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The Euler–Bernoulli kinematic model as well as the von Kármán geometric non-linearity are used to

derive the PDEs governing flexible beam vibrations. The beam is embedded into a 2D temperature

field, and its surface is subjected to action of the electric potential. We report how an increase of the

exciting load amplitude yields the beam turbulent behavior, and how the temperature changes a scenario

from a regular/laminar to spatio-temporal/turbulent dynamics. Both classical Fourier analysis and Morlet

wavelets are used to monitor a strong influence of temperature on regular and chaotic beam dynamics.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recently an attempt to study wave turbulence exhibited by

thin elastic plates within “turbulence theories” has been observed.

Since wave (weak) turbulence is less mathematically sophisti-

cated than the classical (hydrodynamic) turbulence (see [1,2])

it is tempting to validate feasibility of vibrations of the two-

dimensional solids with respect to the existing theoretical models

for turbulence.

A series of recently published reports are devoted to an ex-

perimental study of the turbulent behavior of a plate within the

Föppl–von Kármán model [3–5]. Despite a qualitative good agree-

ment with the kinetic weak turbulence theory, the obtained energy

spectrum has not been confirmed by a theoretical prediction. Mor-

dant [6] applied an experimental method for monitoring of both

temporal and spatial evolution of wave turbulence exhibited by a

thin elastic plate. Various Fourier spectra of the wave deformations

were analyzed. Elastic wave turbulence was also reported experi-

mentally while analyzing thin elastic plates [7]. It was shown that

when the total energies in wave fields were small, the obtained

energy spectra fitted well with a statically steady solution of the

weak kinetic turbulence theory.
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Other researchers focused only on the theoretical and numer-

ical simulation studying 2D structural members (mainly flexible

plates). Touzé et al. used the von Kármán PDEs to study both

experimentally and numerically a scenario of transition to wave

turbulence exhibited by thin vibrating plates. Large amplitude

plate vibrations were monitored while analyzing two bifurcations

which separated three distinct regimes: periodic, quasi-periodic

and spatio-temporal chaos. It is claimed that the third regime (tur-

bulent) is characterized by a broad band Fourier spectrum and an

energy cascade from large to small wavelength [8].

It should be emphasized that transition from regular to chaotic

dynamics in circular cylindrical shells and doubly-curved panels

was numerically reported by Amabili et al. [9–11]. Chaotic vibra-

tions of shallow shell/panel with and without concentrated mass

were studied both analytically and experimentally by Nagai et

al. [12,13] and Maruyama et al. [14]. Recently, Touzé et al. [15]

described a transition to chaotic vibrations for harmonically forced

perfect and imperfect circular plates.

This report extends a series of our papers [16–23] devoted to

the study of transition from regular (periodic and quasi-periodic)

vibrations to chaotic ones in continuous mechanical systems

(plates, cylindrical shells, panels and sector-type spherical shells).

In this Letter, however, we address the problem related to large

deflations of beams, plates and shells, when the structural mem-

bers are subjected to the action of temperature field and piezo-

electric phenomena [24].
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Fig. 1. Scheme of the analyzed beam.

2. Mathematical model

We apply the following assumption to derive the governing

equations: (1) the Euler–Bernoulli kinematic model is used; (2) 2D

temperature field model is applied; (3) beam surface is subjected

to the action of the electric potential difference V (t) – boundary of

the studied space is not covered by the electrodes; (4) geometric

non-linearity is taken in the von Kármán form – see Fig. 1.

Stress-strain equations including linear formulas for direct and

inverse piezoelectric and pyroelectric effects are given in the fol-

lowing form:

σxx = cE11(εxx − αT T ) − e31Ez, Dx = εS
11Ex,

Dz = εS
33Ez + e31εxx + gpyrT . (1)

We use the following physical constants for the material: cE11 –

elasticity modulus (for constant electric field); e31 – piezoelectric

coefficient; εS
11, ε

S
33 – dielectric permittivity (for constant deforma-

tion); αT – linear heat extension coefficient; T = θ(x, z, t) − T0 –

temperature increase with respect to the initial temperature T0;

gpyr – pyroelectric coefficient; gpyr = (2 . . .3) · 10−3 C/(mK) in the

direction of initial polarization, and gpyr = 0 for remaining direc-

tions. State equations (1) refer to the situation when the beam

material has already been polarized with respect to the beam

thickness. Vector characteristics of the electric field are as follows:

D = D(x, z, t) – induction, E = E(x, z, t) – intensity.

Applying the variation relations the following equations are de-

rived:

k21
∂2w

∂x2
+ 1

λ2

εS
11

εS
33

∂2ψ

∂x2
+ ∂2ψ

∂z2
− k2pyrλ

2 ∂T

∂z
= 0, (2)
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1/2∫
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×
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∂x2

)
−

[
a

λq

gpyr

d31

√
cE11
ρ

]

× 1

λ2

∂ψ̇

∂z
, (5)

where: L1(u, w) = ∂u
∂x

∂2w
∂x2

+ ∂2u
∂x2

∂w
∂x

, L2(w, w) = 3
2

∂2w
∂x2

( ∂w
∂x

)2,

L3(w, w) = ∂w
∂x

∂2w
∂x2

= 1
2
L1(w, w), and the electric potential ψ =

ψ(x, z, t) satisfies the following electrostatic equations ∂Dx
∂x

+ ∂Dz
∂z

= 0, Ex = − ∂ψ
∂x

, Ez = − ∂ψ
∂z

. Eqs. (2)–(5) are associated with the

following boundary conditions for the electric potential:

ψ(x,−1/2, t) = −V (t)/2,

ψ(x,1/2, t) = V (t)/2 (0 � x � 1, t > 0), (6)

∂ψ

∂x
= 0. (7)

For the functions characterizing the stress beam state regarding

u(x, t), w(x, t) we have,

w(0, t) = w(1, t) = u(0, t) = u(1, t) = w ′
x(1, t) = 0,

Mx(0, t) = 0, (8)

and in the case of temperature field the first order boundary con-

ditions are applied.

Table 1
Vibration charts.
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Initial conditions are as follows:

ψ(x, z,0) = 0,

∂ψ(x, z,0)

∂t
= 0 (0 � x � 1, −1/2 � z � 1/2),

w(x,0) = ẇ(x,0) = u(x,0) = u̇(x,0),

T (x, z,0) = 0. (9)

System of Eqs. (2)–(9) is transformed to their non-dimensional

form in the following way (dimensional quantities are denoted

by wave superscript): c =
√
cE11/ρ – velocity, d31 – piezo-module,

x̃ = a · x, z̃ = 2h · z, ũ = (2h)2

a
· u, w̃ = 2h · w , λ = a/(2h), t̃ = a

c
· t ,

ε̃1,2 = c
a

· ε1,2, q̃ = cE11(
2h
a

)4 · q, Ṽ = 1
λ2 ( 2h

d31
) · V , ψ̃ = 1

λ2 ( 2h
d31

) · ψ ,

T̃ = T0 · T . In Eqs. (2)–(5) we have k21 = e31d31/ε
S
33 and k22 =

e31/(c
E
11d31) – non-dimensional coefficients of the electro-chemical

couplings, and k2pyr = gpyrT0d31/ε
S
33 – non-dimensional coefficient

of the pyroelectric coupling. Furthermore, λq , cε denote heat trans-

fer coefficient and heat capacity, respectively. In Eq. (5) each of the

used brackets represents a non-dimensional term.

3. Numerical simulations

As an example, we consider non-linear dynamics of the elas-

tic beam embedded into a stationary temperature field with the

electric potential. In this case system (2)–(5) is decoupled into

separated solutions, i.e. that of 2D stationary heat transfer equa-

tion and into the system (3)–(4). The 2D heat transfer equation

for the rectangular area z ∈ [−1/2,1/2], x ∈ [0,1] (Fig. 1) is solved

via the method of boundary elements, whereas for the beam the

problem is reduced to the Cauchy task through the FDM (Finite

Difference Method) of the second-order accuracy, and then it is

solved via the fourth Runge–Kutta method. As a result, when ap-

plying the FDM we introduce the partition into n = 80 parts of the

interval x ∈ [0,1] and time step 
t = 1/256. We analyzed a set

of solutions in the plane of control parameters {ωp,q0}. The ob-

tained computational results allowed us to construct the following

charts. Plane {ωp,q0} is divided into {100,100} parts, i.e. we need

to solve 3 × 104 problems and for each of them we analyze time

histories, phase and modal portraits, Poincaré cross-sections and

maps, phase and modal portraits, autocorrelation functions, Fourier

and Morlet power spectra (Table 1).

One may conclude that the temperature increase causes that

the regions of chaotic/turbulent beam dynamics shrink.

Table 2 gives a few studied characteristics (Fourier power spec-

trum and spatio-temporal chaos) for certain values of q0 and tem-

perature for ωp = 5. The illustrated results exhibit their essential

dependence on the temperature.

First two rows of this table (q0 = 35 × 103) show four direct

frequency peaks being in agreement with the Morlet power spec-

trum (T̃ = 20 ◦C). An increase of temperature (T̃ = 200 ◦C) damps

the amplitude of two centrally situated frequencies but a series of

frequencies with small amplitudes appear instead.

An increase of q0 up to q0 = 95× 103 exhibits beams turbulent

behavior which is manifested by broad-band Fourier and Morlet

spectra (T̃ = 20 ◦C). The increase of temperature implies a route of

continuous (broad-band) frequency spectrum to that with only two

clearly distinguished peaks (T̃ = 300 ◦C). Again, remarkable agree-

ment between the Fourier and Morlet power spectra is manifested.

However, the third computational example (q0 = 135 × 103)

cancels a tempting description of the expected dynamics beam

behavior as it has been illustrated so far. Namely, for T̃ = 20 ◦C
the beam exhibits turbulent dynamics (spatio-temporal chaos),

which then transits into regular (quasi-periodic) beam dynamics

(T̃ = 200 ◦C) with four distinct frequencies, and then each of them

Table 2
Fourier and Morlet power spectra.

(in spite of excitation frequency) increases its amplitude and gen-

erates a series of frequencies via the period doubling bifurcation

(T̃ = 300 ◦C) implying a weakly developed turbulent regime.

4. Conclusions

Regular (periodic and quasi-periodic) and chaotic vibrations of

flexible beams taking into account the thermal and piezoelectric
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phenomena were described using numerical simulations. In partic-

ular, the analysis carried out with the help of the classical Fourier

method and the Morlet wavelets implies a strong influence of tem-

perature on both regular and chaotic beam dynamics.
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