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Abstract Stick-slip vibrations appear during relative motion between contacting surfaces
of miscellaneous frictional pairs. They depend on the viscous force, Coulomb force or
other velocity-dependent forces. These effects appear in almost all mechanical systems,
for instance, in positioning systems like servomechanisms, impulse encoders and stepper
motors which operate at, or about zero velocity of relative motion between shafts and sliding
bearings. This paper presents numerical modelling of a DC-motor as a dynamical system with
stick-slip effect which appears while direction of rotation of its rotor crosses zero velocity
speed. These investigations are aimed on some future applications of the control technique
serving for explanation of bifurcation phenomena existing in such kind of discontinuous
systems. Putting emphasis on nonlinear effects we apply the well-known, but a bit extended
sliding-surface method allowing for compensation of frictional effects. A limit cycle on a
phase plane as well as time-histories of control inputs and system outputs were obtained
using numerical simulations performed in Simulink.

Keywords Numerical approximation · Nonlinear dynamical systems ·
Control of mechanical systems

Introduction

The natural resistance to relative motion between non-lubricated surfaces of two contacting
bodies is called dry friction. In some dynamical systems modelling nonlinearities caused by
dry friction a controller has to be designed to avoid steady-state tracking errors or vibrations.
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An adaptive friction compensation to improve performance for tracking errors without
Stribeck effect has been proposed in [11]. A new control strategy for compensation of fric-
tional phenomena including Stribeck effect, hysteresis, stick-slip limit cycling, pre-sliding
displacement and rising static friction has been particularly described and examined. The pro-
posed compensator could be useful for handling significant nonlinearities in motor controls.
Similarly, the Lund-Grenoble model of dynamical friction has been used in [10] to control
nonlinear effects that the model captures: the Stribeck and Dahl effects, viscous and Coulomb
friction [4]. A new Lyapunov-based continuous dynamic controller has been delivered for a
more general class of nonlinear systems. It produced better control of a high-speed precision
linear tracking table than some tuned PID controllers without the direct nonlinear effects
compensation. As it has been shown also in [21], the conventional feedback control methods
cannot ensure good results in the presence of dry (stick-slip) friction even in a one degree-
of-freedom DC-motor system. Because of steady-state errors a traditional PD controller will
not achieve satisfactory performance. These errors could be reduced by increasing the P gain,
but significant instabilities would be reported while driving the motor between some angular
velocities or along the desired rapidly changing time history of its angular position. Very
good positioning accuracy have been obtained with the use of a new sliding-mode based
smooth adaptive robust controller designed for dry friction compensation.

A study of control of a mechanism under the influence of low velocity friction has been
conducted in [1]. The theoretical and experimental comparative study of linear (PD, PID)
and nonlinear (smooth continuous and piece-wise linear discontinuous) compensation algo-
rithms have been proposed. In the case of modelling a two degree-of-freedom controlled
planar manipulator the nonlinear controllers have proved superior in performance to any PD
controller for some P and D gains. Moreover, their tracking performance was also superior
to the PID controller, but it cost an oscillatory response and jerky torque time-dependency.
Stability of smooth controllers was much simpler to demonstrate.

Simple active control of the belt-driven oscillator with stick-slip friction in a control sys-
tem with feedback loop created by a transducer, frequency filter, phase shifter, amplifier and a
shaker attached to the oscillating body has been studied in [9]. The feedback system allowed
for suppression of unstable vibrations at high effectiveness insensitive to errors in phase
shift and amplification. Similarly in [14], some type of friction driven oscillator controlled
by Lyapunov redesign based on delayed state feedback has been numerically investigated.
Authors redesigned a continuous controller on the basis of a delayed state feedback to ensure
that the nonsmooth friction driven system is ultimately bounded. Moreover, by constructing a
Lyapunov-Krasovskii function the sufficient condition of stability for the investigated system
was obtained.

Neural networks have the capability of approximating nonlinear functions, therefore they
are also demanding in estimation of frictional behaviours. Much work has been done in this
subject [12,19]. Work [19], for instance, brings investigations on control of linear motion of
motors by means of the learning forward controller that is designed in the discrete state-space.
There has been also solved in [8] the problem of discrete-time iterative learning control for
position trajectory tracking of multiple-input, multiple-output systems including Coulomb
friction, bounds on the inputs and friction coefficients (static and sliding). On the background
of a two-link revolute-joint planar robot arm some satisfactory learned angular position time
histories (at a decrease of position-tracking error) have been shown. In accordance to linear
servo motor control, a novel very interesting approach for designing a wavelet basis function
network learning controller for a linear motor control system was considered in [15]. The
proposed wavelet net-based controller dealt with viscous friction and force ripples that occur
in motion control of linear synchronous motors (Fig.1).
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The considerations presented by the exemplary articles were motivated by examination
of control approaches, but one should mention even on their stability. With regard to subject
of the paper, an interesting reference [7] presents analysis of global stability of linearising
control with a new robust nonlinear observer induction motors. Authors used the traditional
induction model of Park in a stator fixed reference frame related to the stator given by [17].
They designed a control algorithm based on feedback linearisation [18]. After assumption
of parameters of the induction motor a detailed scheme of the nonlinear control with an
observer has been done in Simulink. The new robust observer based on a nonlinear control
scheme offered advantage of only one tuning parameter. The global stability of the whole
system consisting of motor, controller and observer was established by means of the precise
Lyapunov function that kept the observer’s dynamics free. More on the initial strategy on
input-output linearisation could be found in [6], but on the global stability of the process-
observer-controller system in [16].

Deeper survey through the cited literature provides many references to theoretical deriva-
tions and practical implementations confirming permanent interest in control of nonsmooth
systems. Basically, control strategies depend on the aim, the friction law, the system at hand
and its field of application.

Problem Statement

This study is concerned on a numerical simulation of compensation of frictional effects pres-
ent in a real system designed for observations and experimental estimation of friction force
characteristics, see [2]. It consists of a DC-motor driving a wide transmission belt on which
a rigid body vibrates being in frictional contact with surface of the belt. For instance, to
find bifurcations of sliding solutions [3] after relative motion observed between contacting
surfaces of the investigated coupling it is required to precisely realise some desired function
of changes of angular velocity of the DC-motor that drives the belt. Therefore, the rotational
velocity of the driving motor should vary in a periodic cycle tracking exactly the desired
time-dependent characteristics (triangular, sinusoidal, etc.), but with regard to the existing
nonlinear friction characteristics it does not occur. From the point of control theory it states a
problem of providing a robust tracking control of rotational velocity of the DC-motor. There-
fore, some close to ideal generation of regular input signal-excitation of the belt—would
be possible after application of some tracking control technique that was implemented, for
instance, to control robot manipulators [13]. Inputs to the method would be a control errors
e(t) = ϕ(t)− ϕd(t) and ε(t) = ϕ̇d(t)− λe(t), where: ϕ and ϕ̇ are respectively, the angular
position and velocity of the motor’s rotor driving the base by means of a non-stretchable
transmission toothed belt; index d denotes desired values of corresponding variables - along
with the desired phase trajectory.

Particular investigation will be focused on examination of influence of frictional con-
tacts existing during rotation of rotor of a DC-motor. One can distinguish there a phenom-
enon of stick-slip friction that mostly affects accuracy of positioning. Friction of that type
was investigated in [4] by authors of the paper, and may result from the following: Cou-
lomb friction that represents a maximum static friction Tsm sgn ϕ̇(t) at a slip phase and
Tsm(1 − sgn |ϕ̇(t)|) at a stick phase during which an input torque generated by a system
driven by the motor’s rotor could by applied, exponential friction described by the Stribeck
curve TStm(1 − exp(−T0|ϕ̇(t)|) sgn ϕ̇(t)), a viscous friction Tvm ϕ̇(t), and a position-depen-
dent friction T1m sin(T2ϕ(t) + T3) sgn |ϕ̇(t)| as proposed in [20], where: sgn ϕ̇ denotes
sign of value of angular velocity, ϕ is an angular displacement, Tsm is the maximum
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static friction torque, TStm and T0 > 0 are the parameters of Stribeck curve, Tvm is the
coefficient of viscous friction, T1m, T2 and T3 are constants. Mechanical part of the reduced
dynamical system of ordinary differential equations used for modelling dynamics of rota-
tional motion of a DC-motor holds:

Jm ϕ̈(t)+
(

cbcm

Ra
+ Tvm

)
ϕ̇(t)− TStm

(
1 − e−T0|ϕ̇(t)|) sgn ϕ̇(t)+

T1m sin (T2ϕ(t)+ T3) sgn |ϕ̇(t)| + Tsm (1 − sgn |ϕ̇(t)| +
sgn ϕ̇(t)) = cmψm(t) , (1)

and the remaining unknown model parameters read: Ra and ψm denote respectively the
armature resistance and the armature current, Jm is the moment of inertia of the rotor, cb is a
constant of the back electromotive force, and cm is the motor torque constant. One rewrites
Eq. (1) in a form scaled with respect to cm as follows:

J ϕ̈(t)+ Bϕ̇(t)+ τ(t) = ψ(t) , (2)

where τ(t) = Tvϕ̇(t)−TSt (1 − exp(−T0|ϕ̇(t)|)) sgn ϕ̇(t)+T1 sin(T2ϕ(t)+T3) sgn |ϕ̇(t)|+
Ts (1 − sgn |ϕ̇(t)| + sgn ϕ̇(t)) is the scaled friction force, and J, B, Tv, Ts, T1, TSt are equal
Jm
cm
,

cb
Ra
, Tvm

cm
, Tsm

cm
, T1m

cm
,

TStm
cm

, respectively.
It is not possible to exactly describe the friction and to correctly assume all values of

parameters. A tracking control that is a point of the study should also correct any inaccura-
cies caused by an imprecise system modelling.

Control Strategy

The task of control is to design an adaptive controller that would allow to change angular
velocity of rotation of the motor’s rotor according to some desired function ϕd(t). Let us
begin from the so-called sliding surface method [20]. On its background the control error
e(t) = ϕ(t)− ϕd(t), an auxiliary variable ε(t) = ϕ̇d(t)− λe(t) and the definition of sliding
surface r(t) = ϕ̇(t)− ε(t) = 0, where variables with index d denote corresponding desired
values, λ > 0 is for more general multidimensional case a positive definite main diagonal
matrix. Having introduced variables of the sliding surface method let us propose derived
from Eq. (2) a control law in the form:

ψ(t) = Ĵ ε̇(t)+ D̂ε(t)− T̂St

(
1 − e−T̂0|ϕ̇(t)|) sgn ϕ̇(t)+

T̂s sgn ϕ̇(t)+ T̂s (1 − sgn |ϕ̇(t)|) us(t)− ub(t) , (3)

where ub(t) is a condition of bounding function, us(t) = 1− sgn |r(t)| at term describing
sticking phase is a function introduced with respect to definition of sliding surface r(t) =
0, D̂ = B̂ + T̂v , circumflexˆabove symbols marks estimates of corresponding parameters.

Equation (3) will be used for adaptation of unknown estimates in a scheme, whereψ(t) is
put to system (1) to compensate for linear and nonlinear forces included in it. Such adaptive
feed-forward control loop is good to compensate linear friction forces like Coulomb and
viscous ones [21]. Nonlinear friction forces like Stribeck effect and the angular position-
dependent friction force cannot be controlled in the loop but some adaptation law based on a
robust compensator to learn an upper bounding function has to be used [13]. The following
bounding function is assumed

ub(t) = kDr(t)+ ρ̂kT tanh(r(t)(a + bt)) , (4)
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where a, b and kD are positive constants, and kT > 1. If parameter ρ̂ is an estimate of the
upper bound of the nonlinear residual terms, ub(t)|r(t)=λe behaves as a proportional gain
robustly compensating nonlinear friction forces. It inputs to the control law (3) a torque
greater than the maximum static friction allowing for compensation.

Estimation of Unknown Linear and Nonlinear Parameters

In the sliding surface method the adaptive law to validate all unknowns at each step of inte-
gration is based on simple first-order differential equation. Therefore, the following adaptive
law [20] to validate estimates of system parameters at linear terms takes the form:

˙̂J (t) = −δ1ε̇(t)r(t) , (5)
˙̂D(t) = −δ2ε(t)r(t) , (6)

˙̂Ts(t) =
{− δ3 sgn (ϕ̇(t))r(t), slip ,

δ3 (1 − sgn |ϕ̇(t)|) |r(t), stick ,
(7)

where δ1...3 are positive constants, r(t) = ϕ̇(t)− ε(t).
Putting ψ(t) from Eqs. (3) to (2) including ε(t) = ϕ̇(t) − r(t), ε̇ = ϕ̈(t) − ṙ(t), with

T̃St = T̂St − TSt and T̃0 = T̂0 − T0 measuring differences between estimates and their
corresponding real values, one gets:

J ṙ(t)+ Dr(t) = Ĵ ε̇(t)+ D̂ε(t)+ T̂s sgn ϕ̇(t)+ ω(t)− ub(t) , (8)

where

ω(t) =
(

T̂St e
−T̂0|ϕ̇(t)| − TSt e

−T̂0|ϕ̇(t)|e−T̃0|ϕ̇(t)| − T̃St − Tp

)
sgn ϕ̇(t). (9)

Expanding exp (T̃0|ϕ̇(t)|) = 1 + T̃0|ϕ̇(t)| + T̃0|ϕ̇(t)|2/2 + R̃ in a Taylor series about
|ϕ̇(t)| = 0 and using only the first three terms of the expansion with a rest R̃ ≤ exp (T̃0|ϕ̇(t)|)
T 3

0 |ϕ̇(t)|3/6:

ω(t) =
[

T̂St e
−T̂0|ϕ̇(t)| − TSt e

−T̂0|ϕ̇(t)|
(

1 + T̃0|ϕ̇(t)| + T̃0
|ϕ̇(t)|2

2
+

T̃ 3
0

|ϕ̇(t)|3
6

eT̃0|ϕ̇(t)|
)

− T̃St − Tp

]
sgn ϕ̇(t) = ρ sgn ϕ̇(t) , (10)

whereρ = −γ1+γ2 exp (−T̂0|ϕ̇(t)|)−γ3|ϕ̇(t)| exp (−T̂0|ϕ̇(t)|)−γ4|ϕ̇(t)|2 exp (−T̂0|ϕ̇(t)|),
γ1 = max|ϕ̇(t)|∈[0,∞]{|ϕ̇(t)|3 exp (−T0|ϕ̇(t)|)T̃ 3

0 TSt/6} + T̃St + Tp, γ2 = T̃St , γ3 =
T̃0TSt , γ4 = T̃ 2

0 TSt/2. Constants γ1...4 depend on estimates or on its deflection from real
values.

At this point let us back to Eq. (4) containing an unknown estimate ρ̂. To get in Eq. (9)
cancellation of reminders not dependent on r(t), ṙ(t), ε(t) and ε̇(t), ω(t) − ρ̂(t)ωr (t) →
∞, where ωr (t) = kT tanh (r(t)(a + bt)) as introduced in [5]. Therefore ρ sgn ϕ̇(t) →
ρ̂kT tanh (r(t) (a + bt)) and if ub(t) is the upper bounding function of ω(t) then

ρ̂(t) = −γ̂1 + γ̂2e−T̂0|ϕ̇(t)| − γ̂3|ϕ̇(t)|e−T̂0|ϕ̇(t)| − γ̂4|ϕ̇(t)|2e−T̂0|ϕ̇(t)| (11)
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Table 1 System and tuning parameters for the numerical procedure

Notation Value Unit

Motor torque constant cm 0.5 N m/A

Constant of the back electromotive force cb 0.011 V/rpm

Armature resistance R 1.1 �

Moment of inertia of the rotor Jm 2 kg m2

Armature inductance La 10−3 H

Coefficient of viscous friction Tv 8 N m s/rad

Max. static friction torque on Stribeck curve TStm 0.5 N m

Max. static friction torque Tsm 1.5 N m

Position-dependent friction torque T1m 0.35 N m

Constant of Stribeck curve T0 10 –

Constants of position-dependent friction [T2, T3] [1, 0.5] –

Constants of adaptation laws δi=1...7 9 × i –

Tuning factors: P gain k1 0.21 × 103 –

Tuning factors: D gain k2 1.40 × 103 –

states the estimate of ρ. Similarly to construction of Eq. (8) we can calculate the remaining
estimate ρ̂(t) by solving the following system of equations:

˙̂γ1(t) = δ4|r(t)| ,
˙̂γ2(t) = −δ5|r(t)|e−T̂0|ϕ̇(t)| ,
˙̂γ3(t) = −δ6|r(t)||ϕ̇(t)|e−T̂0|ϕ̇(t)| ,
˙̂γ4(t) = −δ7|r(t)||ϕ̇(t)|2e−T̂0|ϕ̇(t)| , (12)

where γ1...4 are positive constants.

Voltage Input for Control of Rotational Velocity of the DC-Motor

In a real application one would require to source the motor not with the electrical current, but
with a voltage of known function. In this situation the following full system has to be taken
into the analysis:

J ϕ̈ f (t)+ Bϕ̇ f (t)+ τ f (t) = ψ f (t) , (13)

Laψ̇ f (t)+ Raψ f (t)+ cbϕ̇ f (t) = v f (t) , (14)

where index f is used to denote full three-dimensional dynamical system, La is the armature
inductance, v f (t) is a time-dependent function of voltage required to realise some desired
task of control.

One assumes that Eqs. (1) and (2) describe mathematically dynamics of the motor of which
electrical and mechanical parameters will be taken according to an existing direct current
commutation motor P Z T K 60 − 46 J suitable to use it in cross-feed drives of numerically
controlled machines (Table 1).

Voltage control in the full electromechanical system requires to regard to (13). If the
current-input control of the DC-motor works correctly, then the best solution would be to
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maximally reduce influence of the second equation. In the full system it provides these
unwanted disturbances influencing the optimal current input. The most obvious would be to
apply to Eq. (14) the voltage input v f (t) calculated on the basis of ψ(t) that is estimated
after solution of only the reduced mechanical system (2) given by control law (3). Therefore,
a voltage input necessary to cancel produced by (14) dynamical disturbances of the complete
three-dimensional electromechanical system is expected in the form:

v f (t) = Laψ̇(t)+ Raψ(t)+ cbϕ̇(t)+ d(t) , (15)

with a limitation thatψ(t) ensures proper tracking current-input control of the reduced model
(2), and ϕ̇ is the angular velocity resulting from that control. Function d(t) is a compensator
of dynamical differences between state variables of Eqs. (14) and (15).

After substitution of v f given by (15) to (14) all dynamical terms in Eq. (13) have their
counterparts cancelling them, but some occurring differences are expected to be compensated
by d(t)which if disregarded makes the substitution working incorrectly and some significant
oscillations about zero value are observed. To increase effectiveness of the control strategy
it is proposed to apply a two-dimensional proportional control with a feedback from plant
described by full dynamical system of the modelled motor. Therefore, applying

d(t) = k1(ϕd(t)− ϕ f (t))+ k2(ϕ̇d(t)− ϕ̇ f (t)) (16)

to Eq. (15) to be used in (13) the following equation of dynamical equilibrium is found:

La
(
ψ̇ f (t)− ψ̇(t)

) + Ra
(
ψ f (t)− ψ(t)

) + cb
(
ϕ̇ f (t)− ϕ̇(t)

) =
k1

(
ϕd(t)− ϕ f (t)

) + k2
(
ϕ̇d(t)− ϕ̇ f (t)

)
, (17)

where to get the demanding cancellation of Eq. (14), tuning factors k1 and k2 should ensure
equality of both sides of Eq. (17), but in each time, solution ψ f (t) have to be updated in
Eq. (13), ϕd and ϕ̇d are the desired coordinates of the phase trajectory of rotor’s motion.
Having this condition met, solution ϕ f (t) of Eq. (13) should track the optimal solution ϕ(t)
of Eq. (2). During the tracking control the time history of v f (t) can be saved and used as an
input to drive a complete electromechanical dynamical system of the DC-motor along with
desired phase trajectory, angular velocity or angular position of its rotor.

Numerical Simulation

Efficiency of the two-stage control method is checked in numerical simulations performed
for a model of DC-motor P Z T K 60−46 J with stick-slip friction occurring in contact zones
placed between the rotor’s shaft and bearings. Rotational velocity of the DC-motor is required
to follow the desired trajectory ϕd(t) drawn with a dashed line in Fig. 2. Time-history of this
velocity is formed according to the scheme: it increases from 0 to 0.2 rad/s in 0.2 s, is then
held at this value for 0.6 s, it decreases to 0 in 0.2 s and without a delay changes its value to
negative achieving symmetrically (in second half of period) the same thresholds and times of
presence as for positive values. After 2 s the cycle is repeated (see the dashed line in Fig. 2).

Initial values of parameter estimates at linear terms: Ĵ (0) = 1, D̂(0) = 1, T̂ (0)s = 0.2,
T̂ (0)St = 1, T̂ (0)0 = 1. Initial value of parameter estimate at nonlinear terms ρ̂(0) = 0, initial

values of state variables ϕ(0) = ϕ̇(0) = 0, ψ(0)f = 0.
Important to observe, is that at the beginning of simulation exact values of some motor

parameters are not known, but are represented by initial values of their counterpart estimates.
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Fig. 1 Schematic diagram of the control system

Besides the uncertainty of parameters there exist also some strong influence of discontinuous
terms represented by friction forces described earlier.

It is seen in Fig. 2 that at first occurrence of the threshold of constant angular velocity
(0.2 rad/s) the system response is inaccurate. Such transient behaviour results from the
model and tuning parameters that are not correctly estimated at the corresponding time. The
response changes over time to produce at the beginning of second period (at 2 s) accept-
able overlapping of both trajectories. At subsequent ±0.2 rad/s thresholds the systems’ step
response of the model is well damped smoothly fitting edges of the desired shape. Figures 2b,
d, f bring a clear comparison of three solutions: oscillating, over-dumped and the most accu-
rate which could be also subject to some small improvement to get faster convergence to the
steady state velocity.

The phase trajectory visible in Fig. 3 gives another view on the desired trajectory. It should
take a shape of closed curve bounded between ϕ̇ = ±0.2. To achieve the demanding effect
of control the voltage input should be applied accordingly to the time history shown in Fig. 4.
Amplitude of the demanding voltage control input changes impulsively after crossing ϕ̇ = 0,
for t = 1, 2, . . . , n[s].

Conclusions

The proposed strategy of control ensures robust adaptation, works correctly and can be
applied in solution of other control tasks regarded to shaping of time-histories of responses
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Fig. 2 Desired time-history of angular velocity ϕ̇d (t) (dashed line) and the corresponding response ϕ̇(t)
(solid line) of the analysed voltage-controlled numerical model of DC-motor defined by the assumed set of
model parameters, PD tuning variables k1 and k2, and initial values of state variables

of some group of discontinuous systems. After many attempts of tuning, parameters k1 and
k2 of the second stage of control have been estimated. They significantly affect local step
response (appearing while going on the constant angular velocity thresholds). Moreover, on
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Fig. 3 Projection of phase trajectory of the controlled system on the plane ϕ̇(ϕ)

Fig. 4 Voltage input v f (t) applied to the controlled DC-motor

the basis of sliding-mode based smooth adaptive robust controller for compensation of fric-
tional effects there was proposed useful and easy applicable extension of this method for a
numerical tracking control of DC-motors by means of voltage input. A kind of drawback or
an inconvenience in application of the control strategy is the requirement of estimation of
the upper bounding function for stick-slip friction in order to guarantee closed-loop stability.
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