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Abstract. We investigate non-linear dynamics of flexible rectangular plates subjected to external shear harmonic load action. 

We show that an application of the classical and widely used Fourier analysis does not allow to obtain real picture of the fre-

quency vibration characteristics in each time instant. On the other hand, we show that application of the wavelets approach 

allows to follow frequency time evolutions. Our numerical results indicate that vibrations in different plate points occur with the 

same frequencies set although their power is different. Hence, the vibration characteristics can be represented by one arbitrary 

taken plate point. Furthermore, using wavelets scenarios of transitions from regular to chaotic dynamics are illustrated and 

discussed including two novel scenarios not reported so far in the existing literature.  
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1. Introduction 

Plates are widely applied in various branches of industry like aviations, ship construction, civil engineering etc. 

Since the plate-members of the constructions are in general subjected to action of various loading actions, they need 

careful modeling and validated numerical investigations. Today’s industrial needs are mainly focused on the pa-

rameters choice of the analyzed construction to keep them working in safe regimes. However, in particular chaotic 

dynamics of structures is not enough studied so far. Continual systems as plates have been analyzed in refer-

ences [1,2]. Although chaotic dynamics has been detected in fluid mechanics relatively long time ago, both bifur-

cation and chaotic dynamics exhibited by plates and shells have been studied just recently [3−12]. Our contribution 

is aimed on a study of chaotic vibrations of flexible rectangular plates subjected to shear loading harmonic action, 

which belongs to novel and challenging open problems.  

Mathematical models of flexible rectangular plates and shells have been constructed using the kinematic model 

of Kirchhoff-Love with inclusion of non-linear relations between deformations and displacements. This leads to a 

system of non-homogeneous partial nonlinear differential equations regarding stresses and strains. In order to re-

duce the continuous system to a lumped one may use the Finite Difference Method (FDM) with approximation 
2( )O h , which allows for investigation of the studied rectangular plates as the mechanical objects with infinite 

degrees of freedom. The obtained system of ODEs is then solved via the fourth order Runge-Kutta method.  
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2. Governing equations 

We consider a plate with a constant rigidity and density within a classical non-linear theory subjected to action of 

harmonic shear loading. In the initial time interval [0;1]t   a small static transversal load is applied. In a 3D 

co-ordinates the investigated plate can be represented in the following form: 1 2 3 1 2{ , , | ( , ) [0; ] [0; ],x x x x x a b   

3 [ ; ]}x h h  , 0 t ∞ .  

We study the following non-dimensional PDEs governing dynamics of the shallow shells: 
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is known non-linear 

operator, w  and F are functions of deflection and stress, respectively.  

System (Eq. (1)) is reduced to a non-dimensional form using the following non-dimensional parameters: 

a b  ; 1 1x ax , 2 2x ax , 2w hw  denotes deflection; 3(2 )F E h F  is the stress function; 0t t t  denotes 

time; 
4

2 2

(2 )E h
q q

a b
  is the external loading; (2 )h   is the damping coefficient of a surrounding medium, and 

3(2 )E h
S S

ab
  is the external shear loading. Bars over the non-dimensional parameters are omitted. Furthermore, 

the following notations are introduced; ,a b  denote plate length regarding 1x  and 2x , respectively, and   is the 

Poisson coefficient.  

The following boundary conditions are attached to Eq. (1):  

1. Support on flexible non-stretched (non-compressed) ribs  
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2. Clamping on a contour 
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3. Free support on a contour 
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4. Clamping with flexible non-stretched (non-compressed) ribs 
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The following initial conditions are applied 

1 2 0( , ) | 0, 0t

w
w x x

t



 


 (6) 

3. Finite Difference Method (FDM)  

In what follows we consider the Finite Difference Method with approximation 2( )O h  regarding spatial 

co-ordinates 1x  and 2x . In this case an application of the FDM to the infinite system of degrees-of-freedom 

governed by PDEs (Eq. (1)) yields a finite lumped system governed by the following difference-operator equations 
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The following initial conditions are attached to system (Eq. (7)): 

1 1 2 2 1 2( , ), ( , ), (0 )ij k k n k kw f x x w f x x k n  , 0 t ∞ ,  

whereas the boundary value conditions (Eqs (2−5)) are formulated in the following form: 

1. Free support on a contour: 
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2. Clamping on a contour: 
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3. Support on flexible non-stretched (non-compressed) ribs: 
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4. Clamping with flexible non-stretched (non-compressed) ribs: 
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System of Eeqs (7–11) is solved via the fourth order Runge-Kutta method, where on each time step a large system 

of algebraic linear equations is solved. The Runge principle allows to choose a time step properly.  

4. Analysis and results 

We consider a rectangular plate with homogeneous boundary conditions (Eq. (8)) and the initial conditions 

1 1 2 2 1 2( , ) 0, ( , ) 0k k k kf x x f x x   being subjected to action of a shear-harmonic load in the form of 0 sin ,pS s t  

where p  and 0s  is the frequency and amplitude of the external excitations, respectively. Damping coefficient 

1  , whereas the Poisson’s coefficient 0.3  . 

We investigate numerically a convergence of the FDM versus a number n of partition of intervals [0; 1] and [0; 1] 

of the rectangular plate in a regular (periodic) and chaotic regimes.  

Let us study first the point  01 1 0( , ) (8.6,13.4) , pA s A s    belonging to a periodic zone. Three curves for 

12,14,16n m   are reported in Fig. 1. Increasing n  causes initially decrease of the output signals amplitude, 

whereas for 14, 16n m   the curves fully overlap. 

 

 

Fig. 1. Deflection ( )w t versus n in a periodic zone. 

Let us consider one more point 02 1 0( , ) (28.7,13.4) { , }B s B s   , but in a chaotic zone. For all 12, 14, 16n   

the studied signals differ from each other (see Fig. 2). 
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Fig. 2. Deflection ( )w t versus n in a chaotic zone.  

In what follows we study convergence of the FDM with respect to computation of the Lyapunov exponents. For 

this purpose we monitor the Lyapunov exponents evolution with time ( 280 285t ) for a number of partitions 

( 12, 14, 16n  ) in periodic and chaotic zones.  

In point  01 1 0( , ) (8.6,13.4) , pA s A s    the Lyapunov exponents for all studied partitions are negative, 

which indicates that in the investigated point (  01 1 0( , ) (8.6,13.4) , pA s A s   ) vibrations are periodic (Fig. 3). 

On the other hand, in the point 02 1 0( , ) (28.7,13.4) { , }B s B s    the Lyapunov exponents for all partition 

numbers are positive, which proves occurrence of chaos in that point (Fig. 3). 

 

 
 01 1 0( , ) (8.6,13.4) , pA s A s     

(periodic vibrations) 

02 1 0( , ) (28.7,13.4) { , }B s B s     

(chaotic vibrations) 

n = 12 

  

n = 14 

 
 

n = 16 

  

Fig. 3. The Lyapunov exponents time histories versus n in periodic and chaotic zones. 
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Let us construct a wavelet spectrum for the points  01 1 0( , ) (8.6,13.4) ,A s A s    and 02 1( , )B s    

0(28.7,13.4) { , }B s  for different numbers of partition ( 12, 14, 16n  ) in the governing Eqs (7–8). The obtained 

results are reported in Table 1 for point А and for point B in Table 2.  

 
Table 1 

Convergence of the FDM in a periodic zone 

01 1( , ) (8.6,13.4)A s A   n = 12 n = 14 n = 16 

2D wavelet spectrum 

   

3D wavelet spectrum 

   

 
Table 2 

Convergence of the FDM in a chaotic zone 

02 1( , ) (28.7,13.4)B s B   n = 12 n = 14 n = 16 

2D wavelet spectrum 

   

3D wavelet spectrum 

   

 

Numerical experiment shows that the wavelet spectrum does not depend on the partition numbers in the periodic 

zone. In the chaotic zone also reasonable good coincidence of the wavelet spectra is observed for different n. 

However, increase of power of the frequencies associated with chaos occurrence is observed. In other words it is 

clearly evident that the applied wavelets analysis can be viewed as a mathematical microscope. Namely, increase of 

partition numbers improves a power of our microscope. The so far illustrated and discussed results allow to for-

mulate a conclusion that the applied FDM is convergent regarding both wavelet spectrum and the Lyapunov ex-

ponents.  

It should be emphasized that although an increase of n  in the applied FDM improves essentially the obtained 

results, but it requires exponential increase of the computational time (one needs to solve a system of algebraic 

equations on each computational step, i.e. for 8n m   we have 64 equations, whereas for 14n m   we have 

256 equations).  
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Recall that the carried out so far investigations regarding the applied FDM allow to conclude that the numerical 

convergence is achieved in the average sense, i.e. with regard to the wavelet spectrum and Lyapunov exponents. In 

a chaotic zone the convergence with respect to the time histories comparison is not achieved. However, in the latter 

case an integral convergence, i.e. with respect to the wavelet spectrum is achieved.  

Here we address another problem: is it reasonable to study only one plate point and then how to share the obtained 

knowledge to all plate points? In order to clarify this point we study five arbitrary taken points of the middle plate 

surface with the following co-ordinates А(3;3), В(n-2; 3), С(n-2; n-2), D(3; n-2), and S(n/2; n/2) being a central 

middle surface point (Fig. 4). 

 

 

Fig. 4. Positions of points A, B, C, D, S on the middle plate surface. 

Analysis of each of the mentioned points is supplemented by monitoring of evolution of time-frequency char-

acteristics of the wavelet spectra with increase of ot the external load amplitude. The following external excitation 

frequencies have been taken into account: ωp = 2.9, ωp = 5.8 (this corresponds to natural plate vibration frequency), 

ωp = 8.7, and ωp = 26, ωp = 13.4. Some of the obtained results are reported in Tables 3−5. Since the frequency of 

compressing load possess essentially higher power in comparison to remaining frequencies, therefore the remaining 

frequencies are often not visible in the wavelet spectrum owing to their small magnitudes. Therefore, our results are 

reported for frequencies in a neighborhood of the excitation frequency.  

Yet, it has been shown numerically that vibrations in different plate points are realized through the same fre-

quency spectrum, although the frequencies power may differ in different points. In addition, the frequencies may 

vanish or again appear in time, but the spectrum record remains conserved. Consequently, it has been shown that a 

choice of only one plate vibration is sufficient for the plate vibrations investigation. We take, following tradition, its 

center as the representative one point.  

One of the fundamental tasks of the investigation relies on monitoring a transition from regular to chaotic vi-

brations of our rectangular plate subjected to periodic excitation action. It should be emphasized that the classical 

approach based on the Fourier spectrum analysis is not appropriate to detect and analyze the mentioned scenarios.  

Observe that during a study of the plate vibrations via the Fourier analysis a few disagreements in comparison to 

other tested characteristics may appear. Namely, in contrary to the frequency power spectrum indicating a harmonic 

behavior other characteristics show the quasi-periodic one. In Table 6 the following signal characteristics are re-

ported: a time history (0.5; 0.5 )w t  for 280 286t , a phase portrait ( )tw w , a frequency power spectrum ( )pS 

and a Poincare map ( )t t Tw w   for the center of the middle plate surface subjected to action of the load 

0 pS s sin t  with the frequency ωp = 5.8 (it is equal to plate natural vibration frequency) and with the amplitude s0 

= 13.4. 

Application of the wavelet transformation have proved that the observed differences of the signals are not acci-

dental. In contrary, a wavelet spectrum illustrates the fact that a transition from regularity to chaos is realized via 

frequencies, whose power is so small that it cannot be detected using the standard Fourier analysis. In the case of 

excitation frequency ωp = 5.8 a scenario to chaos has been obtained via a successive period doubling bifurcation. 

Our wavelet analysis contradicts this statement, because the first bifurcation occurs long earlier than that reported in 

the Fourier spectrum (Fig. 5). Figure 5 shows the first bifurcation for ω1 = 2.9, as well as the low frequency com-

ponents.  
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Table 6 

Dynamical characteristics (ωp = 5.8, s0= 13.4) 

 Signal 

(0.5;0.5; )w t  

Phase portrait 

( )w w  

Frequency power spectrum 

( )S   

Poincaré map 

( )t t Tw w   

1
3
.4

 

    

 

 

Fig. 5. Wavelet spectrum corresponding to the data of Table 6. 

It should be noted that during our numerical investigations with ωp = 2.9 and ωp = 8.7 chaotic behavior has not 

been detected via the classical Fourier analysis. For ωp = 8.7 and with a small amplitude of excitation the obtained 

Fourier spectrum has been noisy and hence it was not possible to get conclusion regarding plate vibrations type 

(Table 7). In the case of ωp = 2.9, increasing the external load amplitude up to 21.2 (frequency power spectrum has 

indicated periodic vibrations although other dynamic characteristics have not validated this observation).  

However, using wavelet analysis it is possible to understand and explain the occurred situation. Namely, a tran-

sition from regular to chaotic dynamics for ωp = 8.7 has been realized via intermittency. The Fourier transformation 

does not allow to trace evolution of the frequency characteristics in time, since it produces a sum of all frequencies 

appearing in the whole investigated time interval. It is evident that an intermittency occurrence even on a short time 

interval makes the spectrum noisy and practically a scenario from regular to chaotic dynamics cannot be detected.  

We are aimed on detection of scenario transitions from regular to chaotic vibrations of the rectangular plate 

subjected to shear-periodic load action. Let us monitor this transition for ωp = 8.7 (Table 7). For small values of the 

excitation amplitude (s0 = 9.6) plate vibrations are sub-harmonic with the frequency (ω1 = 4.35), and the latter fre-

quency cancels the excitation frequency or equivalently a synchronization between two frequencies takes place.  

For s0 = 11.2 a qualitative change of the plate vibrations in time is visible. In the initial time interval a low fre-

quency component dominates together with the excitation frequency, whereas for any t from interval (100;250) the 

plate vibration character is identical to that of s0 = 9.6.  

Further external excitation produces in time ω1 = 4.35 (s0 = 13.5). The power of excitation frequency increases, it 

becomes dominating one, and a low frequency component occurs in time interval (150; 250) (s0 = 18.7). However, 

frequency ω1 does not vanish, but is rather shifted and its contribution to the power spectrum is negligible. We may 

observe it again in time interval 52 200t (ω1 = 4.0) in Fig. 6, where also low frequency components are re-

ported.  

Further increase of the excitation amplitude is associated with occurrence of the intermittency islands for 

150t  (s0 = 18.8). Increasing our control parameter yields a birth of frequency ω1 = 4.35. 

For s0 = 20.2 and 125t  the investigated plate exhibits chaotic dynamics, which with increase of the excitation 

amplitude fills up the whole wavelet spectrum. On the other hand, a 3D wavelet spectrum proves that chaos occurs 

on low frequencies.  

We have illustrated and discussed how our investigated plate is transited into its chaotic state through the suc-

cessive doubled frequency transformation into half of the excitation frequency.  
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Fig. 6. Wavelet spectrum in interval of 52 t 200, s0 = 18.7, ωp = 8.7. 

In the case of external frequency ωp = 2.9 a scenario yielding plate chaotic state is reported in Table 8, which we 

briefly discuss below. 

 
Table 8 

Transition from periodicity to chaos for a plate (ωp = 2.9) 

S0 2D wavelet spectrum 3D wavelet spectrum S0 2D wavelet spectrum 3D wavelet spectrum 

9,1 

  

13,6 

  

21,3 

  

26,3 

  

26,5 

  

26,7 

  

26,9 

  

28,9 

  

 

In the wavelet spectrum two linearly independent frequencies appear ω1 = 0.9 and ω2 = 1.15, and their power is 

rather small in comparison to the excitation frequency. This is why the Fourier spectrum exhibits only a periodicity 

defined by external excitation. Increase of the excitation amplitude awakes a series of frequencies being combina-

tions of ω1 = 0.9, ω2 = 1.15 and ωp = 2.9, and for a long time the plate vibration character is not changed qualitatively. 

However, for s0=21.3 sudden doubled system re construction takes place in time:  

(i) t [50;100] – here dominate external frequency and ω1 = 0.9, and the observed vibrations are qua-

si-periodic with two frequencies; 

(ii) t [120;140] – island of chaotic transitional state appears; 

(iii) t [150;250] – here our plate vibrates with three frequencies ωp = 2.9, ω1 = 0.9, ω2 = 1.15. 

Beginning from s0 = 26.5 short transitional intermittent and periodic states are observed. Period of intermittency 
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window is equal to 30 units, whereas a period between windows of intermittency equals 90 units. Further increase of 

external compressed loading amplitude causes a decrease of the period between windows of intermittency, and our 

plate dynamics becomes chaotic.  

Since the plate transition from its regular to chaotic dynamics is associated with the occurrence of two irrational 

frequencies, then the illustrated scenario can be called a modified Ruelle-Takens-Newhouse scenario with inter-

mittency in time.  

5. Conclusions 

Our investigations and analysis indicate that the convergence of numerically obtained results found by FDM can 

be achieved by monitoring a wavelet spectrum and the Lyapunov exponents. In the case of dynamics in a chaotic 

zone (contrary to static problems) it is impossible to achieve the convergence of time histories (signals), although 

one may achieve the integral convergence regarding the wavelet spectrum. In addition, in the case of small external 

load amplitudes one may achieve convergence with respect to signals, too. An increase of partition numbers in FDM 

improves the obtained results essentially, but there is a threshold value after which the results cannot be further 

improved. In this work we have taken n = 14.  

It has been explained and illustrated that frequently used FFT (Fast Fourier Transform) does not make it possible 

to study a continual system properly and it does not allow us either to detect and monitor transition scenarios into 

chaos. In other words, we have observed a lack of coincidence of the FFT results with other classical dynamical 

characteristics. Namely, the obtained FFT indicates the plate harmonic vibration regime, whereas the phase portrait 

exhibits additional frequencies. It happened because a route to chaos began on frequencies, whose power was so 

small that it could not be revealed by the FFT.  

Furthermore, we have detected and illustrated transition scenarios from periodic to chaotic plate state, where the 

classical approach based on the Fourier analysis failed. In addition, we have detected and discussed two principally 

new scenarios. The first one is called the modified Ruelle-Takens-Newhouse scenario with intermittency, i.e. be-

ginning with a certain value of excitation amplitude, short time periodic intervals appear. A further increase of 

external excitation amplitude causes a decrease of periods between intermittency windows, which finally initiates 

the occurrence of chaotic plate dynamics. The second scenario is associated with double dynamics reconstruction 

through subharmonic states before reaching chaos. 
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