to the problem can be some kind of approximation of the
exact integral model.

On this level of generality one can find some universal relations
for the plane region of contact, concerning values and partial de-
rivatives of functions (8) for v = 0 (assuming ws = 0) and for ws =0
(assuming vs # 0), which can be useful in developing some kinds of
approximating models. The corresponding values of functions (8)
are as follows

) _ (xy) v,
1,1 o) TSX'(:)S:O - C070,0C(ﬂ‘y_§|7

(x.y) s
0e=0 = €0.0.05¢7] (11)

[vs|”

_ &y
TSJ/}US:O =Co1op Ty

_ xy) o _ (xy) (x.y) v
Msl,,—0 = €0 170 Mslu,—0 = (€1,0,050 — C0.1.0%% ) o>

where for brevity the following notation has been used

Sp = sings, €, = COS ¢s, (12)
¢ i j(¢2 -5
&P = [[ew(@ ) Tocmdzan, (13)
F
and where
Coob = // a(C,mdidn = 1, (14)

(because of the non-dimensional form of the normal stress distri-
bution ¢(x,y)) and where ({,n) are the coordinates of an arbitrary

rectangular coordinate system in the plane of the contact zone F.
The analogous expressions for the first and second order partial
derivatives of the functions (8) are given in Appendix A.

One can notice that the corresponding values and derivatives of
functions (8) for v = 0 (assuming ws = 0) and for ws = 0 (assuming
vs # 0) for an arbitrary normal stress distribution depend only on
integrals (13) which can be found for many special cases of contact
area shape and normal stress distribution. Moreover, in the case of
invariant contact pressure distribution, the integrals cgj:,’z) are the
constant parameters, and they can be identified from the
experiment.

3. A coupled model of sliding and rolling friction for elliptic
contact shape

3.1. A model of normal stress distribution coupled with rolling
friction

We start from an assumption of certain non-dimensional
normal stress a(o’) distribution over the non-dimensional circu-
lar zone F’(jF’f o,dF’ = 1) presented in Fig. 3a, depending only on

distance o = \/x2 + y2 from centre A of the area F, where x and y’
are the coordinates of a point of contact zone in the Cartesian co-
ordinate system Ax'y. Each quantity corresponding to the area F
and being the counterpart of a quantity X corresponding to the area
F exhibited by Fig. 1, is denoted by X'.

Then, in order to generate the rolling resistance torque M;, we
assume that initial stress distribution oj(p") undergoes distortion
along the axis 1, of the rectangular coordinate system Atjv; and gets
the following form

7.y = oy (X2 y2) 1 +dideos v +ysiny)). (15)

where v is the angle describing direction of the axis 7, while0 < d
< 1 (the upper limit results from the condition of non-negative
normal stress values) is a certain non-dimensional rolling resis-
tance coefficient related to the magnitude of the contact zone. In
the above expression, x'cos ¥’ +y’siny’ is the distance of point
(x.y) from the axis vr.. The pressure distribution o(xy) has the
centre at point §' lying on the axis 7, and generate the non-
dimensional rolling resistance torque M., of magnitude M, = AS =

o (x.,y)dF / [ (X,y)dF = md [y o, (p)p3dp (the resultant
F F

normal reaction is equal to one).

Model (15) corresponds to the proposition of Kireenkov (2008)
based on the work of Svedenius (2003), concerning modelling of
the rolling resistance of motor-car wheels. However, they define
direction 7} in such a way that the rolling resistance torque M,

Fig. 3. Elliptic contact area between two bodies with the coordinate systems.
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opposes angular velocity o/ of the rolling, i.e. M, = —M.,w}/||w.]],
therefore they represent a rather classical approach to the rolling
friction. However, this way of understanding of the rolling resis-
tance can lead in certain cases to cumbersome and questionable
results (Leine, 2009; Leine et al., 2005; Leine and Van De Wouw,
2008). If we, for example, consider the case of two bodies moving
over each other with no relative angular velocity, contact point A
still moves over the surfaces of both bodies. The classical approach
to the rolling resistance results in no dissipation in this case, which
is not true. Therefore, a certain group of researchers (Leine, 2009;
Leine et al., 2005; Leine and Van De Wouw, 2008) replace the
classical rolling friction model by the concept of contour friction as
aresistance against relative movement of the contact point over the
body surface. This movement can be different for each body (and
the contour friction can also be different) and is defined by contour
velocities v, and v;,. The classical rolling resistance and contour
friction models lead to the same results in certain special cases (e.g.
in rolling without sliding or in the case of rolling of a deformable
body over the rigid plane), but in general they differ essentially one
from the other. However, the proposed model of contour friction
does not take into account the shape of the contact region and
coupling between rolling resistance and components of the friction
model (by a proper model of normal stress distribution over the
contact area).

Going back to model (15) and Fig. 3a, we will rather use the
concept closely related to the contour friction. It means that the
axis 7, corresponds to the direction of the velocity of relative mo-
tion (contour velocity) of point A over the body. Let us assume now,
temporarily, that only one such direction exists, i.e. directions of v,
and v/, coincide (the case of rolling without sliding) or only one of
them is significant (the case when, for example, only one of the
bodies undergoes deformation at the contact region). Now, the
distortion in normal stress distribution (15) along the direction 7;
can be explained, to a certain extent, by the dissipation processes
proceeding in the deformed material. Assuming function o (p’) to
be decreasing, we can note that on the leading half of the contact
(dotted region in Fig. 3a), where the nominal normal stress oy, in-
creases in time (we can say that the strain energy of material ele-
ments increases due to the work of compression done by the
contact pressure), the actual normal stress ¢ is greater than a5-0On
the rest of the contact region, where the nommal normal stress oy,
decreases in time, the actual normal stress ¢ is smaller than ¢}, and
we can talk of the process of unloading.

For the constant value of parameter d, the rolling resistance
torque M, does not depend on the contour velocity and its
dlmensmnal counterpart M = aNM’ is proportional to the
dimensional radius of contact @ and dlmensional normal load N.
The last effect is consistent with the results obtained assuming the
hypothesis of the so-called elastic hysteresis (Greenwood et al.,
1961; Johnson, 1985; Tabor, 1955), i.e. the simplified theory of
dissipation processes proceeding in the deformed material within
the so-called elastic limit. In this theory the energy loss is expressed
as a certain fraction « of the maximum elastic strain energy stored
in the body during the cycle of loading and unloading. Then
assuming rolling with the frictionless Hertz contacts of line (e.g. a
cylinder rolling over the plane) or elliptic (or circular) shape they
calculate the strain energy from the work done by the contact
pressure on the leading part of the contact. It results in a simple
rolling theory where resistance torque is proportional to normal
load and contact size in the direction of the deformation region
motion. These results are then confirmed experimentally quite
well, especially for materials such as rubber. The other mechanisms
of rolling resistance, such as micro-slips and roughness of the
surfaces usually play a much less important role (Johnson, 1985). A
bit greater errors of the assumed model of rolling resistance can

arise from a different than assumed mechanism of energy dissi-
pation during inelastic deformation of the material.

Now, we will try to extend the model of distorted distribution
of normal stress (15) on circular area to the corresponding model
on elliptic zone. We do it by the contraction of area F (see Fig. 3)
along y’ axis. We obtain elliptic area F shown in Fig. 3b, where the
position of each point is determined by the use of coordinates x
and y of rectangular coordinate system Axy. The relations between
coordinates of each point of the contact area before (x’, y') and
after contraction (x, y) are x = X and y = by, respectively. The
dimensionless quantities used in Fig. 3 are a = d/d = 1 and
0<b = b/a < 1, where @ is the real characteristic dimension of
the contact zone (in this case it is the real length of the major
semi-axis of the elliptic contact).

The dimensionless normal stress distribution o(x,y) =
b=1d’(x,b~1y) over the area F([[ ¢dF = [[oodF = 1) equals

F F

7(x,y) = 0o(x,y)(1+dxcos ¥’ +db~Tysin y'),
where (x,y) = b1y (VA2 +b22).

Together with the contraction of the contact area, the direction of
contour velocity changes from 7 to 7. Thanks to it (assuming func-
tion o, (p’) to be decreasing) the dotted region in Fig. 3b, where the
actual stress ¢ is greater than the nominal one gy, is also the leading
part of the contact, i.e. nominal stress oy is increasing in time (the
process of loading takes place). Note however, that we do not take
into account the relative rotation of the deformed region (angular
contour velocity) and its influence on the normal stress distribution
and rolling resistance. The relation between angles vy and v reads

(16)

cosy b-1lsiny

cosy = siny’ = .
\/cos2 ¥ +b-2sin® y
(17)

On the other hand, the movement direction of deformation zone
F is different for each body (with the exception of the case of rolling
without sliding, or when only one of the bodies undergoes defor-
mation at contact region), so there are two different contour ve-
locities v;1 and vz (and also v/, and v,,) with two different
coefficients d; and dy. We can assume a model in which total
distortion of the normal stress distribution is the sum of distortions
related to contour resistances on each body separately

\/cos2 ¥ +b-2sin® y

a(x,y) = oo(x,y)| 1+ (dycos v} + dycos v5) x

d. =dcos v

+ b7 (dysin v} + dysinyh) y

ds =dsin vy’

where d and v’ are the corresponding parameters of the resultant
resistance. One can note that Eq. (16) is still valid and the resultant
resistance can be understood as geometric sum d = d; + dy, where
d; = dyv,,/|v,;|l and dy = dyV},/||V},|| and where vector d has
magnitude d (see Fig. 3¢). In order to simplify the notation, we have
omitted the prime sign (...)" in relation to vectors d, d; and d.
Quantities v} and v/ occurring in Eq. (18) denote the angles be-
tween the x’ axis and the directions of velocities v,; and v/, (or
vectors d; and d;), respectively. The condition of non-negative
values of normal stresses now gets the form d; +d, < 1, where
di1 > 0 and d; > 0 (resistance should dissipate energy).
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In practice, it is convenient to determine components d. and d;
of expression (18) in the following way

dc = dycos v} + dycos 74,

i+ dosina (19)
s = apsSinvyq +dpsiny,,
where
. b vy
cosy) = —=2—n0, siny] = —(—2—
1 v$1x+b 2”31)/7 1 V?]x+b 2vﬁy’
(20)
cos ,\{/2 — Vpox sin ,)//2 _ b~y

/12 2,2 2 2,2
r2x+b l/rZy 1/rzx_*»b r2y
/

and where vyix = Vg, vy = bl/rly,, Vrax = Vg and vy, = bvrzy,
are the components of the contour velocities v;; = vyix€x + vr1y€y

and vy, = vyc€x + vrpy€y in the coordinate system Axy, where v/.,,,

/ / o

Vqyn Vigy and v, are the components of the corresponding ve-
11 4 — / ! — J/ 1

locities vi; = v, @ + v}y ,@y and Vi, = vj, ey + 1), ey in the

coordinate system Axy. Since the corresponding real velocities
V,1 = aav,; and V,, = adv,, have the same directions as non-
dimensional ones, non-dimensional components in Eq. (20) can
be replaced by real ones.

In the process of integration of the functions of type f{x,y)o(x,y)
over the elliptic contact area F, it is convenient to use polar coor-
dinate system (r,¢), where x = X = p'cose and y = by’ =
bp’sin ¢. Then, we obtain

fg’ f(x,y)o(x,y)dxdy = fFf f(x',by)d' (x',y")dx'dy’
2t 1

= / /f(p/cos @, bp'sin ¢)ag(p')(1 + dcos y'p'cos ¢
00

-+dsin y'p’sin ¢)p'dp'de

2t 1
://ﬂMm%wmw%wm+WmW—wwww.

00

(21)

Position S of the centre of normal stress distribution a(x,y) over
non-dimensional area F reads

[fo(x.y)ydF

Jfa(x,y)xdF
F F
j;'a(x,y)dF

Xs = Jfo(x,y)dF
F

= ml3dc, ys = = mhlzds, (22)

where I3 belongs to the following family of the parameters

1
= [ oonds (23)
0

It results from Eqs. (17) and (22) that xs/ys = tan v and point S
lies on the At,.

Let us introduce vector f = fiex +fye, = fe,, where f; = xs,
fy = ys and f =, /f? +f} = AS. Then we can obtain the non-
dimensional rolling resistance torque from equation M; = f x N,
where N = e, is the non-dimensional normal reaction, which takes
the following form

M; = ysex — Xsey. (24)
Real rolling friction torque reads M, = dNM;,, where d is the

real characteristic dimension of the contact and N is the real
resultant normal reaction. Real and dimensionless rolling friction

torques can also be expressed as M, = —fe, and M, = —fevr,
where f = aNf is the real rolling friction coefficient understood
classically as a shift of the point of application of normal reaction
force.

Let us note that rolling resistance defined by Eq. (24) with
consideration of formulae (22) and (19), with the assumption of
constant values of coefficients dq and d3, in the case of movement of
the deformation zone along one of the axes of contact
(v} = 75 = im/2, where ie C), is proportional to the length of that
axis. It is consistent with the earlier discussed experimental and
theoretical results based on the hypothesis of elastic hysteresis
(Greenwood et al., 1961; Johnson, 1985; Tabor, 1955).

On the other hand, we would like to extend the above model
and have a possibility to investigate orthotropic properties of roll-
ing resistance independently of parameter b describing the shape
of contact area. It would facilitate an investigation of certain
properties of coupled friction and rolling resistance model, e.g. the
investigation of a friction model with circular contact area but
rolling resistance different along two perpendicular directions. We
wish to develop but at the same time to maintain validity of all
above equations and properties of the pressure distribution and
rolling resistance model.

Vector f = xsey + yse, defining the position of centre S of normal
stress distribution, after consideration of Egs. (22) and (19), can be
expressed as the sum f = f; +f, = (fix +fon)ex+ (fiy + )€y
(see Fig. 4), where vectors fi = fixex + fiyey and fo = foxex + fo,ey
include the following components in the Axy coordinate system

f]x
f2x

and define the position of centre of the normal stress distribution
for d, = 0 (point S1) and d; = 0 (point S,) respectively. Let us note
that for constant values of dy and dy, points S; and S, move on
elliptic trajectories of eccentricities equal to the eccentricity of
contact area F. Moreover, these points lie on Aty and At axes of
directions defined by velocities v,y and vy, respectively
(fix/fry = vrix/vry and fox/foy = vix/vr2y), Which can be proved
easily by the use of Egs. (25) and (20).

Now, we would like to change the eccentricities of trajectories of
points S; and S,, however preserving the condition that these
points lie on At1 and At;, axes, respectively. One can do that by the
modelling of rolling resistance coefficients d; and d as functions of
v1 and 7 angles

nldicos vy, fiy =

Tl3d;cos vy, fay

mblzd;sin v/,
301 Y1 (25)

Tblzd,sin v,

dicos vy = dgicos vy, dysiny} = bydgsinyy, (26)

dycos v, = dgpcos vy,

dysin v, = bydgpsin Y,

Fig. 4. Geometric interpretation of rolling resistances’ superposition.
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where
. b-'b; vy
cos ,Y// — Vrix sin ,Y// — 1 Urly
1 vV U31x+b72b172’}31y’ 1 vV “31x+b72b172“31y’ 27
1 v, s Al b~1b; vy @7
cos vy, = 2% siny; = 2

/12 —2p-1,2 /12 —2p-1,2 7
l/r2)<+b bZ l/rZy 1]r2x+b bZ l/rZy

and where dgy, dp; = b1dg1, de2 and dp; = b,dg, are the constant
coefficients of rolling resistance for bodies 1 and 2, in directions x
and y, respectively. Parameters b1 and b, define the change of ec-
centricities of the trajectories of points S; and S, with respect to the
eccentricity of contact area F. The corresponding coordinates of
vectors f; and f;, read

fix = ®hdgicos vy, fiy = whlsbydg;sin vy,

f2x = 7T13da2COS ’Y/]/, fzy = 'TCbI3b2da25il'l ’Y/2/ (28)
and one can check, using Eqs. (28) and (27), that fix/fiy = vrix/vr1y
andeX/ny = Vr2x/”r2y-

As we have noted, all relations and elements of rolling resistance
and pressure distribution modelling presented in the current sub-
section remain valid. Rolling resistance torque is determined by
relations (24) and (22), where quantities d. and ds are defined by
formulae (19). It is convenient to use these equations when
by = by = 1, because it follows from Eqs. (20), (27) and (26) that
Yi =7y v5 =75 and the rolling resistance coefficients
di = dgq1 = dpy and dy = dg» = dpy are constant. In the opposite case,
when quantities d; and d, are variable, one should use Egs. (26) and
(19) to obtain

de = dcos y' = dg1€0s ¥ + dgpcos v, 29)
ds = dsiny’ = bidgsin y] + bydgysin vj,

where the functions of angles v/ and v} are defined by Eq. (27). The
condition of non-negative normal stresses takes the form dg; + dgo
< 1anddy; +dy, <1, whereds >0,dp; >0,dg > 0anddp, > 0.

Finally, let us note that rolling resistance for certain b < 1 and
b1 = by = 1, can be replaced by model with b = 1, but with
b1 = by < 1 having earlier value of b. That property enables inves-
tigation of the friction model with circular contact area but with
orthotropic rolling friction model.

Fig. 5a illustrates normal stress distribution a(x,y) over the
elliptic area (b = 0.5) resulting from distortion of Hertz distribution
ao(x,y) = 3/2mb\/1 —x2 — b=2y2 (for do(p) = 21— p’z) being
a result of coupling with rolling resistance (d = 1 and ¥/ = ©/4).
Fig. 5b exhibits sections of the stress distribution along direction of

relative movement of the contact point (along axis 7, defined by
angle vy, such, that cosy = cosy’/y/cos? vy +b2siny and
siny = bsiny’/+/cos? v’ + b2sin v’) for two different values of
coordinate v, = 0 and 0.5. The sections of the distorted stress dis-
tribution ¢(x,y) are compared to the corresponding sections of
stress distribution before deformation ao(x,y). The use of angle v’ in
expression (16) instead of angle v (which one could consider more
intuitive) would violate the rule stating that where during move-
ment of the deformation zone the relative nominal displacement of
the point grows (stress ag(x,y) grows), stress a(x,y) is greater than
stress ag(x,y). It is well seen in Fig. 5b, where plots of stresses a(x,y)
and oo(x,y) cross each other in the points of maximum stress go(x,y)
along corresponding section (because the direction of sections is
one of the relative resultant movement of the deformation zone).

3.2. Integral model of friction

For stress distribution over the elliptic contact area defined by
formulae (16), the parameters cl(".’%) (according to Eq. (13)) of the
exact integral model of friction, take the following form

2m 1
CS;%) _ b’/ /p/1+1+j—kafo <p/>
0 0

x cost ¢ sin ¢ dp'do,

1+ p'dcos(e — )
k/2
(cos2 @ + b2sin? (p) g (30)

expressed in the polar coordinate system (p’, ¢) (see Eq. (21)). The
integrals cl(;‘.f can be calculated analytically and some most
important examples are presented in Table 1 in Appendix B.
However full expressions for friction forces and moment are diffi-
cult to express in analytical form.

Fig. 6 shows the surfaces in space (T, Ty, M;), defined para-
metrically by functions (10) of the integral model of friction for
normal stress distribution before distortion determined by Hertz
theory (¢/g(p’) = 3/2m+\/1 — pr?), for different values of parameters
b and d. The exhibited surfaces correspond to sliding state of con-
tact and they are obtained by the use of numerical integration of
functions (10) for parameters ¢;e (0, 27) and ;e (0, 7). The dashed
lines connecting points of constant values of parameter ¢; meet
each other in two points. One of them marked in orange (in the web
version) is visible in the plots and corresponds to parameter
s = m/2. The second one (invisible) corresponds to parameter
fs = —m/2. Both points correspond to the non-zero positive (for
the first point) or negative (for the second point) value of ws with
vs = 0. The zones bounded by the surfaces and containing the origin
of the coordinate system correspond to the stick mode, when

Fig. 5. Distorted Hertz stress distribution o(x,y) over elliptic contact for parameters b = 0.5, d = 1 and ¥/ = ©/4 (a) and its sections along direction of relative movement of the
contact point compared to the corresponding stress distribution ao(x,y) before distortion (b).
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O,=—m/4

6,=const

0,=n/2

Fig. 6. Surfaces of integral friction model components (10) in space (Ts, Ty, M) for different eccentricities of elliptic contact and rolling resistance coefficient and with the
assumption of model (16) of normal stress distribution for op(r) = 3/2nvV1-r2:a)b=1,d=0;b)b=1;d=1,7 =0;c)b=03;d=0;d)b=03;d=1; 7y =0.

relative motion of the contact patch disappears (relative motion of
the bodies can still take place as a result of rolling) and components
of the friction model result from certain equilibrium conditions of
the interacting bodies.

Fig. 7 shows sections M; = 0, Tsx = 0 and Tsy, = O of the corre-
sponding surfaces exhibited by Fig. 6, where additionally the so-
lutions for two different rolling directions v’ = 0 and v’ = /2 are
plotted. One can observe, that for the lack of rolling resistance
(d = 0), the section in Mg = 0 plane has a circular shape indepen-
dently of the value of parameter b.

A numerical construction of the boundaries of areas shown in
Fig. 7 was performed by the use of parametric functions in the polar
coordinate system. For example, curves in the Ty,—M; coordinate
system are determined by functions Tsy(py) = 1yz(¢x)COS @5 and
Ms(px) = 1yz(@x)sin ¢y, where for each value ¢ye(0,2m), radius
ryz(¢x) is computed numerically from the set of equations

Tsx(‘l’s:es) =0,

Tsy(9s,0s) = Tyz(@x)COS @y, (31)
Ms(gs,0s) = Tyz(@x)sin gy,

where the left-hand side of the equations is determined by the

model (10). Assuming that ry;(¢,) > 0, the above system has always
only one solution with respect to variables ¢s, 6s and ry,.

Computation of the corresponding curves in other sections is per-
formed in an analogical way.

4. Approximations of the integral model of friction

Since the analytical solutions to exact integral model (8) are
difficult to find or do not exist, we will look for appropriate
approximate models. The simplest possible approximation of in-
tegral model is the one ignoring the coupling between friction force
and torque (that is assuming a point contact in relation to friction
force, but non-zero friction torque)

TO _ _ Vs © _ _ s (32)

L N

where superscript (0O) is used to denote a specific kind of approx-
imation. Although both dimensionless friction force T§O> and torque
Méo) are assumed to have magnitudes equal to 1 (for ||vs||+0 and
||lws||#0, respectively), their real counterparts are determined
independently by two parameters u and d (see Sect. 2). Since
Vs = 15COS g€y + UsSin pey, s = wsey, T§O) = —TS(,?)ex — TS(}?)ey and
M§°> = —Méo)ez, from (32) we obtain the following non-
dimensional model
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Fig. 7. Components of integral friction model (10) in sections Ms =0, Tx =0and Ty = 0:a)d = 0; b)d = 1, ¥’ = 0; ¢) d = 1, ¥’ = m/2. Normal stress distribution corresponds to model

(16) for ap(r) = 3/2mvV1 — 12

T = cosgs, Ty =sings, M = sgn(ws).

4.1. Padé approximations and their modifications

Let as try to assume the following general form of the ny order
Padé approximation to f component of the integral friction

model (8)

£ (v, 0, 05) =

ny 1=
i—0dfiVs  Ws

ny Tlf—i i7
Zi:obf,ivs Wg

i

where f = Tex, Tsy, Ms,

(34)

and where bro = 1, df; = ai(es,Sg0(vs),sgn(ws)),
bfi = by i(@s,sgn(vs),sgn(ws)) and where the dependence of the
components and coefficients on the normal stress distribution in

the Axy coordinate system is omitted for brevity. One can easily
check, that using relations (9), the above approximation can be
reduced to the function of variables ¢, and 6, similarly like the full
integral model (10). In fact, all Padé approximations developed in
works (Kireenkov, 2005, 2008; Zhuravlev, 1998, 2003) are special
cases of their general form (34).

Let us introduce the following alternative notation of approx-
imant (34)

ny n—i i

i—09riVs s

ng np—i i’
>oilobrivs Wl

for f = Ts, Tsy, M, (35)

f(Pn,1 ()72 (m,)) (vs, s, @5) =

meaning, that the coefficients of the above approximants fulfil the
following set of conditions
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aif(P"f)

i
—— = a—{ fori = 0,..,n'p,
vl - ol =0
ar () -
i =0 fori=n'sy+1,..,np,
S vs=0
’ (36)
aif<P”f> oif .
~ o = 300 fori = 0,...,n'p,
“s w0 ©s] -0
aif(Pnf) 0 fori=n',+1,...n
Y = = 2 s ee 1HF2
awls ws=0 ! !

and where f = Tsy, Tsy, Ms, 1y = (npy + npp + 1)/2, npy > gy and np,
> n}z.' In Fhe case of nyy = nj’q or np = n}z we omit the corre-
sponding index in the parenthesis.

For ny, = nr, = ny, = 1, from (34) we get the following Padé

approximations of first order

) _ Grovs +dr10s

[ = vs + by 105 where f = Tex, Tsy, Ms. (37)

Then making use of Egs. (11) and (59)—(61), we find the following

coefficients of the above approximants for nr = ng,; =
/ — / — — / — _ _ !/ —
Npq =MNpq=ny2 =My, =1 and npo =npy =ng, =

/ _ ol _ .
np o = My = Ny g = 0:

ny =1
Zi:O Ay Vs Wg

() (vs, s, @) = .

m
(1os1™™ B jo ™™ ) ™

where

f = Tsx, Tsy, MS7
(40)

where ar; = ay ;(¢s, Sgn(vs), sgn(ws)) (it occurs that for odd ny, co-
efficients ar; do not depend on the signs of vs and ws), my > 0 and by
> 0. In the above approximation we assume additionally, that
ng, = nr, = ng, mg, = mg, = mg, and by, = by, = br,. Thanks
to that one can easily pass between different coordinate systems
defined by rotation of the coordinate system Axyz around the axis z
(see Fig.1). In particular the structure of the model does not change
during such a transformation (the denominator of the approxi-
mation does not change). Moreover, independently from the co-
ordinate system chosen for derivation of the model, one always
obtains the same structure of the friction model. The last property
is related to the another one, that is for circularly symmetric contact
stress distribution, independently from the choice of the coordinate
system, one always obtain a model, where the friction force
component perpendicular to the sliding velocity v is equal to zero
(one can easy find that it true for full integral model).

Note, that for mg= 1 we get the following particular form of Padé
approximation (34)

ar,o = Cpsgn(vs),  ar,1 = —sgn(vs)cé)’f{)lA1, br, 1 = sgn(vs)sgn(ws)Ay,
ar,o = sgn(vs)s,,  ar,1 = sgn(us)cioqAa,  br,1 = sgn(vs)sgn(ws)Ay, (38)

am,0 = 1,
where
A Cw*’Sgn(Vs)Sgn(ws)C((JXiy_)] A Sy *Sgn(vs)Sgn(‘*)s)Crg)l
1= (xy) (x.y) H 2 = (x.y) (x.y) )
1135060360 C02350 111360

sgn(vs)cyy) | —sgn(w;)As

Ay = s, — ¢, Ay = .
10070 To.Lome (co30—Co00) 2 +26 acuso +€53

Making use of the above relations, from (37) we get the
following form of the friction model

X, X,
it _ ST iyt AT 08
sx lus| +Aq|ws] Y vs| + Azl 39)
M(Po.l) _ C(()Xg,)—l ws +A3Aqvs
got) = =50 © 7 77

|ws| +Agvs]

One can note rather inconvenient form of approximant (39). It,
however, will take a much simpler form in the case of circular
contact area or constant elliptic shape. But there is another disad-
vantage of these models, namely the possible existence of singu-
larities (the denominator tending to zero) for certain values of
arguments and parameters. Much more convenient and free from
the above drawback is the following construction of the
approximation

a1 = sgn(s)cyy (A3 Ayl, byq = sgn(vs)sgn(ws)A;",

n n—1 i
B Zif:o af,ivsl W h
T T L R where 41
m=1 " |vs"" + by|ws] (41)

f = Tsx, Tsy7 MS7

) (vs, s, 95)

and for m; = nfl the next special form of expression (34)

ny =1

. " n» Where
mfzn, (|U$‘ +b; f|ws‘> (42)

f = Tsx7 Tsy7 Ms~

f <I"f> (vs, Ws, @5)

Let us assume that the coefficients my and by are chosen arbi-
trarily and then the rest of the coefficients are chosen in such a way
that the conditions (36) are fulfilled. Then it can be easily shown
that fori < ny and my > i/ng

oif ()

i
ovl

olf ()

owi

_jy i

by ri(ws), =ilagri(vs), (43)

ws=0

vs=0

x1-i/x) for n = 1,3,5...
xt forn=246..
Each of expressions (43) and each equation of type (36) contain
only one unknown coefficient ag;, so the process of approximant

where ri(x) = { and i = 0,1,2...n—1.
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construction is much simplified. Moreover, the derivatives of
approximant (40) do not depend on coefficient my.

Let us introduce the following alternative notation of approx-
imant (40)

ny =i
Zi:()af,l'/s Wg
-1

mgng mg meng my
|us[TM + bp s

f(l"fl (% )-”fz("}z)> (vs, s, @5) =

for

f = Tsm Tsy7 M57
(44)

meaning that the coefficients of the above approximants fulfil the
following set of conditions

o'f ('"f )

ol }1/5:0

_af . .
o |v5:0 for i = 0,....10p,

. In
‘wa(v;)|v$0 =0 fori= nf] +1,...,n51,
ar)

6—0)2 w=0 dwi |ws for i = 0""’nf2’

olf ()

a—u)g 0)5:0 = 0 fOl‘ l = Tl}2+1,...7nf2, (45)
and where f = Te, Tsy, Ms, 0y = npq + gy + 1,051 > nj’q and ny, > n}z
and in the case of ny = ”}1 or np = ”}2 we omit the corre-
sponding index in the parenthesis.

For ny, = ny, = 1 and nr; = nr :nTSyl =nr = Ny =
Nya = Ny = NI 5 = Nf 4 :n’T = My 7nM270and us-
ing Egs. (11), (43) and 60)y , We get the followmg coefficients
of the approximation

Y)

aTSXYO = CW’ aTsx bT CO] 1 aTsyvo = Sw’ aTsy bT Cl 0,1
_ (x.y) ( ¥) _ (x.y)
am,0 = SeCi00 — CoCo10° M1 = bmCog” 4
(46)
and the approximant models take the forms
ploo) _ _ vscbnegtios  pleg) | vybrcigios
x = - m lsy = m =y
(‘Vslst +bT s “'JslmTS) s (|"5‘st +bT§TS |ws‘m15) s
‘ (47)

y) (x.y)
sz 00.-1%5Coy, prsteld o"sy

K
(bM:/ls Jws|™Ms +‘Vs‘mMS) MS

Mélo 0)

where we use relations
Usy = UsSIN @5 = UsS,.
For n;, = ny, = 3 and n; = npp = ”T3y1 =np)y =

vz = Mg g =Mpo =N =Np 5 = Myy

Usx = UsCOS @5 = UsCy and

v =
=Ny, =1 and us-

ing Egs. (1 ) (43) and (60) (62) we get the followmg approximant
model
() Ve — ) vgevgy s — oY) 12 ws+brs( ;*g;usxw§+cg*_{;usng7c§;1y;w§)
SX - m=1 ’
(s " o7 )
T(ll.l) _ V§V5y+cl g(’)” w5+col}/()3"5><"5yw5+b75( 11)3VSX‘*’2+C0X2}/3"S¥‘“2+C§0)1 3)
sy - )
(127 5 7 )5
M(Il.l) b ¢ 00> 1“?*%1:3" "SX*C 1.00 "ZVSPLCzog”sst+chzyo"sy‘“s
N .

(bt o s+ P )

In an analogical way higher order approximant models can be
constructed. One can note however, that approximation (40) takes
the most convenient and regular form for the same highest orders
of the fulfilled derivatives for both vs = 0 and ws = 0 (71 = ny ).

(x.y)
ij.k

Table 1, we get the following forms of models (47) and (48) for
elliptic contact

Taking into account the values of integrals c;;’ gathered in

lo0) _ _ va—4brbGle)bdiws  plloo) _  uy+4brH(e)hdco,
i (Ios| ™5 b7 o 75 )m;s1 7 (lus ™% b g™ )m;s1 7
49)
Moo) _ 4by, E(e)ws il (dcvsy—bdj:;ﬂ) (
(B’ s s -+ s ) "M
and
TS()IC,_]) _ Vug+ws (b, (4G(e)lovsyws —bds (ﬂ13V§y+4G(€L)112<Uf))—Tflsdcvsxvsy)’
(\Uslmrf +b"’Tg (s ‘3st ) M
TS(JI’]_I) _ 2ugy-+s (b, (4H (€)lovsy ws+dc (Tl +4H( e)Izwz))Jr’lrblgdsvsxvsy)
(175457 o P )
MS(I“) _ 4b;ZE(e)Izwf+TEI3((vzx+b2v§y)ws+v§((iclvsyfbdsvsx))‘
(B s s <[ o ) "
(50)

4.2. Piecewise polynomial approximation

For the approximation of exact integral functions (8) we will use
the following piecewise polynomial approximation (for the sake of
simplicity, we assume here vs > 0)

i
sgn(ws) Z af,<w—5> for vs < wslugy,
f(W>(Vs’ Ws, ps) =
for vs > |ws|ugy,

é:o bri Cﬁ_j)l
(51)

where ") is the approximation of function f = T, Tsy, Ms and
as; = ay i(s, SgN(ws)), by; = by i(¢s, sgn(ws)). One can check, that
using relations (9), the approximation (51) can be reduced to the
function of variables ¢, and s, similarly like the full integral model
(10).

The approximations of functions Ty and Ty satisfy up to the first
order partial derivatives with respect to variable v (for v; = 0) and
up to the third order partial derivatives with respect to variable wg

(for wg = 0), of the full integral model. Making use of relations (11)
and (60)—(62), one can obtain the following formulae for elliptic
contact

_ _xy _ ~xy) b _
01,0 = —Cpi1  OT.1 = €303C0; D10 = Cops
br.1 = —cg’f‘]’%si - cg"g 6swc¢,

1 (*y) _ x) (x)

br,2 =5 ( (Cz,o,o —Co2, 0)5 Co— G 00%)

3
brs = 55 (e 3640h) (78 + 1)
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Fig. 10. Results of the optimization of the polynomial joining points for different

values of parameter b.
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where coefficients ¢;3’ are given in Table 1 in Appendix B and
where the coefficients equal to zero for elliptic contact area have

been removed.
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partial derivatives with respect to variable v (for v¢ = 0) and with
respect to variable wg (for ws = 0) of the full integral model, we
obtain the following coefficients of approximation
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the second order derivatives, giving the following formulae for the
rest of the coefficients

dfp =

a3 =

af‘4 =

735gn(ws)afﬁ1ua} + 6(sgn(ws)bf70 — af,o) ua}

+10by 111y} + 15sgn(ws)by g F + 21bg 31147,

3ag g7 + 8(sgn(ws)af10 - bf70> Ug} — 15sgn(ws)by 1ug
+ 24by U7 — 35sgn(ws)by 310 8,

—sgn(ws)ay 1Ug} + 3 (sgn(ws)bﬁo - afﬁo)ua}‘ +6by g7

+ 1Osgn(ws)bf72u5}5 + 15bf13u5},
(55)

for the approximate friction force models f = Ty, Tyy. In the case of
the friction torque model we have the following expressions
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Fig. 11. Comparison of the corresponding components (TS{V ), Ts(}‘,” ), Méw)) of approximate model (51) and elements (Tsy, Tsy, M;) of exact integral model (8), for b =1 (a—d), b = 0.5
(e=h), o5 =0 (a, &), ps = /6 (b, f), os = /3 (c, g) and ¢s; = 72 (d, h). The values of the remaining parameters: d = 1 and v’ = 1.
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>

5 -1 2 -3 4 5
a3 = —3 sgn(ws)aw, 2Ug p, — 2am,1Ug g, + 2 (b0 — S8N(Ws)awm, 0) gy, + 3 sgn(ws)by, 1Ug . + b, 2Uo . »

1 _ _ _ _ _
a4 =5 (5‘1M5,2”of\/13 + 8sgn(ws)an, 1g 7y, + 9(am, 0 — SEN(Ws)b, o) gy, + —8bw, 1oy, — 5sgn(ws)sz,2u0,‘,’;/,s>,

1

(56)

by.3 = 51 ( — 15sgn(ws)by, 2Uom, — 10sz,1U%,MS +6(ap, 0 — sgn(ws)bM570)u87Ms + 3sgr1(u)s)aMSJu§’Ms + aMs,Zu(S),MS)~

The additional three parameters ug,,, Uo T, and ugy, (defining
the points of the polynomial joining) are independent from the
corresponding derivatives of the integral model of friction and can
be chosen arbitrarily.

4.3. Examples for Hertz nominal stress distribution

In this section we present a comparison of some above intro-
duced approximate models with the full integral model of friction
(8) for the Hertz case of nominal stress distribution, that is for

ao(p') = 3/2m/1 — p2 (cf. Sect. 3). In these examples we assume
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of the approximate models according to

oolw

Iy =

for both exact and approximate models. The last formulae (note
that relation I;, 1 < I; holds for any non-negative integer i) are ob-
tained according to definition (23) for o, (p’) = 3/2m\/1 — p2.
Figs. 8 and 9 exhibit a comparison of the components (TS(?""),
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components (T, Ty, Ms) of the exact integral model (8) obtained
numerically. Even though the approximants have been constructed
in the coordinate system Axy, the results are presented in the co-
ordinate system Atv. The Figures exhibit plots for the range
fOse (—m/2,1/2) only, since all the presented functions f(fs) possess
the property f(0s + ) = —f(0s). The coefficients mr,, my, by, and
by, have been determined by the use of optimization of the cor-
responding approximant and integral model matching for full
ranges of variation of the corresponding parameters and variables:
0<b<1,0<d<1,0<y<2m, —m/2<0;<m/2and 0 < ¢; < 2.
Fig. 8 presents results for the case without rolling resistance (d = 0),
while Fig. 9 exhibits results for rolling resistance with d = 1. One
can note that the higher degree of the approximant do not always
leads to better results. In the presented examples the best fitting is
obtained for the approximations Iy ;.

For fW) approximations (cf. Sect. 4.2), parameters Uo T, UoT,
and ugp, (defining the points of polynomial joining) have been
selected for 11 different values of parameter b basing on the opti-
mization procedure. The sum of square deviations of the approxi-
mate model from the exact integral model for different values of
the remaining parameters (¢, s, d and y/) has been chosen as a
criterion being minimized. The optimization results are shown in
Fig. 10 together with the plots of polynomials fitted to the obtained
results and having the following forms

Uor, (b) = 0.967 + 0.276b — 0.542b% + 0.706b3,
U1, (b) = 1.280 +0.007b + 0.106b2, (58)
Ug s, (b) = 0.702 + 0.407b — 0.819b2 + 0.600b3.

Figs. 11 and 12 illustrate a comparison of the corresponding

components of approximate, piecewise polynomial model (T, s()!(/v ),

TS(J‘,N ), M(W ) and exact integral model (Tsy, Tsy, Ms). Fig. 11 exhibits
results for the circular (b = 1) and elliptic contact area of moderate
eccentricity (b = 0.5). Fig. 12 shows results for higher eccentricities
of the contact (b = 0.3 and b = 0.1). For each eccentricity value the
four plots for different angles ¢; = im/6 (i = 0, 1, 2, 3) are per-
formed, while the other parameters are d = 1 and v’ = 1. In Fig. 11
one can observe, that for the circular contact patch the approximate
model gives practically exact results. In that case the lower order
approximation would be probably sufficient. The elaborated
piecewise polynomial model gives, however, very good results for
b = 0.5 as well and quite good results for more slender (b = 0.3 and
b = 0.1 in Fig. 12). The highest approximation errors are observed
for b = 0.3 (in some cases the absolute error of the approximation of
non-dimensional component Ty reaches the value of about 0.15,
that is about 15% of the maximal magnitude). Let us note that the
approximate model exhibits the highest errors for the Ty compo-
nent (along the longer axis of the contact), whereas in the case of
the second component of the friction force Tsy and friction torque
M; the approximation gives almost perfect results.

% " ((C(()XBy - 5C2x1ys>52 + 2<ZC(1 2)5 - Cg 8/>5>S(/’C<ﬂ + 3C2 i 5)
] - (64t +5(ekh - 6 s i~
T2l = (2(c0ds —2e55)suc + (5679 — i) 2 31
a;z? 00 <3 <Cg(2yz) - C(z)fg 2))5<ﬂ62 + 651 1 OC3 - C(<)X2y 650 — 45%%%
oo = — (2 as0cs — (€635 — 533) 2+ <635 iy

M y

[<[0%

_ (x.y) (*x.y) 2 (x.y) (X.y) (*x.y)
Tl 0 3((3%2,0 —6300)%0C + (362,1,0 —Co3, 0>C — G205

5. Concluding remarks

The work aims at developing the approximate models of
coupled friction and rolling resistance in the case of elliptic contact.
The resulting model is sufficient for fast numerical simulations of
rigid bodies with frictional contacts, since it allows to avoid using
numerical methods basing on space discretization.

The rolling friction model is built as a resistance against
movement of the deformed zone (contour friction) which is related
to the fact that stresses for growing strains are greater than stresses
for the same but diminishing strains (elastic hysteresis phenome-
non). In the elaborated rolling resistance model some simplifica-
tions were assumed. In the general case, rotational motion of the
deformation zone (not taken into account) can also have some in-
fluence on the contact stress distribution and rolling resistance.

The corresponding approximate models can easily be developed
for other shapes of the contact area and normal stress distribution,
since in Sect. 2 some expressions being the base of approximation
are given for the general case of contact.
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Appendix A. Some properties of the integral model of friction

In Sect. 2, the values of the exact integral model of friction (8),
for v¢ = 0 (assuming ws # 0) and for ws = 0 (assuming vs = 0), are
given. It is also possible to derive further properties of the model,
i.e. the corresponding higher order partial derivatives of the func-
tions (8). For example, the partial derivatives of the first order have
the following form

9Tsx (x) (x) 1
us |, o (Cm 350 + Czoacw) [os]
V=
Tsx xy) 2 | ~xY) 1
sl o _<Co.1 0% "‘Cl‘o,oswcv’) Tos]
W=/
0Ty (x) (x.) 1
vs |, o (Co 23% +51,1,3%) jos]
V=l
0Tsy (x) (xy) 2) 1 OMs
= (cn70SeCo +Cia0Cs) — =0
Ows ws=0 ( 0.1,0%¢% * 1,00 (/}) |VS|’ ovg vs=0 ’
OMs *y) _ x) y) ) 1
sy ((Co,z,o 5200>5 + 2677 050Co + Cz,o,o) 2k
Ws=
(59)
and partial derivatives of the second order read
1
wWs|ws]?
1
vsvs]?
_1
ws|ws]
(60)
1

vs[us]?

(*.y) (x.y) 1
+ (Co 30 ~ 2023 o)cw) o]
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while the derivatives of the third order equal

6;% om0 = 3((5C8(§y,2) - 15C(2)fi}fz))sg (156 y) — 5c§’f6’f2)>53)c¢ + (
o = 3((3085 - 156 24 + (165 -5
%nﬂzxwwwwg :

agﬁgs ly—o = 3( zchég - 6c(1’f’2’f)5)s¢cq25 + (ch‘ ) 66(2"]")5)5(135 Py

0> M,

|0 = 3(5(6550 — 070 — €i3)

xy) _ xy)y 1
+4‘:220*9100)

where s, ¢, and c ) are defined by Egs. (12) and (13).
Appendix B. The characteristic integrals of the friction model
for elliptic contact area

Table 1 shows the setting-up of values of the most important
integrals C(X%) occurring in expressions (11) and (59)—(61), with the
assumptlon of a normal stress distribution model defined by Eq.
(16). In order to shorten the notation, the following functions have
been introduced

G(e) = (K(e)—E(e))e?,

H(e) = (E(e)+ (e~

where K(e) and E(e) are the complete elliptic integrals of the first
and second kind, respectively

1)1<(e))e*2, (62)

/2 /2

— [ \/1—e2sin24d
K(e) = /m E(e) 0/ 1 —e2sin” ¢d¢ (63)

and Where e stands for eccentricity of the contact area (0 <
e=+VvV1-b2<1).
Beside the values of integrals clj%) for the general case of elliptic

contact, Table 1 contains also limits of the integrals for b — 1 (circular
contact) and for b— 0 (line contact as a degenerated elliptic one). In

the second case one can see that some of the integrals (e.g. c(z"g’ 3)

tend to infinity and make impossible to use certain approximate
models based on derivatives (11) and (59)—(61). One can use the
approximations omitting certain properties of the integral model
(these approximations may occur improper) or use approximate
models for elliptic contact of b parameter very close to zero.

Table 1
Setting-up of part of integrals occurring in expressions (11) and (59)—(61) for stress
a(x,y) distribution model according to (16).

Notation The full form of Value of the Limit Limit

gf the integr‘al in the Axy integral llm cf’ﬁ? lglil‘(l) Cﬁﬁ{')
integral coordinate system

according

to (13)

ng Oyg) [ xa(x,y)dxdy Tlzd, Tlzd, Tl3d,

F
cé” 13/2) [[yo(x,y)dxdy Thlsd; Tlzds 0
F

BTy — (x.y) (xy) \ 63 X.y) (*.) (%) ) g2 (xy)
5 [0 = 3((11C3, ) — 913 7)s¢ + (3c407 —15¢337 +2c4 7>s¢c¢ + (651,3,7

(X.y
15¢53

“ocith)ss - (468 - ) ey
D) — 4Gy )52+ (3¢ — 68 )sics — 26 2l

e+ (453 — iy s + (6537 9617 )es) el

(*xy) 3 (X.y) (*.y) (x.y) (%) (*.y) (x, 1
O)s¢c¢ + (15(:]_2,0 - 5¢5 ,0>c4 (GC2 To—3c03 0)s¢c¢ + <4C3 oo — 15¢7 )c¢ + 2, 3 0) it
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4 (x.) (x.y) (x.y) (x.y) (xy) X.y)
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Table 1 (continued )
Notation The full form of Value of the Limit Limit
of the integral in the Axy integral 11m cf’)‘ %) 11m cf: i)
integral coordinate system
according
to (13)
. Yo(x.y)
E)x 1y)1 I @dxdy 4bG(e)lds hds 0
XO(X.
&) jg \/Xg(Tyyfixdy 4H(e)ld, mhd, 4Ld,
X20(x.
C<2 v0_13 I I ‘yzy ~dxdy 4G(e)ly wly ©
C(zxglz) ﬂ x2a(x,y)dxdy ml3 wls ml3
F
éx.iv%) [Iy?a(x,y)dxdy wh?l5 nl3 0
F
(xy) I Vx%2 +y?o(x,y)dxdy  4E(e)l, 27l 4l
F
Po(xy)
E) 2y)3 Ir iy zdxdy 4H(e)lp Tl 4]y
r Xya(X, y
) IZ oy dxdy 0 0 0
C(1 ivg [ xya(x,y)dxdy 0 0 0
F
g i}% .[foyzcr(x,y)dxdy b?I5d. Tlsdc 0
) [ x?ya(x,y)dxdy Tblsds Tlsds 0
F
(BOyz) [ %3a(x,y)dxdy 3 sd. 3 sdc 3 lsdc
F
é;v)o [[y3o(x,y)dxdy 3Eb31sds 3 Isdg 0
F

Appendix C. Approximation of the elliptic integrals

For numerical approximation of functions K(e) and E(e) for 0 <
e <1 one can use the following series (Milne-Thomson, 1972;
Whittaker and Watson, 2002; Kosenko and Aleksandrov, 2009)

by L ’
an,nK =5 1+ 2n¥1 qnq s
1 e gan

2-e? 2
E"q‘”KvnE = 3e an»nK + K::-"K <12 -2 Z

2 (1 B Q%Z‘)z (64)

ng
where qn, = 3 aped-DHL
n=1

and where a, is the n-th element of the series 1, 2, 15, 150, 1707, ...,
whereas the ¢(e) function is defined as follows

_ (_l —62)1/4

_— 65
+(1—e2) (62)



G. Kudra, J. Awrejcewicz / European Journal of Mechanics A/Solids 42 (2013) 358—375 375

N
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0 0.2 0.4 0.6 0.8 1.
b) b

Fig. 13. Errors of approximations ((64) and (65)) of elliptic integrals K(e) and E(e)
(where b = V1 — e2), for the following parameters: a) ng =1, ng = 1(1); ng = 2, ng = 2
(2);ng=5nk=43)b)ng=1Lngk=1ng=1(1);ng=2,nk=2,ng=2(2); ng=5,
ng = 4, ng = 8 (3)

For ng, ng, ng — « we have Ky, n, (e) —K(e) and Ep_ n, n () —>E(e).
Fig. 13 presents errors of approximations of functions K and E as the
functions of b = V1 — e2 argument for different values of param-
eters ng, ng and ng. It comes out that for sufficiently large parameter
b and taking into account uncertainties related to the real contact
pressure distribution as well as inaccuracies of the approximate
models presented in the next subsection, approximation ((64) and

(65)) can be sufficient even for ng = 1, ng = 1 and ng = 1 (but it
depends on the kind of application of the corresponding
approximation).
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