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Wavelet-based analysis of the regular and
chaotic dynamics of rectangular flexible
plates subjected to shear-harmonic loading
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Abstract. We investigate non-linear dynamics of flexible rectangular plates subjected to external shear harmonic load action.
We show that an application of the classical and widely used Fourier analysis does not allow to obtain real picture of the fre-
quency vibration characteristics in each time instant. On the other hand, we show that application of the wavelets approach
allows to follow frequency time evolutions. Our numerical results indicate that vibrations in different plate points occur with the
same frequencies set although their power is different. Hence, the vibration characteristics can be represented by one arbitrary
taken plate point. Furthermore, using wavelets scenarios of transitions from regular to chaotic dynamics are illustrated and
discussed including two novel scenarios not reported so far in the existing literature.

Keywords: Dynamics, plate, chaos, wavelets

1. Introduction

Plates are widely applied in various branches of industry like aviations, ship construction, civil engineering etc.
Since the plate-members of the constructions are in general subjected to action of various loading actions, they need
careful modeling and validated numerical investigations. Today’s industrial needs are mainly focused on the pa-
rameters choice of the analyzed construction to keep them working in safe regimes. However, in particular chaotic
dynamics of structures is not enough-studied so far. Continual systems as plates have been analyzed in refer-
ences [1,2]. Although chaotic dynamics has been detected in fluid mechanics relatively long time ago, both bifur-
cation and chaotic dynamics exhibited by plates and shells have been studied just recently [3—12]. Our contribution
is aimed on a study of chaotic vibrations of flexible rectangular plates subjected to shear loading harmonic action,
which belongs to novel and challenging open problems.

Mathematical models of flexible rectangular plates and shells have been constructed using the kinematic model
of Kirchhoff-Love with inclusion of non-linear relations between deformations and displacements. This leads to a
system of non-homogeneous partial nonlinear differential equations regarding stresses and strains. In order to re-
duce the continuous system to a lumped one may use the Finite Difference Method (FDM) with approximation
O(h?), which allows for investigation of the studied rectangular plates as the mechanical objects with infinite
degrees of freedom. The obtained system of ODEs is then solved via the fourth order Runge-Kutta method.
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2. Governing equations

We consider a plate with a constant rigidity and density within a classical non-linear theory subjected to action of
harmonic shear loading. In the initial time interval t €[0;1] a small static transversal load is applied. In a 3D

co-ordinates the investigated plate can be represented in the following form: Q ={x;, %, %3 | (X, %2) €[0;a] x[0;b],
X €[-h;h]}, 0 <t <00,
We study the following non-dimensional PDEs governing dynamics of the shallow shells:
;(V“W) L(w, F)+@+gﬁw a(xg, X t)+28i— 0
120- %) 7 o2 n ’

oxoy
@

V4F +%L(W,W) =

4 4 200, A2 2w 2E 2 2
where vjzizé_+,lza_+2 ' LwFy o CWEF WP, 'w o°F

2 > is known non-linear
A2 ot oy Ox°0x3 X2 OxZ2  OX3 OxZ  O%O%; 0X0Xp

operator, w and F are functions of deflection and stress, respectively.
System (Eq. (1)) is reduced to a non-dimensional form ‘using the following non-dimensional parameters:
A=a/b; x, =a%, X =aX,, W=2hW denotes deflection; F = E(2n)3E is the stress function; t =t,f denotes

4
time; q = E(zl?)
a’

g is the external loading; ¢ = (2h)z is the damping coefficient of a surrounding medium, and

E(2h)3

S= ab S is the external shear loading. Bars over the non-dimensional parameters are omitted. Furthermore,

the following notations are introduced; a,b denote plate length regarding x; and x, respectively, and £ is the
Poisson coefficient.

The following boundary conditions are attached to Eq. (1):

1. Support on flexible non-stretched (non-compressed) ribs

2 2
—0, T¥_0, F=0, 2L -0 forx =01
OX{ ax1 )
2 2
=0, 6_2: , F=0, aF—O for x, =0,1.
OX5 Ox3
2. Clamping on a contour
=0, @=o, F =0, ﬁ:O for x, = 0,1,
% oXq 3
ow oF
w=0, @_0, F =0, > =0 for x, =0,1.
3. Free support on a contour
2
=0, ow_ , F=0, 8F_0 for x; =0,1,
o o @
2
0, Y0 F=0, F_0 forx, =01
ox3 aXz
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4. Clamping with flexible non-stretched (non-compressed) ribs

2
w =0, ﬂzo, F =0, %:0 for , =0,1,
ox OX{
2 ()
w=o, ¥ _o EF-o %:o for x, = 0,1.
aXz 6X2
The following initial conditions are applied
W(X1, X2) l=0= 0, ow =0 (6)

ot

3. Finite Difference Method (FDM)

In what follows we consider the Finite Difference Method with approximation o(h2) regarding spatial
co-ordinates x; and x, . In this case an application of the FDM to the infinite system of degrees-of-freedom
governed by PDEs (Eq. (1)) yields a finite lumped system governed by the following difference-operator equations

1

————(A2AZWy + 2A5W + A2ASW; ) — AW - ApRy =AW - ARy +
12(1_ﬂ2)( 1 VVjj 12 Vi) 2 u) 1V 2 A 1

+A12W|J A12 i+ ql PXAZ - PyAl - 28A12 = (th + W )i,j

(/1_2/\1 i+ 2A12 + 12[\2 ) = _Alvvij : AZ\NIJ + (Alzvvlj )2 ’

WhereAiy:h_lz[y(Xi —h)=2-y(x)+y(x+h)],i=12

Ay = ———[Y(X+h, X +hp )+ yOg=hg X =1y ) = (X +hy, X —hy ) = (O =y, % +1,) ], (M

4h1h

Aizy:h—lz;[Y(Xi —2h ) —4y(x —h)+6y(X)—4y(% +h)+y(x +2h)], =12

Aby = [Y(X—hXo —hp ) =2y (X =P, X )+ Y (X =P Xo —hp ) = 2( X, X —hp ) +

1
hfhi

4y (%, % ) =2y (X, X + 1o )+ Y (X +hy, X —hp ) =2(X + %o )+ Y (X + X +hp )]
The following initial conditions are attached to system (Eq. (7)):

Wi =i (ks Xk )y Wh= o (X , Xk ), (O<k <n), 0<t<oo,

whereas the boundary value conditions (Eqgs (2-5)) are formulated in the following form:
1. Free support on a contour:

Wnyj:O, Wn,j:_Wn—Z,j’ Fn'j:O, Fn,j :_Fn—Z,j! j:l,...,m—l,

(®)

Wi,m:O’ Wi m =—Wim-_2, I:l,mzon I:l,m :_Fl,m—Zn i= Ln-1;
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2. Clamping on a contour:

Wn’j=0, Wn,j =Wn—2,j! Fn,j:01 Fn,j= n-2,j j=1,...,m—1,

Wim=0, Wim =Wimo Fm=0, Fn=FRno i=l..n-1 ®
3. Support on flexible non-stretched (non-compressed) ribs:
W j=0, Wyj=-Wh2j Fnj=0, Fj=F2j, j=1..m-1, )
Wim=0, W n=-Wmo Fn=0 Fy=FKuo i=Ll..n-1
4. Clamping with flexible non-stretched (non-compressed) ribs:
Wh =0, Wy j=Wyoj, Fj=0, R j=-F2j, j=L1..m-1,
11)

Wi,m:Ov Wim =Wim-2, Fl,mzol I:|,m :_F|,m—21 i:1,...,n—1;

System of Eeqs (7—11) is solved via the fourth order Runge-Kutta method, where on each time step a large system
of algebraic linear equations is solved. The Runge principle allows to choose a time step properly.

4. Analysis and results

We consider a rectangular plate with homogeneous boundary conditions (Eq. (8)) and the initial conditions
fi (k. Xok) =0, 2 (k. %) =0 being subjected to action of a shear-harmonic load in the form of s = s; sin w,t,

where o, and sq is the frequency and amplitude of the external excitations, respectively. Damping coefficient

& =1, whereas the Poisson’s coefficient = 0.3.

We investigate numerically a convergence of the FDM versus a number n of partition of intervals [0; 1] and [0; 1]
of the rectangular plate in a regular (periodic) and chaotic regimes.

Let us study first the point A(syy,an) = A(8.6,13.4) {50, w, } belonging to a periodic zone. Three curves for
n=m=1214,16 are reported in Fig. 1. Increasing n causes initially decrease of the output signals amplitude,
whereas for n =m =14,16 the curves fully overlap.

w04 T T T T T T T T T

E | | | | | | |
305 3051 3052 3053 305.4 3055 3056 3057 3058 3059

Fig. 1. Deflection W(t) versus n in a periodic zone.

Let us consider one more point B(sg,, @) = B(28.7,13.4) e {sy, @}, but in a chaotic zone. For all n =12, 14,16
the studied signals differ from each other (see Fig. 2).
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Fig. 2. Deflection W(t) Versus n in a chaotic zone.

In what follows we study convergence of the FDM with respect to computation of the Lyapunov exponents. For
this purpose we monitor the Lyapunov exponents evolution with time (280 <t < 285) for a number of partitions
(n=12,14,16) in periodic and chaotic zones.

In point A(sy;, 1) = A(8.6,13.4) e { s, m, } the Lyapunov exponents for all studied partitions are negative,
which indicates that in the investigated point ( A(sy;, @) = A(8.6,13.4) < {so, @, } ) Vibrations are periodic (Fig. 3).

On the other hand, in the point B(sq, @) = B(28.7,13.4) e {Sy, w} the Lyapunov exponents for all partition
numbers are positive, which proves occurrence of chaos in that point (Fig. 3).

Alsor, 1) = AB.613.4) € { 59,0 | B(Sp. @) = B(28.7,134) e {39, 0}
(periodic vibrations) (chaotic vibrations)
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Fig. 3. The Lyapunov exponents time histories versus n in periodic and chaotic zones.
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Let us construct a wavelet spectrum for the points A(sy, @) = A(8.6,13.4) € {sp,} and B(Syy, @) =
B(28.7,13.4) e {s,, w} for different numbers of partition (n =12, 14, 16) in the governing Eqgs (7-8). The obtained

results are reported in Table 1 for point A and for point B in Table 2.

Table 1

Convergence of the FDM in a periodic zone

Alsor, @) = A(8.6,13.4)

n=12

n=14

n=16

2D wavelet spectrum

signal12_w13_4_806_morl_2Dwavelet
15

10

®

100 150 200
t

signal14_w13_4_806_morl_2Dwavelet
15

10

®

100 150 200
t

®

signal16_w13_4_806_morl_2Dwavelet
15

10

100 150 200
t

3D wavelet spectrum

signal12_w13_4_806_morl_30wavelet

signal14_w13_4_806_morl_3Dwavelet

signal16_w13_4_806_morl_3Dwavelet

Table 2

Convergence of the FDM in a chaotic zone

B(soz, 1) = B(28.7,13.4)

n=12

n=14

n=16

2D wavelet spectrum

signal12_w13_4_2807_morl_2Dwavelet
15

10

®

100 150 200
t

signal14_w13_4_2807_morl_2Dwavelet

100 150
t

signal16_w13_4_2807_morl_2Dwavelet

!
0,
(e

M| 4
| wxﬂ,” I '{

I"W Il

|
i
bl

150 200
t

signal12_w13_4_2807_morl_3Dwavelet
20,
15,
10 ‘

signal14_w13_4_2807_morl_3Dwavelet

15,
10,4
\

signal16_w13_4_2807_morl_3Dwavelet

58 &
3D wavelet spectrum
100
150
200

t

Numerical experiment shows that the wavelet spectrum does not depend on the partition numbers in the periodic
zone. In the chaotic zone also reasonable good coincidence of the wavelet spectra is observed for different n.
However, increase of power of the frequencies associated with chaos occurrence is observed. In other words it is
clearly evident that the applied wavelets analysis can be viewed as a mathematical microscope. Namely, increase of
partition numbers improves a power of our microscope. The so far illustrated and discussed results allow to for-
mulate a conclusion that the applied FDM is convergent regarding both wavelet spectrum and the Lyapunov ex-
ponents.

It should be emphasized that although an increase of n in the applied FDM improves essentially the obtained
results, but it requires exponential increase of the computational time (one needs to solve a system of algebraic
equations on each computational step, i.e. for N =M =38 we have 64 equations, whereas for N =M =14 we have
256 equations).
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Recall that the carried out so far investigations regarding the applied FDM allow to conclude that the numerical
convergence is achieved in the average sense, i.e. with regard to the wavelet spectrum and Lyapunov exponents. In
a chaotic zone the convergence with respect to the time histories comparison is not achieved. However, in the latter
case an integral convergence, i.e. with respect to the wavelet spectrum is achieved.

Here we address another problem: is it reasonable to study only one plate point and then how to share the obtained
knowledge to all plate points? In order to clarify this point we study five arbitrary taken points of the middle plate
surface with the following co-ordinates A(3;3), B(n-2; 3), C(n-2; n-2), D(3; n-2), and S(n/2; n/2) being a central
middle surface point (Fig. 4).

A
n
n-2 5} ®
n/2 S
3 A B
2
1
0 Hi2:3 n2 n2-n

Fig. 4. Positions of points A, B, C, D, S on the middle plate surface.

Analysis of each of the mentioned points is supplemented by monitoring of evolution of time-frequency char-
acteristics of the wavelet spectra with increase of ot the external load amplitude. The following external excitation
frequencies have been taken into account: w, = 2.9, o, = 5.8 (this corresponds to natural plate vibration frequency),
0, = 8.7, and wp = 26, o, = 13.4. Some of the obtained results are reported in Tables 3—5. Since the frequency of
compressing load possess essentially higher power in comparison to remaining frequencies, therefore the remaining
frequencies are often not visible in the wavelet spectrum owing to their small magnitudes. Therefore, our results are
reported for frequencies in a neighborhood of the excitation frequency.

Yet, it has been shown numerically that vibrations in'different plate points are realized through the same fre-
quency spectrum, although the frequencies power may differ in different points. In addition, the frequencies may
vanish or again appear in time, but the spectrum record remains conserved. Consequently, it has been shown that a
choice of only one plate vibration is sufficient for the plate vibrations investigation. We take, following tradition, its
center as the representative one point.

One of the fundamental tasks of the investigation relies on monitoring a transition from regular to chaotic vi-
brations of our rectangular plate subjected to periodic excitation action. It should be emphasized that the classical
approach based on the Fourier spectrum-analysis is not appropriate to detect and analyze the mentioned scenarios.

Observe that during a study of the plate vibrations via the Fourier analysis a few disagreements in comparison to
other tested characteristics may appear. Namely, in contrary to the frequency power spectrum indicating a harmonic
behavior other characteristics show the quasi-periodic one. In Table 6 the following signal characteristics are re-
ported: a time history w(0.5;0.5t) for 280 <t < 286, a phase portrait w(w;) , a frequency power spectrum S (w,)

and a Poincare map w; (w,7) for the center of the middle plate surface subjected to action of the load
S = sgsinaw,t With the frequency o, = 5.8 (it is equal to plate natural vibration frequency) and with the amplitude s,

=13.4.

Application of the wavelet transformation have proved that the observed differences of the signals are not acci-
dental. In contrary, a wavelet spectrum illustrates the fact that a transition from regularity to chaos is realized via
frequencies, whose power is so small that it cannot be detected using the standard Fourier analysis. In the case of
excitation frequency w, = 5.8 a scenario to chaos has been obtained via a successive period doubling bifurcation.
Our wavelet analysis contradicts this statement, because the first bifurcation occurs long earlier than that reported in
the Fourier spectrum (Fig. 5). Figure 5 shows the first bifurcation for o, = 2.9, as well as the low frequency com-
ponents.
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Table 6
Dynamical characteristics (wp = 5.8, So= 13.4)
Signal Phase portrait Frequency power spectrum Poincarémap
w(0.5,0.5;1) w(w) S(w) W (Weir)
0w T T 08 P T g T T o 0.424 W I

04235 - T
04

daml .

13.4

a5l G -

‘AU.AE%

L 1 L L 1
e 281 282 283 284 25 224 42 0425 042 0435

Fig. 5. Wavelet spectrum corresponding to the data of Table 6.

It should be noted that during our numerical investigations with , = 2.9 and w, = 8.7 chaotic behavior has not
been detected via the classical Fourier analysis. For w, = 8.7 and with a small amplitude of excitation the obtained
Fourier spectrum has been noisy and hence it was not possible to get conclusion regarding plate vibrations type
(Table 7). In the case of m, = 2.9, increasing the external load amplitude up to 21.2 (frequency power spectrum has
indicated periodic vibrations although other dynamic characteristics have not validated this observation).

However, using wavelet analysis it is possible to understand and explain the occurred situation. Namely, a tran-
sition from regular to chaotic dynamics for o, = 8.7 has been realized via intermittency. The Fourier transformation
does not allow to trace evolution of the frequency characteristics in time, since it produces a sum of all frequencies
appearing in the whole investigated time interyval. It is evident that an intermittency occurrence even on a short time
interval makes the spectrum noisy and practically a scenario from regular to chaotic dynamics cannot be detected.

We are aimed on detection of scenario transitions from regular to chaotic vibrations of the rectangular plate
subjected to shear-periodic load action. Let us monitor this transition for w, = 8.7 (Table 7). For small values of the
excitation amplitude (so = 9.6) plate vibrations are sub-harmonic with the frequency (o = 4.35), and the latter fre-
quency cancels the excitation frequency or equivalently a synchronization between two frequencies takes place.

For sp= 11.2 a qualitative change of the plate vibrations in time is visible. In the initial time interval a low fre-
quency component dominates together with the excitation frequency, whereas for any t from interval (100;250) the
plate vibration character is identical to that of s, = 9.6.

Further external excitation produces in time w; = 4.35 (So = 13.5). The power of excitation frequency increases, it
becomes dominating one, and a low frequency component occurs in time interval (150; 250) (s, = 18.7). However,
frequency w; does not vanish, but is rather shifted and its contribution to the power spectrum is negligible. We may
observe it again in time interval 52 <t < 200 (0, = 4.0) in Fig. 6, where also low frequency components are re-
ported.

Further increase of the excitation amplitude is associated with occurrence of the intermittency islands for
t > 150 (s, = 18.8). Increasing our control parameter yields a birth of frequency o, = 4.35.

Forsy=20.2 and t <125 the investigated plate exhibits chaotic dynamics, which with increase of the excitation
amplitude fills up the whole wavelet spectrum. On the other hand, a 3D wavelet spectrum proves that chaos occurs
on low frequencies.

We have illustrated and discussed how our investigated plate is transited into its chaotic state through the suc-
cessive doubled frequency transformation into half of the excitation frequency.
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t

Fig. 6. Wavelet spectrum in interval of 52 < t< 200, so= 18.7, w, = 8.7.

In the case of external frequency w, = 2.9 a scenario yielding plate chaotic state is reported in Table 8, which we
briefly discuss below.

Table 8
Transition from periodicity to chaos for a plate (o, = 2.9)
So 2D wavelet spectrum 3D wavelet spectrum So 2D wavelet spectrum 3D wavelet spectrum
signal_skrut_w2_9_a0_1_901_morl_2Dwavele signal, skrdl_w2_§_a0_1_801_morl_3Dwavele signal_skrut_w2_9.a0_1_1306_morl_2Dwavel signal_skrut_w2_9_a0_1_1306_morl_3Dwavel
4, {
15 2 |
9,1 13,6
100
150
o9 00 150 200 00 150 200
1 2 t 2 1 2 t 2
t 05 1o s t 05 1o 13
signal_skrut_w2_9_a0_1_2103_morl_2Dwavel sighal_skrut_w2_9_a0_1_2103_morl_3Dwavel signal_skrut_w2_9_a0_1_2603_morl_2Dwavel signal_skrut_w2_9_a0_1_2603_mor|_3Dwavel
i
| 3
| 4 2|
| 15 1
21,3 26,3
]
100 100
150 150
100 150 200 20(0 2 0 100 150 200 20(0 2
i o5 1o ' ° ) i 05 1o ¥ °
signal_skrut_w2_9_a0_1_2605_morl_2Dwavel signal_skrut_w2_9_a0_1_2605_morl_3Dwavel signal_skrut_w2_9_a0_1_2607_morl_2Dwavel signal_skrut_w2_9_a0_1_2607_morl_3Dwaveh
2 . " 4 v T
2{
15 \
26,5 26,7
1 100
150
05 200
100 150 200 t 15 2 100 150 200
t 05 1o t
signal_skrut_w2_8_a0_1_2609_morl_3Dwavel signal_skrut_w2_9_a0_1_2809_morl_2Dwavel signal_skrut_w2_9_a0_1_2809_morl_3Dwavel
a, 2f "
2
26,9 \ 289
100
150
1 2 200
10 150 200 t 15 15 2

In the wavelet spectrum two linearly independent frequencies appear ®; = 0.9 and o, = 1.15, and their power is
rather small in comparison to the excitation frequency. This is why the Fourier spectrum exhibits only a periodicity
defined by external excitation. Increase of the excitation amplitude awakes a series of frequencies being combina-
tions of w; = 0.9, 0, = 1.15 and o, = 2.9, and for a long time the plate vibration character is not changed qualitatively.
However, for s;=21.3 sudden doubled system re construction takes place in time:

(i) t [50;100] — here dominate external frequency and «; = 0.9, and the observed vibrations are qua-
si-periodic with two frequencies;
(if) t[120;140] —island of chaotic transitional state appears;
(iii) t[150;250] — here our plate vibrates with three frequencies w,=2.9, ®; = 0.9, 0, = 1.15.

Beginning from sy = 26.5 short transitional intermittent and periodic states are observed. Period of intermittency
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window is equal to 30 units, whereas a period between windows of intermittency equals 90 units. Further increase of
external compressed loading amplitude causes a decrease of the period between windows of intermittency, and our
plate dynamics becomes chaotic.

Since the plate transition from its regular to chaotic dynamics is associated with the occurrence of two irrational
frequencies, then the illustrated scenario can be called a modified Ruelle-Takens-Newhouse scenario with inter-
mittency in time.

5. Conclusions

Our investigations and analysis indicate that the convergence of numerically obtained results found by FDM can
be achieved by monitoring a wavelet spectrum and the Lyapunov exponents. In the case of dynamics in a chaotic
zone (contrary to static problems) it is impossible to achieve the convergence of time histories (signals), although
one may achieve the integral convergence regarding the wavelet spectrum. In addition, in the case of small external
load amplitudes one may achieve convergence with respect to signals, too. An increase of partition numbers in FDM
improves the obtained results essentially, but there is a threshold value after which the results cannot be further
improved. In this work we have taken n = 14,

It has been explained and illustrated that frequently used FFT (Fast Fourier Transform) does not make it possible
to study a continual system properly and it does not allow us either to detect and monitor transition scenarios into
chaos. In other words, we have observed a lack of coincidence of the FFT results with other classical dynamical
characteristics. Namely, the obtained FFT indicates the plate harmonic vibration regime, whereas the phase portrait
exhibits additional frequencies. It happened because a route to chaos began on frequencies, whose power was so
small that it could not be revealed by the FFT.

Furthermore, we have detected and illustrated transition scenarios from periodic to chaotic plate state, where the
classical approach based on the Fourier analysis failed. In addition, we have detected and discussed two principally
new scenarios. The first one is called the modified Ruelle-Takens-Newhouse scenario with intermittency, i.e. be-
ginning with a certain value of excitation amplitude, short time periodic intervals appear. A further increase of
external excitation amplitude causes a decrease of periods between intermittency windows, which finally initiates
the occurrence of chaotic plate dynamics. The second-scenario is associated with double dynamics reconstruction
through subharmonic states before reaching chaos.
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