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In this paper chaotic vibrations of °exible plates of in¯nite length are studied. The Kirchho®�
Love hypotheses are used to derive the nondimensional partial di®erential equations governing

the plate dynamics. The ¯nite di®erence method (FDM) and ¯nite element method (FEM) are

applied to validate the numerical results. The numerical analysis includes both standard (time
histories, fast Fourier Transform, phase portraits, Poincaré sections, Lyapunov exponents)

as well as wavelet-based approaches. The latter one includes the so called Gauss 1, Gauss 8,

Mexican Hat and Morlet wavelets. In particular, various plate dynamical regimes including the

periodic, quasi-periodic, sub-harmonic, chaotic vibrations as well as bifurcations of the plate are

*Corresponding author.

International Journal of Structural Stability and Dynamics
Vol. 13, No. 7 (2013) 1340005 (12 pages)

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S0219455413400051

1340005-1

http://dx.doi.org/10.1142/S0219455413400051


illustrated and studied. In addition, the convergence of numerical results obtained via di®erent

wavelets is analyzed.

Keywords: Chaos; bifurcation; plates; fast Fourier transform; wavelets.

1. Introduction

Recent achievements obtained in 80�90th years of the previous century devoted

to numerical analysis of PDEs allowed direct use of the earlier developed theories

regarding mechanics of deformable objects giving possibility for getting reliable

results concerning nonlinear behavior of complex mechanical structures. Elastic

panels plates/shells are widely used as elements of thin walled structures applied in

air and rocket industries. It is clear that investigation of those elements subjected to

an action of dynamical loading belongs to one of the fundamental problems regarding

stability and durability of various structures. Another problem refers to the esti-

mation of a construction dynamical regime versus parameters of external loading

(excitation amplitude and frequency) taking into account dispersive properties of a

surrounding medium, where the being analyzed construction is embedded.

On the other hand the recent developed theories of bifurcation and chaos allowed

achieving new results being close to real nonlinear dynamical behavior of plates,

panels and shells as well as their combinations and interaction in various mechanical

structures.

In Ref. 1, both global bifurcations and chaotic dynamics of parametrically excited

simply supported rectangular this plate have been studied analytically and

numerically. Both fractal dimension and maximum Lyapunov exponent concepts are

used in Ref. 2 to study chaotic dynamics a simply supported large de°ection rec-

tangular plate with thermo-mechanical coupling. Bifurcation points, period doubling

phenomena under various lateral and bi-axial loads of thermo-mechanical coupling

factors and aspect ratios have been detected and discussed. Periodic and chaotic

dynamics and jumping phenomena of a simply supported cross-ply laminated rec-

tangular thin plate subjected to the parametric excitation using von K�arm�an-type

equation have been analyzed in Ref. 3. Asymptotic four-dimensional nonlinear

averaged equations regarding the amplitude and phase of plate vibrations, and then

relations between the steady-state nonlinear responses and the amplitude and fre-

quency of the parametric excitations have been derived. Nonlinear and chaotic

dynamics of a parametrically excited simply supported symmetric thin plate has

been reduced to a two degree-of-freedom system, and then the multiple scales

method is used to derive the averaged equations in Ref. 4. In particular, the occur-

rence of periodic, quasi-periodic and chaotic dynamics for a parametrically excited

four-edges simply supported plate versus the parametric excitation magnitudes have

been studied. Zhang et al.5 have studied global bifurcations and multi-pulse chaotic

dynamics of a simply supported laminated composite piezoelectric rectangular thin

plate subjected to combined parametric and transverse excitations. The von
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K�arm�an-type equation and the Reddy's third order shear deformation plate theory

supported by the Galerkin procedure and the Melnikov method have been success-

fully applied to predict and study the multi-pulse plate chaotic dynamics. Zhang

et al.6 applied the extended Melnikov technique to study multi-pulse Shilnikov type

chaos of a parametrically and externally excited simply supported rectangular thin

plate using the von K�arm�an equation and Galerkin approach. Chaotic and bifur-

cational dynamics of various mechanical structural members (°exible plates, cylin-

der-like panels, rectangular spherical and cylindrical shells, axially symmetric plates,

as well as spherical and conical shells) have been studied recently in Refs. 7�9. First

an emphasis is put for reliability and validation of the numerically obtained results

using the Finite Di®erence, Bubnov-Galerkin and Ritz methods.7 Then, either known

or novel scenarios of routes to chaos are detected, illustrated and discussed.8 Finally,

transitions chaos�hyper chaos as well as chaos�hyper chaos�hyper-hyper chaos are

illustrated and studied.9 It should be emphasized that the wavelet-type analysis

has been also applied to study coherent structures10 as well as the regenerative

cutting processes.11 In this paper, we extend our earlier approaches devoted to

application of the wavelets to study nonlinear dynamics of continuous mechanical

systems.12,13

2. Object of Investigation

In what follows we consider in¯nitely length °exible one-layered thin plates of a

wideness a, height h and a curvature kx. The plate is loaded through its whole surface

by qðx; tÞ acting in direction of a normal to the middle plate surface (see Fig. 1).

Developed and further applied mathematical model is based on the following

hypotheses: (i) any plate cross-section being normal to the middle surface after

deformation remains straight and normal to the middle surface, i.e. the cross-section

height does not change; (ii) inertia e®ects of rotation of plate elements are not taken

into account although inertial forces associated with a plate element movement along

the normal are taken into account; (iii) external forces do not change their directions

while the plate deformations take place.

Although the applied computational scheme is based on the Kirchho®�Love

hypotheses and is treated as the model of ¯rst approximation, it is su±cient for

engineering oriented analysis as it has been pointed out in Ref. 14.

Fig. 1. The investigated plate.
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Mathematical plate model is governed by two PDEs with regard to displacements

of the form
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where wðx; tÞ denotes the element displacement in normal direction; uðx; tÞ is the

element displacement in longitudinal direction; " denotes the dissipation coe±cient;

E is the Young modulus; h describes height of the transversal plate element cross-

section; � is the unit speci¯c weight; g is the Earth acceleration; t denotes time,

whereas q ¼ q0 sin!pt is the external periodic load. After introducing the following

nondimensional parameters,
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In what follows one of the following boundary conditions will be used together

with Eq. (3):

wð0; tÞ ¼wða; tÞ ¼ uð0; tÞ ¼ uða; tÞ ¼ w 0
xð0; tÞ ¼ w 0

xða; tÞ ¼ 0; ð4Þ
wð0; tÞ ¼wða; tÞ ¼ uð0; tÞ ¼ uða; tÞ ¼ w 00

xxð0; tÞ ¼ w 00
xxða; tÞ ¼ 0; ð5Þ

wð0; tÞ ¼wða; tÞ ¼ uð0; tÞ ¼ uða; tÞ ¼ w 0
xð0; tÞ ¼ w 00

xða; tÞ ¼ 0; ð6Þ
wð0; tÞ ¼w 0

xð0; tÞ ¼ uð0; tÞ ¼ 0; Mxða; tÞ ¼ Nxða; tÞ ¼ Qxða; tÞ ¼ 0; ð7Þ
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and the following initial conditions are taken:

wðx; 0Þ ¼ w
: ðx; 0Þ ¼ uðx; 0Þ ¼ u

:ðx; 0Þ ¼ 0: ð8Þ
In order to reduce our PDEs to a system of ODEs with respect to time we apply

both ¯nite di®erence approximations and the Taylor series in the neighborhood

of a point xi. Let us consider the following mesh space GN ¼ f0 � xi � 1; xi ¼
i=N ; i ¼ 0; . . . ;Ng:

The following di®erence operators with the approximation Oðc2Þ, where c de-

notes the step of spatial coordinate, are introduced: �xð�iÞ ¼ ð�Þiþ1�ð�Þi�1

2c ; �x2ð�iÞ ¼
ð�Þiþ1�2ð�Þiþð�Þi�1

c 2 ; �x 4ð�iÞ ¼ ð�Þiþ2�ð�Þiþ1þ6ð�Þi�ð�Þi�1þð�Þi�2

c4 .

As a result of the above mentioned procedure we get the following system of

second order ODEs:

u
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Then system (9) is reduced to a set of ¯rst order ODEs and solved via the fourth

order Runge�Kutta method. Boundary conditions (4)�(7) also undergo a similar

like modi¯cation.

3. Numerical Analysis

It should be emphasized that the so far obtained system (9) cannot be solved ana-

lytically. In order to validate and verify the further obtained results through the

method of ¯nite di®erences (FDM), a comparison with results obtained via ¯nite

element method (FEM) in the form of Bubnov�Galerkin is carried out. The com-

parison results are reported in Table 1 including the following dynamical charac-

teristics: a time history ðwð0:5; tÞÞ, fast fourier transform (FFT) and a Morlet

wavelet-spectrum in the 2D and 3D forms. Although one may observe signal

di®erences but a qualitative character of the signal modulation is similar, what

belongs to characteristic features while investigating a chaotic signal. Frequency

spectra of the chaotic signal overlap qualitatively in vicinity of the fundamental

frequencies, although a di®erence in a frequencies number occurs. On the other hand,

wavelets exhibit the results convergence. Assuming the convergence of results

obtained either by FEM or FDM, further FDM has been used because it requires less

computational time in comparison to FEM.

In order to analyze the nonlinear dynamics of °exible long plates the following

dynamical characteristics have been applied: a signal, a power spectrum, a phase

portrait, a Poincar�e section and the Lyapunov exponents for each set of parameters

q0; !p, allowing ¯nally for a determination of various kinds of vibrations including
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Table 1. Comparison between FDM and FEM.
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periodic, quasi-periodic and chaotic ones. In result, various vibration regimes are

presented in a graph form versus control parameters q0; !p. Charts of vibration

regimes exhibit various zones of nonlinear behavior allowing to either keep or avoid a

required regime. However, to validate computational results one needs to de¯ne an

optimal number of nodes (n) of a computational mesh, as well as a suitable number of

partitions of intervals regarding both frequency ð!pÞ and excitation amplitude ðq0Þ.
In Table 2 vibrational regimes versus f!p; q0g are reported. Note that harmonic,

periodic, subharmonic, quasi-periodic, chaotic vibrations as well as bifurcation

dynamics are distinguished by di®erent colours. However, here we do not study

multiple solutions.

As it has been already mentioned, the construction of a vibration chart usually

requires a long computational time. Owing to data reported in Table 3 one may

conclude that the most optimal choice refers to the resolution of 200� 200 and the

computational time is proportional to the resolution number, i.e. the mesh nodes

number n. Similar like observation holds also while increasing the resolution number.

Applied algorithm for charts constructions allows detection of periodic, quasi-

periodic and chaotic regimes including bifurcation zones. However, results given by

the chart do not allow estimating a convergence of the numerical process regarding

the partition number ðnÞ of the spatial coordinate. In order to verify results

reliability the following parameters are ¯xed: " ¼ 1; � ¼ a
h ¼ 50; ! ¼ 8; 625;

q0 ¼ 59000; kx ¼ 0, as well as boundary conditions (5) and initial conditions (8) are

taken. For the given parameters the investigated system exhibits chaos, which results

from the charts (see point A of Table 2).

Let us study the obtained signal regarding a number of partition of the spatial

coordinate. For this purpose time histories frequency power spectra and Poincar�e

maps (Table 4) and wavelets (gaus1, gaus8, mexh, morl)— see Table 5 — are

Table 3. Computational time versus number of spatial partitions n.
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constructed, where abbreviations of the applied wavelets correspond to Gauss 1,

Gauss 8, Mexican Hat and Morlet ones, respectively.

A study of data of Table 4 shows that the time history wð0:5; tÞ converges with
respect to amplitude of the maximum de°ection for n � 32. In the FFT power

Table 5. Various wavelets for di®erent n.

hxem1suag

lrom8suag

ω ω

ω ω

0       2                  4              6              8             10   

0.5

1

1.5

2

2.5

W(ω)

gaus1
gaus8
mexh
morl

ω

Fig. 2. Comparison of di®erent wavelets.
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spectrum for various partition of the spatial coordinate one may observe the same

frequencies localization, and in particular the frequency of excitation !p, but again

the convergence is not observed. In the Poincar�e map for n � 60 a strange chaotic

attractor appears, which is robust and preserves even for higher partition number.

The wavelet transform becomes one of the most e®ective tools while investigated

nonlinear dynamical systems. Data of Table 5 (wavelet-type analysis) yields the

observation that for n � 60 for various Morlet wavelets the convergence is achieved

regarding both energy W ð!Þ as well as positions distributions of frequencies !. In the

case of partition n ¼ 80 the most convergent wavelets are the Morlet and Gauss of

the Eighth (see Fig. 2).

The so far carried out analysis allows taking the following reliable choice: method

of solution to di®erential equations—¯nite di®erence method (FDM) and the vibration

charts resolution with the 200� 200 number of partitions regarding the spatial

coordinate (n ¼ 60).

4. Concluding Remarks

In this paper the derived PDEs governing dynamics of °exible in¯nite plates are

reduced to ODEs via either the FEM or FDMs. It has been illustrated that the results

obtained via the FDM require less computational time in comparison to the FEM,

and hence the FDM has been ¯nally validated and used for further numerical

analysis. In particular, we have shown how to choose an optimal number of nodes (n)

of a computational mesh, as well as a suitable number of partitions (resolutions) of

two control parameters ðq0; !pÞ. It has been shown that depending on the choice of

two mention parameters the investigated plate may exhibit the regular (periodic,

harmonic, sub-harmonic, quasi-periodic), chaotic as well as bifurcation dynamics. It

has been illustrated and discussed, among other, that the most suitable wavelets to

study the chaotic and bifurcational dynamics of plates having the in¯nite length are

the Morlet and Gauss 8 wavelets.
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