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Abstract

This article is focused on analysis of influence of functionally graded material parameters in the problem of longitudinal

rod deformations. This analysis is based on exact and asymptotic solutions. Accuracy rating of the proposed asymptotic

method of calculating deformations in constructions made of functionally graded material is also given.
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Introduction

The functionally graded constructions and materials
are represented by structures, whose characteristics
are continuously changing along one or more directions
due to a certain rule. Designing functionally graded
structures (FGSs) with a simultaneous control of the
gradient properties allows improving their operating
characteristics. FGS can be divided into homogeneous
(for example, plates and shells of variable thickness)
and heterogeneous (non-homogeneous) structures (for
instance, ribbed, perforated or corrugated plates and
shells, as well as composite materials). Fundamental
results, allowing to estimate a sensitivity of the main
characteristics of the FGS according to the changes of
design parameters, for homogeneous structures have
been reported in Haug et al.1 and Choi and Kim.2

However, in practice, it is frequently required to
increase the costs for manufacturing of such FGS.
On the other hand, it is achievable to reduce costs
and provide the functionally graded material (FGM)
heterogeneous characteristics using their quasi-periodic
properties.

Only recently, the above-mentioned FGMs have
been applied in manufacturing of FGS (for instance,
alloys composed of stiff grains and metallic ligament,
which content is continuously changing within the
material volume). Nevertheless, there is a lack of any
theoretical basis concerning sensitivity estimation of the

FGM constructions along with the changes of material
characteristics. Publications on the subject mainly con-
cern the ‘direct’ problem solution: evaluation of differ-
ent physical fields in FGS. Main approach during
analysis and design of FGMs is being based on
the finite element method, but it is associated with
many serious computational problems.3–5 A different
approach consists in extending micromechanical
models originally developed for statistically uniform
random composites to the case of statistically non-
uniform (graded) random composites.6–8 Non-linear
analysis of plates and shells made of FGM is studied
in Shen.9 Analytical solution of the mechanical behav-
iour of FGMs based on the first- and third-order shear
deformation theory is reported in Akbarzadeh et al.10

and Khazaeinejad and Najafizadeh.11 Galerkin’s
approach for buckling analysis of rectangular plates
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composed of FGMs is applied by Najafizadeh et al.12

On the other hand, an analytical method based on the
Mindlin plate theory is introduced by Mohammadi
et al.13 In papers Anthoine14 and Nematollahi et al.,15

the homogenization theory for periodic media is gener-
alized to the case of quasi-periodic media. In addition,
in that work, state of the art of computational methods
devoted to FGMs is presented and discussed.

For solving ordinary differential equations (ODEs)
and partial differential equations (PDEs) with periodic
coefficients, the asymptotic homogenization method
has been developed, for example, being reported in
Manevitch et al.16 In Bolshakov et al.,17 this method
is used to calculate periodic properties exhibited
by non-homogeneous composite materials with regard
to micro-mechanical effects. Furthermore, in
Andrianov et al.,18,19 a modification of the homogen-
ization method for calculating the quasi-periodic struc-
tures has been proposed. These modifications are
applied to compute physical fields in the FGMs.

The aim of this article is to investigate the depend-
ence between reaction of deformation of FGSs and
changes in the characteristics of FGM. For this pur-
pose, the exact solution is studied. We apply here the
modified method of Andrianov et al.,18,19 which yields
analytical solutions. This allows analysing the mode of
deformation of the FGSs, without resorting to the vari-
ational methods.1,2

In ‘Problem formulation and exact solution’ section,
an equation of longitudinal rod deformation made of
FGMs is given; analysis of influence of a function,
defining gradient properties on the FGM parameters
is carried out and bounds for this function are formu-
lated. The exact solution of the problem is found.
Then, the ‘Asymptotic solution’ form for small gradi-
ents is formulated, which allows to study a sensitivity
of the mode of deformation to gradient changes.
‘Computational examples and accuracy estimation of
the asymptotic solution’ section yields numerical exam-
ples of exact and asymptotic solutions, comparison of
which allowed estimating the accuracy of the asymp-
totic solution and analysing the gradient influence on
the deformable condition. Subsequent sections investi-
gate the influence of heterogeneous parameters and gra-
dient on strained condition based on the asymptotical
solution, as well as a scheme of decrease in the strain
amplitude with the help of the gradient concept is
formulated.

Problem formulation and exact solution

Consider the longitudinal deformation uðxÞ of a rod
made of FGMs with fixed ends and subjected
to action of the distributed longitudinal load qðxÞ.

This deformation is governed by the following bound-
ary value problem

d

dx
a

f ðxÞ
"

� �
du

dx

� �
¼ qðxÞ ð1Þ

uð0Þ ¼ uð1Þ ¼ 0 ð2Þ

where a ¼ aðxÞ is an elasticity coefficient with respect to
the rod elongation–compression being a periodic func-
tion with regard to x and with the period "55 1 and
f ðxÞ a function characterizing the material gradient
properties. In what follows, we further use the abbrevi-
ation gradient instead of a material gradient. This gra-
dient is reached due to functional changes of grains
concentration and their size. Thus, the approximate
formula for variable step of non-homogeneous cells
TðxÞ can be described in the following way

" ¼ �f ðxÞ � f 0ðxÞ�x; T ¼ �x � "

f 0ðxÞ ð3Þ

Consequently, if f 0ðxÞ4 1, then the non-homoge-
neous step decreases, and if 05 f 0ðxÞ5 1, then it
increases.

Figure 1 shows the changes in heterogeneity of cell
boundaries x1, x2, x3, . . . , for the arbitrarily given func-
tion y ¼ f ðxÞ, where the line 1 ð y ¼ xÞ corresponds to a
regular structure.

According to Figure 1 and equation (3), the follow-
ing constraints are set for function f ðxÞ, where the
number of non-homogeneous cells is permanent

f ð0Þ ¼ 0; f ð1Þ ¼ 1; f 0ðxÞ4 0 ð4Þ

3e

2e

e

1

x1 x2 x3 10

1

Figure 1. Nomogram of changes in heterogeneity of cell

boundaries x1, x2, x3, . . . , .
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As an example, we consider two typical gradient
cases. The first case is when the step of non-homogene-
ity decreases or increases monotonically along the rod
length. This gradient can be described as follows

f ðxÞ ¼ �x2 þ �xþ � ð5Þ

Taking into account conditions (4), equation (5)
reads

f ðxÞ ¼ �x2 þ ð1� �Þx ð6Þ

where � is a parameter, characterizing a gradient mag-
nitude and direction (for �4 0 the non-homogeneity
step decreases, whereas for a< 0 it increases).

Condition (4) yields the constraint �j j5 1.
Furthermore, large value of jaj corresponds to the
large gradient value (higher speed of the non-homoge-
neity step variation). It is significant that for arbitrary
values of � formula (6) guarantees symmetry of inter-
vals of either increase or decrease of the gradient step
regarding the rod centre x ¼ 0:5. In Figure 2, the func-
tion f ðxÞ (curve 1) as well as its derivative f 0ðxÞ (curve
2), which were defined by equation (6) for � ¼ 0:5, are
shown. Derivative f 0ðxÞ makes possible to determine
intervals where the non-homogeneity step is larger
than the initial one (for zero gradient � ¼ 0). These
are the intervals where curve 2 is located below or
above the line x ¼ 1 (intervals with the decreased step).

The second typical gradient case corresponds to
increase (decrease) of the heterogeneous step to the
rod centre and increase (decrease) of the step on the
rod edges (Figure 3). This type of gradient can be
described by a cubic function of the following form

f ðxÞ ¼ 2�x3 � 3�x2 þ ð�� 1Þx ð7Þ

where � defines the gradient magnitude and direction,
while condition (4) yields the constraint �15�5 1.

Formula (7) also provides symmetry of the intervals
(either increase or decrease of the heterogeneity step
regarding the rod centre). In Figure 3, the cubic type
gradient f ðxÞ (curve 1) and its derivative f 0ðxÞ (curve 2)
have been defined by equation (7) for � ¼ �0:5.

The exact solution of equation (1) is achieved using
double integration

u ¼
Z

C1 þ
R
qðxÞdx

að f ðxÞ="Þ dxþ C2 ð8Þ

where C1 and C2 are the arbitrary integration constants
defined by boundary conditions (2).

It should be emphasized that, although the solu-
tion of equation (1) is obtained, integrals of this expres-
sion cannot be analytically found for majority of

functions aðxÞ, f ðxÞ, and qðxÞ that appear in practice.
Furthermore, there are problems in getting a result
numerically due to the fast changes of the function
að f ðxÞ="Þ: The asymptotic solution proposed in this art-
icle is devoid of the mentioned drawbacks.

It is significant that investigation of influence of gra-
dient parameters f ðxÞ on the mode of deformation has a
sense that only the following restriction holds for the
considered variations of the function f ðxÞ

c ¼
Z 1

0

a
f ðxÞ
"

� �
dx ¼ const ð9Þ
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Figure 3. Function f ðxÞ guaranteeing decreased step of

heterogeneity in the centre found from formula (7) (� ¼ 0:5
corresponds to curve 1, whereas its derivative f 0ðxÞ corresponds
to curve 2; lines 3 and 4 correspond to zero gradient of the FGM

properties � ¼ 0).
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Figure 2. Function f ðxÞ that guarantees the monotonous

decrease of the heterogeneity step (curve 1); line 2 – its gradient

derivative; line 3 – function that guarantees constant hetero-

geneity step; line 3 – corresponds to zero gradient of f ðxÞ.

Andrianov et al. 21



Observe that condition (9) together with (4) guaran-
tee constant both qualitative and quantitative FGM
properties with respect to the rod length for given
and earlier defined variations of f ðxÞ. Furthermore,
the existing conditions guaranteeing the permanent
number of heterogeneous cells (4) are not enough to
satisfy the isoperimetric condition (9), since the step
of heterogeneity is changing due to the non-linear rule
(3). The investigations of function f ðxÞ for keeping the
condition (9) in a general form belongs to rather diffi-
cult task; therefore, this condition is verified numeric-
ally only for some specific examples.

Asymptotic solution

An asymptotic solution to the boundary value prob-
lems (1) and (2) for a periodically non-homogeneous
medium ð f ðxÞ ¼ xÞ has been obtained in Bolshakov
et al.,17 with a help of homogenization procedure. In
order to solve a similar problem, but for a quasi-peri-
odically non-homogeneous medium, the modification
of this method is applied.19 In addition, we assume
that the material gradient satisfies the following
condition

f 0ðxÞ � 1 ð10Þ

This gradient is further referred to be ‘small’ one.
The condition (10) guarantees small step changes of
the non-homogeneities (3) for neighbouring cells.
However, owing to large number of these cells, the gra-
dient of all length will be relatively large (Figure 4).

Define two variables: � ¼ x and � ¼ f ðxÞ=", which
will be considered as independent ones; hence, one gets

d

dx
¼ @

@�
þ f 0ð�Þ

"

@

@�
ð11Þ

and instead of the initial ODE (1), one considers a
PDE. Its solution can be searched in the following
manner

u ¼ u0ð�, �Þ þ "u1ð�, �Þ þ . . . ð12Þ

where u0, u1 are the periodic functions with respect to �
and have the period 1.

Substituting equations (11) and (12) into equation
(1), and comparing terms standing by the same
powers of ", the following recurrent system of equa-
tions is obtained

@

@�
a �ð Þ @u0

@�

� �
¼ 0

f 0ð�Þ @
@�

a �ð Þ @u1
@�

� �
þ @

@�
a �ð Þ @u0

@�

� �
¼ 0

f 02 �ð Þ @
@�

a �ð Þ @u2
@�

� �
þ f 0 �ð Þ @

@�
a �ð Þ @u1

@�

� �

þ a �ð Þ @

@�
f 0 �ð Þ @u1

@�

� �
þ a �ð Þ @

2u0
@�2

¼ q �ð Þ ð13Þ

From the first equation of the system (13), it is evi-
dent that u0 ¼ u0ð�Þ: Then, the second equation of (13)
gives

f 0 �ð Þ @
@�

a �ð Þ @u1
@�

� �
¼ � @a �ð Þ

@�

@u0
@�

and hence

@u1
@�

¼ � 1

f 0 �ð Þ
@u0
@�

þD1 �ð Þ
a �ð Þ ð14Þ

The constant of integration D1ð�Þ is defined from
a condition of periodicity of the function u1 with
respect to �

D1ð�Þ ¼ ~a
du0
d�

, ~a ¼
Z1

0

a�1d�

2
4

3
5

�1

Eliminating the derivative @u1=@� from the third
equation of (13), one gets

f 02ð�Þ @
@�

að�Þ@u2
@�

� �
þ f 0ð�Þ a

@u1
@�

� �
þ ~a

@2u0
@�2

¼ q ð15Þ

The homogenization procedure is applied to equa-
tion (15) and then every term of this equation under-
goes action of the operator

R 1

0 ð. . .Þd�. The first two

0.6
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Figure 4. Elasticity coefficient (20) for small gradient:

f ðxÞ ¼ 0:4x2 þ 0:6x; z ¼ 1.
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terms are equal to zero due to their periodicity and
finally we get

~a
@2u0
@�2

¼ qð�Þ ð16Þ

The following boundary condition is attached

u0 ¼ 0 for � ¼ 0, 1 ð17Þ

Problem defined by equations (16) and (17) is called
the homogenized problem. It describes the deformation
of a homogeneous rod. The elastic properties of the
material of this homogeneous rod are close to the
effective properties of the initial material. In the case
of a periodic non-homogeneous material, this property
has been reported in Bolshakov et al.17 This statement
is verified for FGMs further in this article.

There is no reflection of material gradient in equa-
tion (16), so it coincides with homogenized equation
presented in Bolshakov et al.17 Gradient property is
considered during defining the first correction term to
the homogenized solution

u1 ¼ f 0ð��1Þ
Z

a�1 ~a� 1
� 	

d�
du0
d�

þD2ð�Þ ð18Þ

where D2 is defined via boundary conditions. Further,
equation (15) allows to find u2 and so on.

Thus, asymptotic solutions (12), (16) and (18) show
that the gradient change of the forms (3), (4) and (10)
modifies the deformable condition of the rod only by
small amount in comparison with deformation (16) of
the equivalent homogeneous rod (order "). The correc-
tor (18) is an oscillating function around the homoge-
nized solution (16) (Figures 5 to 7). Therefore, the
functional flexibility1,2

I1 ¼
Z 1

0

uqdx ð19Þ

cannot be applied as a functional of the construction
reaction to the gradient changes.

Computational examples and accuracy
estimation of the asymptotic solution

As an example, we take the formula for elasticity coef-
ficient allowing getting the exact solution (8) in an ana-
lytical form

a ¼ 1

1þ z sin2ð2� n f ðxÞÞ ð20Þ

where n ¼ 1=" is the number of non-homogeneity cells;
parameter z the ‘magnitude’ of heterogeneity (ratio of
characteristic magnitudes; in this case, it refers to elas-
ticity coefficients, grains and the material ligament).

It should be mentioned that material gradient could
also be introduced with a help of variability of this
parameter. The same FGMs for z ¼ zðxÞ and f ðxÞ ¼ x
are studied in Andrianov et al.19

Further, we apply n ¼ 5 and get 10 oscillations of the
coefficient a. Note that for real constructions made of
FGM, there are much more such oscillations, which
increase the accuracy of asymptotic method, but they
complicate numerical solution. Figure 4 shows the elas-
ticity coefficient for the quadratic gradient (6) for
� ¼ 0:4 and z ¼ 1.

The influence of gradient magnitude � on keeping
the isoperimetric condition (9) for the elasticity coeffi-
cient (20) and quadratic gradient (6) and z ¼ 1 is shown
in Figure 5.
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Figure 6. Comparison of the exact solution (curve 1) and
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Figure 5. Influence of the quadratic gradient magnitude � on

keeping condition (9), z ¼ 1.
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Figure 5 allows to estimate how the gradient magni-
tude � influences the validity of the isoperimetric con-
dition (9).

For large values of heterogeneity, the sensitivity of
condition (9) increases. Namely, for j�j ¼ 0:95 by
2.2%, for j�j ¼ 0:8; 0:6 by 0.72% and 0.15%, respect-
ively. For example, for z ¼ 5, the corresponding
increase will be 6.7; 2.01 and 0.39%.

It is significant to take into account changing inter-
vals for gradient � in sensitivity analysis. Though,
violation of the conditions (9) may introduce the com-
putation error (the dependence in Figure 5 has been
obtained through numerical integration using the pack-
age Maple).

The accuracy analysis of proposed asymptotic
method comparing exact solution (8) and asymptotic
solutions (16) and (18) for q ¼ 1 have been carried
out. Figure 6 shows the comparison of the exact solu-
tion (8) and u0 solution of homogenized equation (16)
for z ¼ 1 and z ¼ 5, f ðxÞ ¼ 0:4x2 þ 0:6x.

From Figure 6, it is clear that computation error of
homogenized solution u0 is essentially dependent on the
magnitude of heterogeneity (the more z the more com-
putation error will be). Therefore, if small heterogeneity
occurs in the asymptotic method, it is necessary to take
into account the additional correction terms u1, u2, . . . , .
At the same time, when the first correction u1 has been
applied, the corresponding solution has been found.
This solution almost coincides with the exact solution
(so much, that it was obliged to depict the solution with
points), see Figure 7. The solution accuracy u0 þ u1=n
has a low dependence on a heterogeneity magnitude,
which is demonstrated in Figure 7.

Constraint on the gradient magnitude (10) has an
efficient influence on the asymptotic method accuracy.
Consider a quadratic gradient (6) for � ¼ 1

f ðxÞ ¼ x2, z ¼ 1: ð21Þ

In this case, the condition (10) near a left edge is not
kept. Figure 8 shows the elasticity coefficient (20) for
the mentioned parameters.

Comparison of the exact solution (8), homogenized
solution u0 and improved homogenized solution
u0 þ u1=n for f ðxÞ ¼ x2, z ¼ 1 is shown in Figure 9.

From Figure 9, it is clear that as soon as f 0ðxÞ
approaches 1 (and it is possible near the right edge),
the accuracy of the asymptotic method grows.

Heterogeneity influence

In what follows, we analyse a sensitivity of the deform-
able condition on a heterogeneity magnitude. For
reaching this purpose, we compare the solutions of
problems (1), (2) and (20) ðq ¼ 1Þ for zero gradient

f ðxÞ ¼ x with deformation of homogeneous rod,
which inflexibility is uniformly distributed on the
length ða ¼ cÞ for heterogeneity z ¼ 1 and z ¼ 5
(Figure 10).

From Figure 10, it becomes clear that growth of
heterogeneity causes the growth of deformation. This
heightened sensibility of heterogeneous structures to
external load is widely used in measuring instruments,
where they are applied as bulging elements (for exam-
ple, springs, convoluted diaphragms, accordion boots).

Consider the heterogeneous rod with elasticity coef-
ficient (20) as a spring: one of its ends is fixed, while to
the other end an external load p is applied and the
distributed load is absent. Deformation of the rod
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Figure 7. Comparison of the exact solution (depicted by
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Figure 8. Elasticity coefficient (20) for large gradient f ðxÞ ¼ x2;

z ¼ 1.
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(Figure 11) is described by ODE (1) for qðxÞ ¼ 0 and
the following boundary conditions

uð0Þ ¼ 0;
du

dx
¼ p, for x ¼ 1 ð22Þ

The sensitivity of the mentioned spring is defined by
an angle of characteristic curve that expresses the
dependence between displacement uð1Þ and load mag-
nitude p: Figure 12 shows such dependence for z ¼ 1
and z ¼ 5 and zero gradient ð f ðxÞ ¼ xÞ (lines 1); lines 2
show the elastic characteristic of homogeneous rod with
uniformly distributed inflexibility ða ¼ cÞ:

From Figure 12, we assume that the sensitivity of the
studied spring grows along with heterogeneity growth.
Furthermore, owing to our computations, the gradient
does not change the elastic characteristic. Figure 13
demonstrates comparison of the rod deformation
(equations (1), (20) and (22) for zero gradient – curve
1) and with the gradient f ðxÞ ¼ 0:3x2 þ 0:7x – curve 2.
Figure 12 represents displacements of the rod end uð1Þ
being equal for both rods.
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Strained condition

Strains in studied problems (1), (2) and (20) ðq ¼ 1Þ
appear via derivative du=dx, so an investigation of
the parameters FGM influence on a magnitude of
that derivative has been carried out. Figure 14 com-
pares the derivative du=dx found using the exact solu-
tion (8) with the derivative du0=dx found through the
homogenized solution (16). The comparison shows that
using the obtained homogenized solution is not enough
accurate for defining strains even approximately.

From Figure 14, we could also conclude that hetero-
geneity causes oscillating concentrations of strains,
which grow along with growing of heterogeneity.
Large computational error that appears during the cal-
culations of the strain using � only the homogenized
solution can be explained by the correcting term u1 in
the asymptotic decomposition of strain � in zero-order
approximation. In what follows, substitute the asymp-
totic expression (12) into formal expression for the
strain � ¼ du=dx and in the formula for derivative (11)

� ¼ @

@�
þ f 0 �ð Þ

"

@

@�

� �
u0ð�, �Þ þ "u1ð�, �Þð

þ "2u2ð�, �Þ þ � � �	 ¼ @u0
@�

þ f 0 �ð Þ @u1
@�

þ "
@u1
@�

þ f 0ð�Þ @u2
@�

� �
þ � � �

Thus, the formal expression for zero strain approxi-
mation is as follows

� ¼ @u0
@�

þ f 0ð�Þ @u1
@�

ð23Þ

Due to equation (18), the formula (23) can be written
in the following way

�0 ¼ a�1 ~a
@u0
@�

ð24Þ

Using formula (24) for defining strains, we can
obtain a solution for any amount of non-homogeneities
which overlaps with the exact solution (Figure 14).

The gradient function f ðxÞ has been already included
in zero-order term of asymptotic solution (24). This fact
indicates larger sensitivity of the strain field in compari-
son with the deformation field. While the gradient is
under control, it is possible to improve the strained
condition. According to this, Figure 15 shows changes
in the strained condition governed by problems (1), (2)
and (20) (q¼ 1) caused by the quadratic gradient (6).

The comparison presented in Figure 15 indicates
that quadratic gradient decreases the maximum com-
pressive stress, but increases the maximum tensile
stress. Such a ‘redistribution’ of stresses could be help-
ful in some cases. Analysing Figures 13 and 15 and
using gradient, the rule of decreasing of maximum
strain concentration values could be formulated: it is
necessary to increase the step of heterogeneity on the
intervals of heightened homogenized strains du0=dx,
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and vice versa on the intervals of reduced homogenized
strains. Hence, for the mentioned problem, there is a
need to increase the step of heterogeneity near the rod
edges and to reduce it in the rod centre. Such a distri-
bution of heterogeneous step could be guaranteed by
the cubic gradient (7) (as an example). In Figure 16, the
graph of elasticity coefficient (20) in cubic gradient is
presented.

Note that it is impossible to obtain an exact analyt-
ical solution for even simple enough expressions for
f ðxÞ in cubic gradient (7) for the studied problems (1),
(2) and (20) ðq ¼ 1Þ with the help of ordinary mathem-
atical packages. That is why in Figure 17 the compari-
son of strains found for zero gradients using the exact
solution (curve 1), strains found for cubic gradient
� ¼ 0:5 (curve 2) and � ¼ 0:7 (curve 3) using the
asymptotic solution (24) are reported.

One may conclude from Figure 17 that it is possible
to decrease the maximum strains by 10.8% for c ¼ 0:7
and by 6.7% for c ¼ 0:5 using the cubic gradient in
comparison with zero material gradient.

Conclusions

Using the homogenized equation, the deformable con-
ditions of the constructions made of FGMs can be
found. Influence of gradient on deformable condition
is small. The correcting terms to homogenized solution
(caused by gradient) have an order " being equal to a
typical size of the heterogeneous cell. Strained condi-
tion sensitivity to gradient parameters is high.
Controlling gradient allows reducing the maximum
strain concentration values that are caused by hetero-
geneity of FGM.

There is a high effectiveness of applying proposed
modification in homogenization method for calculating
deformation in FGCs being based on comparison of
exact and asymptotic solutions in the studied problem.
Furthermore, the gradient magnitude has an essential
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influence on accuracy of the asymptotic method. The
method gives good results only in the case of ‘small’
gradient, when the step of non-homogeneity changes
a little along the non-homogeneous cell length (but
throughout the length of the construction it could be
quite large).

We assume that the described homogenization
method will be also effective in investigations of differ-
ent physical fields in FGMs for more complicated
problems.
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