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Internal motion of the complex oscillators near main resonance
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Abstract An analytical study of the two degrees of freedom nonlinear dynamical system is presented.
The internal motion of the system is separated and described by one fourth order differential
equation. An approximate approach allows reducing the problem to the Duffing equation with
adequate initial conditions. A novel idea for an effective study of nonlinear dynamical systems
consisting in a concept of the socalled limiting phase trajectories is applied. Both qualitative and
quantitative complex analyses have been performed. Important nonlinear dynamical transition
type phenomena are detected and discussed. In particular, nonsteady forced system vibrations
are investigated analytically. c⃝ 2012 The Chinese Society of Theoretical and Applied Mechanics.
[doi:10.1063/2.1204302]
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The energy exchange problem occurring in the non-
linear dynamical systems is widely discussed in the
literature.1 This phenomenon is observable in the cou-
pled oscillators as well. The dynamics of such a system
is investigated here. The coupled oscillators play an im-
portant role in many fields, for example in mechanics,
electronics, medicine, etc.2

Dynamics of coupled periodically driven oscillators
is very complicated. Certain simplification of the equa-
tions of motion of the two degrees of freedom system
reducing it to the Duffing equation is shown in Ref. 3.

The equations of motion of two linear oscillators
connected together by a nonlinear equipment maybe
formulated as follows in the most general form

L1 (q1) + Ln (q2 − q1) = F1,

L2 (q2)− Ln (q2 − q1) = F2, (1)

where q1 and q2 are general coordinates, L1 and L2 are
linear differential operators, Ln is nonlinear differential
operator, F1 and F2 are the external loads.1

Introducing the new denotations ξ = q1, ζ = q2−q1,
the system (1) reads

L1 (ξ) + Ln (ζ) = F1,

L2 (ζ) + L2 (ξ)− Ln (ζ) = F2. (2)

After some algebraic transformations and taking ad-
vantage of linearity of L1 and L2, the equation describ-
ing the internal motion may take a form

(L1 + L2) (−Ln (ζ)) + L1 (L2 (ζ)) =

L1 (F2)− L2 (F1) . (3)

In consequence, only one equation allows to investi-
gate the significant dynamical task of the system of two
coupled oscillators of two degrees of freedom.
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Two coupled oscillators are analyzed in the paper.
One of them, the mass of which is much bigger than that
of the other, is driven by an external periodic load. We
make the simplifying assumption that, while the motion
of the smaller mass is nonlinear, the motion of the main
mass may be considered as linear. This is an interesting
case from a practical point of view.2–4 The small mass
can be considered as an energetic sink from the main
object.

We assume that the system vibrates in the neigh-
borhood of the static equilibrium position. Introduc-
ing a variable describing the internal motion y (τ) =
z (τ)−ϕ (τ), where z (τ) and ϕ (τ) are non dimensional
coordinates depending on the non dimensional time, the
equations of motion take the form

µ1ϕ̈ (τ) + γ1ϕ̇ (τ) + α1ϕ (τ)− y (τ)− ηey
3 (τ)−

γeẏ (τ) = f cos (p0τ) , (4)

y (τ) + ηey
3 (τ) + γeẏ (τ) + ÿ (τ) + ϕ̈ (τ) = 0, (5)

where µ1, α1, γ1, ηe, γe, f , p0 are non dimensional pa-
rameters defined as functions of the original dimensional
ones.1

The structure of the Eqs. (4) and (5) is similar to
Eq. (2), where the respective operators are

L1 (χ) = µ1
d 2χ

d τ2
+ γ1

dχ

d τ
+ α1 χ,

L2 (χ) =
d 2χ

d τ2
,

Ln (χ) = −γe
d 2χ

d τ
− χ− ηeχ

3, (6)

while

F1 = f cos (p0τ) , F2 = 0. (7)

Hence, according to Eq. (3), the equation for inter-
nal motion reads[

(µ1 + 1)
d 2

d τ2
+ γ1

d

d τ
+ α1

]
·
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(
µ1

µ1 + 1
ÿ + γeẏ + y + ηey

3

)
+

1

µ1 + 1

(
γ1

d

d τ
+ α1

)
ÿ = p20f cos(p0τ). (8)

The second term on the left hand side of Eq. (8) is
omitted in further analysis as being small comparing to
others. In this way the approximate equation of the
internal motion takes the form(

d 2

d τ2
+ γn

d

d τ
+ α2

n

)
g (τ) =

f p20
(µ1 + 1)

cos(p0τ),

(9)

where

g (τ) =
µ1

µ1 + 1
ÿ (τ)+y (τ)+ηey

3 (τ)+γeẏ (τ) , (10)

and γn = γ1/(µ1 + 1), α2
n = α1/(µ1 + 1).

Equation (9) has the following analytical solution

g (τ) =
f p20

(µ1 + 1)∆

[ (
α2
n − p20

)
cos (p0τ) +

γnp0 sin (p0τ)
]
+ e−γnτ/2

[
d1 cos (βτ) +

d2 sin (βτ)
]
, (11)

where β =

√
α2
n − (γn/2)

2
, ∆ =

(
α2
n − p20

)2
+ p20γ

2
n, d1

and d2 are integration constants.
Substituting Eq. (11) into Eq. (10) and neglecting

the decaying term in Eq. (11), the Duffing type equation
is obtained

ÿ + γe ẏ + y + ηey
3 = P cos (p0τ + Φ) , (12)

where

tanΦ =
p0γn

α2
n − p20

, P = − f p20
(µ1 + 1)

√
∆
.

Further analysis relates to Eq. (12). Assuming that
the damping is weak and that nonlinearity and ampli-
tude of the external load are of the order of small pa-
rameter ε ≪ 1, the equation of internal motion reads

ÿ + 2εγẏ + y + 8εηy3 = 2εF cos (p0τ + Φ) , (13)

where 2εγ = γe, 8εη = ηe, 2εF = P .
Let us introduce the variable v (τ) = ẏ (τ) and sup-

pose that the initial conditions correspond to the rest,
that is y(0) = 0, ẏ (0) = 0. Equation (13) takes the
form

v − ẏ = 0,

v̇ + 2εγẏ + y + 8εηy3 = 2εF cos (p0τ + Φ) . (14)

Afterwards, the new complex variables Ψ =
(v + i y) e−i τ and Ψ̄ = (v − i y) e i τ are introduced.4

Then the system (14) can be replaced by the following
equation

dΨ

d τ
+ γε

(
Ψ + Ψ̄e−2i τ

)
+ i ηε

(
Ψ3e 2i τ − Ψ̄3e−4i τ −

3 |Ψ |2 Ψ + 3 |Ψ |2 Ψ̄e−2i τ
)
=

2εe−i τF sin (p0τ + Φ) , (15)

with the initial condition Ψ (0) = 0. The conjugate
equation to Eq. (15) can be obtained in similar way.

The case of the main resonance p0 ≈ 1 is then con-
sidered. The multiple time scale method is used to ob-
tain the analytical solution of Eq. (15).5 Let us intro-
duce the co-called detuning parameter σ as a measure
of the distance of the strict resonance. Then the substi-
tution p0 = 1 + σ = 1 + εσ̃ into Eq. (15) is made. The
assumed form of the solution is

Ψ (τ) = Ψ0 (τ0, τ1) + ε Ψ1 (τ0, τ1) , (16)

where time scales are τ0 = τ and τ1 = ετ .
After substituting the expansion (16) into Eq. (15)

and eliminating secular terms, the solvability condition
gives the equation for the main asymptotic approxima-
tion

∂Ψ0

∂τ1
+ γΨ0 − 3i η |Ψ0|2 Ψ0 = F e i (σ̃τ1+Φ). (17)

Let Ψ0 (τ1) = a (τ1) e
i δ(τ1), where a (τ1) and δ (τ1) are

real functions. Then using this substitution in Eq. (17),
separating its real and imaginary parts and returning
to the original notations as in Eq. (12), we obtain

d a

d τ
+

1

2
γea =

P

2
cos θ,

−a
d θ

d τ
+ aσ − 3

8
ηea

3 =
P

2
sin θ, (18)

where θ = στ − δ+Φ is the modified phase. Thanks to
application of θ, the system (18) is autonomous.

The steady state solution of Eq. (18) gives θ =
±π/2 + nπ, where n ∈ C and

2σa− 3

4
ηea

3 = ±P. (19)

If the interval is limited to −π < θ < π, the value
θ = −π/2 corresponds to −P in Eq. (19), while θ =
π/2 corresponds to +P. When the nonlinear parameter
ηe < ηc1 = 128σ3/(81P 2) then for θ = −π/2, Eq. (19)
has one positive root corresponding to the resonance
center ar, while for θ = π/2, there are two positive
amplitudes: quasi-linear center aq and the saddle point
as. The above discussion is illustrated in Fig. 1.

We note that in the absence of damping, the sys-
tem (18) has the first integral

H = −a
P

2
sin θ + σ

a2

2
− 3

32
ηea

4 = const, (20)

which allows to draw the trajectories of motion in the
plane (a, θ). The positions of the steady state points
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Fig. 1. Real roots of Eq. (19); positive branch–steady
state amplitudes with respect to ηe, for σ = 0.002 and
P = 0.000 8.
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Fig. 2. Trajectories of motion for various values of H in
Eq. (18).

of Eq. (18) and trajectories of motion are illustrated in
Fig. 2.

An interesting case of the motion will appear for
H = 0 when maximal energy exchange between the
system and external loading occurs. For that case the
maximal amplitudes can be derived and the another
critical value of the nonlinearity parameter ηe = ηc =
64σ3/(81P 2) = ηc1/2 is detected. It separates quali-
tatively distinct types of vibrations. It can be easily
seen that the extremes at the phase trajectories occur
for θ = ±π/2 + nπ. The maximal amplitudes in the
non-stationary motion are drawn in Fig. 3.

The points 4 and 2 in Fig. 3 correspond to the max-
imal amplitudes for quasi-linear and strongly nonlinear
cases, respectively. The points 1 and 3 indicate the so-
lutions lying on the open curve at the phase trajectory
and do not describe amplitude of vibrations (see also
Fig. 4). The limiting phase trajectories for various non-
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Fig. 3. The real roots of Eq. (20) for H = 0; the thick lines
are maximal amplitudes in the non-stationary vibrations.
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Fig. 4. Phase trajectories for H = 0; 1, 2, 3, 4 are real roots
of Eq. (20).

linearity ηe are drawn in Fig. 4.
The graphs in Figs. 1–4 are made for σ = 0.002 and

P = 0.000 8. Then ηc1 = 0.019 753 1.
The non-stationary dynamical process has been in-

vestigated analytically. The way of testing the behavior
of some kind of coupled nonlinear oscillators has been
shown. Te investigated system consists of two bodies.
One of them has much greater mass than the second.
The object of smaller mass can be considered as an en-
ergetic sink, and used as a passive damper. The main
external resonance has been tested. The internal motion
of two degrees of freedom system has been described by
the effective equation, which takes the form of Duffing
equation, after some simplifying assumptions.

Two critical values of the parameter ηe, responsi-
ble for nonlinearity, have been noticed for which major
qualitative and quantitative changes appear in the mo-
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tion. Dependence of maximal amplitude versus η in the
non-stationary process is also derived and graphically
presented.

The complex description and multiple scale analy-
sis allow to obtain qualitatively important information
about the system dynamics. Especially the limiting
phase trajectories allow to understand and describe the
phase and temporal behavior of the internal motion of
a coupled forced oscillator in its nonsteady vibrations.
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